Humboldt-Universität zu Berlin - Mathematisch-Naturwissenschaftliche Fakultät - Didaktik der Informatik | Informatik und Gesellschaft

Seminar "Educational Data Mining"

Kurzbeschreibung

Das Seminar behandelt aktuelle (Forschungs-)Themen im Bereich Educational Data Mining. Ausgehend von den Grundlagen des Data Minings werden Anwendungen im Bereich von (intelligenten) Lernsystemen untersucht. Es werden u.a. Fragestellungen behandelt, die den Einsatz und den Nutzen von maschinellem Lernen in Systemen untersuchen, die das menschliche Lernen unterstützen sollen. 

Ansprechpartner

Zhilin Zheng 
Sebastian Groß

Termine & Leistungsnachweis-Bedingungen, Präsentationstechnik

Regelmäßiger Termin: Mittwochs 15-17 Uhr, Rudower Chaussee 25, 3.101

Zur Erlangung eines Seminarscheines wird ein Vortrag (30 min.), die Leitung der Diskussion zum eigenen Vortrag (ca. 15 min.) und eine schriftliche Ausarbeitung (~10 Seiten) gefordert. Es wäre sinnvoll, wenn Sie einige Fragen vorbereiten wüden, die die Grundlage für die anschließende Diskussion bilden. Sie können ihre Folien (mindestens eine Woche vor dem Vortrag) per E-Mail an zhilin.zheng@informatik.hu-berlin.de senden, um Feedback zu erhalten.

Das Seminar startet am 20.04.2016 mit einer kurzen Einführung in Educational Data Mining und der Vorstellung der Themen. Anschließend können Themen ausgewählt werden. Die genauen Termine für die Vorträge werden (in Abhängigkeit von der tatsächlichen Teilnehmerzahl) zu einem späteren Zeitpunkt bekanntgegeben.

Vorträge und schriftliche Ausarbeitungen müssen in englischer Sprache gehalten bzw. verfasst werden. Spätester Abgabetermin für die schriftlichen Ausarbeitungen ist der 30.09.2016.

Für die Vorträge stehen ein Videobeamer (mit VGA-/HDMI-Anschluss) und eine (Kreide-)Tafel zur Verfügung. Ein tragbarer Rechner (Adobe Reader, Firefox, PowerPoint, LibreOffice) kann bei rechtzeitiger Voranmeldung zur Verfügung gestellt werden (vorheriges Testen wird empfohlen).

Die Folien des Einführungsvortrags können Sie unter folgendem Link herunterladen: Folien Einführung

Themen

Nr Thema Referenzen Vortragende(r) Vortragstermin Folien
1 Introduction to Educational Data Mining [49, 50, 85] Oliver M. 25.05.,
15:15 Uhr
-
2 Online Discussion [75, 79, 84, 81] Nick R. 25.05.,
16:00 Uhr
-
3 Clustering [63, 1, 64] Nils G. 01.06.,
15:15 Uhr
-
4 Students’ engagement at MOOC [74, 73, 78, 82, 83] Wilhelm G. 01.06.,
16:00 Uhr
-
5 Affect Detection [86, 87, 88] Stefan S. 08.06.,
15:15 Uhr
-
6 Swarm Intelligence [29, 34, 70, 56] Robert K. 08.06.,
16:00 Uhr
-
7 Learning Behaviors Mining [76, 77, 80] Christopher S. 15.06.,
15:15 Uhr
-
8 Analysis of Student/Student and Student/Tutor Interactions [6, 37, 20] Steffen P. 15.06.,
16:00 Uhr
-
9 Social Network Analysis [44, 48, 17, 46] Max W. 15.06.,
16:00 Uhr
-

Literaturverzeichnis

Nachfolgend finden Sie die Literaturreferenzen, die Ihnen einen Einstieg in ihr Thema ermöglichen und als Ausgangspunkt für eine weitere Literaturrecherche dienen sollen. Sämtliche Dokumente können Sie von uns in digitaler Form (als PDF/Word-Dokument) erhalten. Schreiben Sie dazu bitte eine E-Mail an sebastian.gross@informatik.hu-berlin.de mit Angabe der Referenznr. bzw. ihres Themas.

Darüber hinaus möchten wir Ihnen das folgende Handbuch zu Educational Data Mining empfehlen:

 

Nr. Referenz
[1] S. Amershi and C. Conati. Automatic recognition of learner groups in exploratory learning environments. In M. Ikeda, K. Ashley, and T.-W. Chan, editors, Intelligent Tutoring Systems, volume 4053 of Lecture Notes in Computer Science, pages 463-472. Springer Berlin Heidelberg, 2006.
[2] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pelletier. Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4(2):167-207, 1995.
[3] R. Baker, A. Corbett, and K. Koedinger. Detecting student misuse of intelligent tutoring systems. In J. Lester, R. Vicari, and F. Paraguacu, editors, Intelligent Tutoring Systems, volume 3220 of Lecture Notes in Computer Science, pages 531-540. Springer Berlin Heidelberg, 2004.
[4] R. S. Baker, A. T. Corbett, and V. Aleven. More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In Proceedings of the 9th International Conference on Intelligent Tutoring Systems, ITS '08, pages 406-415, Berlin, Heidelberg, 2008. Springer-Verlag.
[5] R. S. J. d. Baker, S. K. D'Mello, M. T. Rodrigo, and A. C. Graesser. Better to be frustrated than bored: The incidence, persistence, and impact of learners' cognitive-affective states during interactions with three different computer-based learning environments. Int. J. Hum.-Comput. Stud., 68(4):223-241, Apr. 2010.
[6] B. Barros and M. F. Verdejo. Analysing student interaction processes in order to improve collaboration. the degree approach. International Journal of Artificial Intelligence in Education, 11(3):221-241, 2000.
[7] P. Blikstein. Using learning analytics to assess students' behavior in open-ended programming tasks. In Proceedings of the 1st international conference on learning analytics and knowledge, pages 110-116. ACM, 2011.
[8] K. E. Boyer, E. Y. Ha, M. D.Wallis, R. Phillips, M. A. Vouk, and J. C. Lester. Discovering tutorial dialogue strategies with hidden markov models. In Proceedings of the 2009 Con- ference on Artificial Intelligence in Education: Building Learning Systems That Care: From Knowledge Representation to Affective Modelling, pages 141-148, Amsterdam, The Netherlands, The Netherlands, 2009. IOS Press.
[9] C. Bremer and D. Wei. Massive open online courses: Kategorisierung und analyse des teilnehmerverhaltens am beispiel der opcos 2011 und 2012. 2013.
[10] P. Brusilovskiy. The construction and application of student models in intelligent tutoring systems. Journal of computer and systems sciences international, 32(1):70-89, 1994.
[11] G. Castillo, J. Gama, and A. M. Breda. An adaptive predictive model for student modeling. Advances in Web-based education: Personalized learning environments, pages 70-92, 2005.
[12] H. Cen, K. R. Koedinger, and B. Junker. Is over practice necessary? -improving learning eciency with the cognitive tutor through educational data mining. In Proceedings of the 2007 Conference on Artificial Intelligence in Education: Building Technology Rich Learning Contexts That Work, pages 511-518, Amsterdam, The Netherlands, The Netherlands, 2007. IOS Press.
[13] P. Charlton, M. Mavrikis, and D. Katsi i. The potential of learning analytics and big data. Ariadne, 2013.
[14] W. J. Clancey. Intelligent tutoring systems: A tutorial survey. 1986.
[15] A. T. Corbett, K. R. Koedinger, and J. R. Anderson. Handbook of Human-Computer Interaction Chapter 37 Intelligent Tutoring Systems. Elsevier Science B. V., 1997.
[16] R. S. J. de Baker and A. M. J. B. de Carvalho. Labeling student behavior faster and more precisely with text replays. In R. S. J. de Baker, T. Barnes, and J. E. Beck, editors, EDM, pages 38-47. www.educationaldatamining.org, 2008.
[17] M. De Laat, V. Lally, L. Lipponen, and R.-J. Simons. Investigating patterns of interaction in networked learning and computer-supported collaborative learning: A role for social network analysis. International Journal of Computer-Supported Collaborative Learning, 2(1):87-103, 2007.
[18] I. Dimopoulos, O. Petropoulou, and S. Retalis. Assessing students' performance using the learning analytics enriched rubrics. In Proceedings of the Third International Conference on Learning Analytics and Knowledge, pages 195-199. ACM, 2013.
[19] S. D'Mello, T. Jackson, S. Craig, B. Morgan, P. Chipman, H. White, N. Person, B. Kort, R. El Kaliouby, R. Picard, and E. Al. AutoTutor Detects and Responds to Learners Affective and Cognitive States. Proceedings of the Workshop on Emotional and Cogni- tive issues in ITS in conjunction with the 9th International Conference on Intelligent Tutoring Systems, 2008.
[20] S. K. D'Mello, S. D. Craig, A. Witherspoon, B. Mcdaniel, and A. Graesser. Automatic detection of learner's affect from conversational cues. User Modeling and User-Adapted Interaction, 18(1-2):45-80, 2008.
[21] A. L. Dyckhoff, D. Zielke, M. Bultmann, M. A. Chatti, and U. Schroeder. Design and implementation of a learning analytics toolkit for teachers. Journal of Educational Tech- nology & Society, 15(3), 2012.
[22] R. Ferguson. Learning analytics: Drivers, developments and challenges. Int. J. Technol. Enhanc. Learn., 4(5/6):304-317, Jan. 2012.
[23] R. Ferguson and S. B. Shum. Learning analytics to identify exploratory dialogue within synchronous text chat. In Proceedings of the 1st International Conference on Learning Analytics and Knowledge, pages 99-103. ACM, 2011.
[24] R. Ferguson and S. B. Shum. Social learning analytics: five approaches. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, pages 23-33. ACM, 2012.
[25] B. Florian, C. Glahn, H. Drachsler, M. Specht, and R. F. Gesa. Activity-based learnermodels for learner monitoring and recommendations in moodle. In Towards ubiquitous learning, pages 111-124. Springer, 2011.
[26] C. Gonzalez, J. C. Burguillo, and M. Llamas. A qualitative comparison of techniques for student modeling in intelligent tutoring systems. In Frontiers in Education Conference, 36th Annual, pages 13-18. IEEE, 2006.
[27] A. Graesser, P. Chipman, B. Haynes, and A. Olney. Autotutor: an intelligent tutoring system with mixed-initiative dialogue. Education, IEEE Transactions on, 48(4):612-618, Nov 2005.
[28] A. C. Graesser, K. Vanlehn, C. P. Rose, P. W. Jordan, and D. Harter. Intelligent tutoring systems with conversational dialogue. AI Magazine, 22:39-51, 2001.
[29] S. Graf and R. Bekele. Forming heterogeneous groups for intelligent collaborative learning systems with ant colony optimization. In Proceedings of the 8th International Confer- ence on Intelligent Tutoring Systems, ITS'06, pages 217-226, Berlin, Heidelberg, 2006. Springer-Verlag.
[30] J. Holland, A. Mitrovic, and B. Martin. J-latte: a constraint-based tutor for java. 2009.
[31] J. Kay, N. Maisonneuve, K. Yacef, and O. Zaane. Mining patterns of events in students' teamwork data. In In Educational Data Mining Workshop, held in conjunction with Intelligent Tutoring Systems (ITS, pages 45-52, 2006.
[32] R. F. Kizilcec, C. Piech, and E. Schneider. Deconstructing disengagement: analyzing learner subpopulations in massive open online courses. In Proceedings of the Third In- ternational Conference on Learning Analytics and Knowledge, pages 170-179. ACM, 2013.
[33] K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark. Intelligent Tutoring Goes to School in the Big City. Proceedings of the 7th World Conference on AIED, 1995.
[34] Y.-T. Lin, Y.-M. Huang, and S.-C. Cheng. An automatic group composition system for composing collaborative learning groups using enhanced particle swarm optimization. Computers & Education, 55(4):1483-1493, 2010.
[35] D. J. Litman and S. Silliman. Itspoke: An intelligent tutoring spoken dialogue system. In Demonstration Papers at HLT-NAACL 2004, HLT-NAACL-Demonstrations '04, pages 5-8, Stroudsburg, PA, USA, 2004. Association for Computational Linguistics.
[36] S. McQuiggan, S. Lee, and J. Lester. Early prediction of student frustration. In A. Paiva, R. Prada, and R. Picard, editors, Affective Computing and Intelligent Interaction, volume 4738 of Lecture Notes in Computer Science, pages 698-709. Springer Berlin Heidelberg, 2007.
[37] N. Mercer, K. Littleton, and R.Wegerif. Methods for studying the processes of interaction and collaborative activity in computer-based educational activities. Technology, Pedagogy and Education, 13(2):195-212, 2004.
[38] A. Mitrovic, B. Martin, and P. Suraweera. Intelligent tutors for all: Constraint-based modeling methodology, systems and authoring. 2007.
[39] A. Mitrovic, B. Martin, and P. Suraweera. Intelligent tutors for all: The constraint-based approach. IEEE Intelligent Systems, 22(4):38-45, 2007.
[40] K. Muldner, W. Burleson, B. Van de Sande, and K. VanLehn. An analysis of students' gaming behaviors in an intelligent tutoring system: predictors and impacts. User Mod- eling and User-Adapted Interaction, 21(1-2):99-135, 2011.
[41] T. Murray. Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal of Artificial Intelligence in Education (IJAIED), 10:98-129, 1999.
[42] T. Murray. An overview of intelligent tutoring system authoring tools: Updated analysis of the state of the art. In T. Murray, S. B. Blessing, and S. Ainsworth, editors, Authoring Tools for Advanced Technology Learning Environments, pages 491-544. Springer Netherlands, 2003.
[43] K. Nilakant and A. Mitrovic. Applications of data mining in constraint-based intelligent tutoring systems. In AIED, pages 896-898. Citeseer, 2005.
[44] K. Nurmela, E. Lehtinen, and T. Palonen. Evaluating cscl log files by social network analysis. In Proceedings of the 1999 Conference on Computer Support for Collaborative Learning, CSCL '99. International Society of the Learning Sciences, 1999.
[45] A. G. Picciano. The evolution of big data and learning analytics in american higher education. Journal of Asynchronous Learning Networks, 16(3), 2012.
[46] R. Rabbany, M. Takaffoli, and O. R. Zaane. Analyzing participation of students in online courses using social network analysis techniques. In Proceedings of educational data mining. Citeseer, 2011.
[47] D. Rai and J. Beck. Exploring user data from a game-like math tutor: A case study in causal modeling. In M. Pechenizkiy, T. Calders, C. Conati, S. Ventura, C. Romero, and J. C. Stamper, editors, EDM, pages 307-313. www.educationaldatamining.org, 2011.
[48] C. Reffay and T. Chanier. How social network analysis can help to measure cohesion in collaborative distance-learning. In Designing for change in networked learning environ- ments, pages 343-352. Springer, 2003.
[49] C. Romero and S. Ventura. Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1):135 - 146, 2007.
[50] C. Romero and S. Ventura. Educational data mining: A review of the state of the art. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(6):601-618, Nov 2010.
[51] C. Romero, A. Zafra, J. M. Luna, and S. Ventura. Association rule mining using genetic programming to provide feedback to instructors from multiple-choice quiz data. Expert Systems, 30(2):162-172, 2013.
[52] B. R. B. A. H. N. San Pedro, M.O.Z. Predicting college enrollment from student interaction with an intelligent tutoring system in middle school. In Proceedings of the 6th International Conference on Educational Data Mining, pages 177-184, 2013.
[53] J. L. Santos, S. Govaerts, K. Verbert, and E. Duval. Goal-oriented visualizations of activity tracking: A case study with engineering students. In Proceedings of the 2Nd International Conference on Learning Analytics and Knowledge, LAK '12, pages 143- 152, New York, NY, USA, 2012. ACM.
[54] B. Schreurs, C. Teplovs, R. Ferguson, M. De Laat, and S. Buckingham Shum. Visualizing social learning ties by type and topic: rationale and concept demonstrator. In Proceedings of the Third International Conference on Learning Analytics and Knowledge, pages 33- 37. ACM, 2013.
[55] A. Serrano-Laguna, J. Torrente, P. Moreno-Ger, and B. Fernandez-Manjon. Tracing a little for big improvements: Application of learning analytics and videogames for student assessment. Procedia Computer Science, 15:203-209, 2012.
[56] A. Shelke and S. Joshi. Design of human emotion recognition system from speech using particle swarm optimization. International Journal of Computing and Technology (IJCAT), 1, 2014.
[57] S. B. Shum and R. Ferguson. Social learning analytics. Journal of educational technology & society, 15(3), 2012.
[58] G. Siemens. Learning analytics: The emergence of a discipline. American Behavioral Scientist, 2013.
[59] G. Siemens and R. S. J. d. Baker. Learning analytics and educational data mining: Towards communication and collaboration. In Proceedings of the 2Nd International Conference on Learning Analytics and Knowledge, LAK '12, pages 252-254, New York, NY, USA, 2012. ACM.
[60] R. Stathacopoulou, G. Magoulas, and M. Grigoriadou. Neural network-based fuzzy modeling of the student in intelligent tutoring systems. In Neural Networks, 1999. IJCNN'99. International Joint Conference on, volume 5, pages 3517-3521. IEEE, 1999.
[61] J.-F. Superby, J. Vandamme, and N. Meskens. Determination of factors influencing the achievement of the first-year university students using data mining methods. In Workshop on Educational Data Mining, pages 37-44, 2006.
[62] Y. Tabaa and A. Medouri. Lasym: A learning analytics system for moocs. International Journal of Advanced Computer Science & Applications, 4(5), 2013.
[63] L. Talavera and E. Gaudioso. Mining student data to characterize similar behavior groups in unstructured collaboration spaces. In Proceedings of the Artificial Intelligence in Computer Supported Collaborative Learning Workshop at the ECAI 2004, pages 17- 23, 2004.
[64] S. Trivedi, Z. A. Pardos, G. N. Sarkozy, and N. T. Heffernan. Spectral clustering in educational data mining. In EDM, pages 129-138. ERIC, 2011.
[65] K. VanLehn. Student modeling. Foundations of intelligent tutoring systems, pages 55-78, 1988.
[66] K. Verbert, H. Drachsler, N. Manouselis, M. Wolpers, R. Vuorikari, and E. Duval. Dataset-driven research for improving recommender systems for learning. In Proceed- ings of the 1st International Conference on Learning Analytics and Knowledge, pages 44-53. ACM, 2011.
[67] K. Verbert, E. Duval, J. Klerkx, S. Govaerts, and J. L. Santos. Learning analytics dashboard applications. American Behavioral Scientist, 57(10):1500-1509, 2013.
[68] J. A. Walonoski and N. T. Heffernan. Detection and analysis of off-task gaming behavior in intelligent tutoring systems. In A. Ikeda and Chan, editors, Proceedings of the Eight In- ternational Conference in Intelligent Tutoring Systems, pages 382-391. Springer-Verlag, Berlin, 2006.
[69] D. M. West. Big data for education: Data mining, data analytics, and web dashboards. Governance Studies. Brookings, US: Reuters, 2012.
[70] L.-H. Wong and C.-K. Looi. Swarm intelligence: new techniques for adaptive systems to provide learning support. Interactive Learning Environments, 20(1):19-40, 2012.
[71] M. Worsley and P. Blikstein. What's an expert? using learning analytics to identify emergent markers of expertise through automated speech, sentiment and sketch analysis. In EDM, pages 235-240, 2011.
[72] O. Yldz, A. Bal, S. GYlsecen, and F. D. Kentli. A genetic-fuzzy based mathematical model to evaluate the distance education students' academic performance. Procedia - Social and Behavioral Sciences, 55(0):409 - 418, 2012. 3rd. International Conference on New Horizons in Education - fINTEg 2012.
[73] Balakrishnan, G. and D. Coetzee (2013). Predicting student retention in massive open online courses using hidden markov models, Master’s thesis, EECS Department, University of California, Berkeley.
[74] Bayer, J., H. Bydzovská, J. Géryk, T. Obsivac and L. Popelinsky (2012). "Predicting Drop-Out from Social Behaviour of Students." International Educational Data Mining Society.
[75] Dringus, L. P. and T. Ellis (2005). "Using data mining as a strategy for assessing asynchronous discussion forums." Computers & Education 45(1): 141-160.
[76] Kinnebrew, J. S., K. M. Loretz and G. Biswas (2013). "A contextualized, differential sequence mining method to derive students' learning behavior patterns." JEDM-Journal of Educational Data Mining 5(1): 190-219.
[77] Kinnebrew, J. S., D. Mack and G. Biswas (2013). Mining temporally-interesting learning behavior patterns. 6th International Conference on Educational Data Mining.
[78] Kloft, M., Stiehler, F., Zheng, Z., & Pinkward, N. (2014). "Predicting MOOC Dropout over Weeks Using Machine Learning Methods." Proceedings of the 2014 Empirical Methods in Natural Language Processing Workshop on Modeling Large Scale Social Interaction in Massively Open Online Courses: 60-65.
[79] Lin, F.-R., L.-S. Hsieh and F.-T. Chuang (2009). "Discovering genres of online discussion threads via text mining." Computers & Education 52(2): 481-495.
[80] Martin, T., A. Aghababyan, J. Pfaffman, J. Olsen, S. Baker, P. Janisiewicz, R. Phillips and C. P. Smith (2013). Nanogenetic learning analytics: illuminating student learning pathways in an online fraction game. Proceedings of the Third International Conference on Learning Analytics and Knowledge. Leuven, Belgium, ACM: 165-169.
[81] Miaomiao Wen, D. Y., Carolyn Rose (2014). Sentiment Analysis in MOOC Discussion Forums: What does it tell us? Proceedings of the SEVENTH INTERNATIONAL CONFERENCE ON EDUCATIONAL DATA MINING. Z. P. John Stamper, Manolis Mavrikis, Bruce M. McLaren. London, UK.
[82] Rosé, C. P., R. Carlson, D. Yang, M. Wen, L. Resnick, P. Goldman and J. Sherer (2014). Social factors that contribute to attrition in MOOCs. Proceedings of the first ACM conference on Learning @ scale conference. Atlanta, Georgia, USA, , ACM: 197-198.
[83] Wen, M., D. Yang and C. P. Rose (2014). Linguistic reflections of student engagement in massive open online courses. Proceedings of the International Conference on Weblogs and Social Media.
[84] Wise, A. F., Y. Zhao and S. N. Hausknecht (2013). Learning analytics for online discussions: a pedagogical model for intervention with embedded and extracted analytics. Proceedings of the Third International Conference on Learning Analytics and Knowledge. Leuven, Belgium, ACM: 48-56.
[85] Peña-Ayala, A. (2014). Educational data mining: A survey and a data mining-based analysis of recent works. Expert systems with applications, 41(4), 1432-1462.
[86] KAI, S., PAQUETTE, L., BAKER, R.S., BOSCH, N., D’MELLO, S., OCUMPAUGH, J., SHUTE, V., and VENTURA, M., 2015. A Comparison of Video-based and Interaction-based Affect Detectors in Physics Playground. In Proceedings of the 8th International Conference on Educational Data Mining (2015).
[87] PAQUETTE, L., MOTT, B., BRAWNER, K., ROWE, J., LESTER, J., SOTTILARE, R., BAKER, R., DEFALCO, J., and GEORGOULAS, V., 2015. Sensor-Free or Sensor-Full: A Comparison of Data Modalities in Multi-Channel Affect Detection. In Proceedings of the 8th International Conference on Educational Data Mining (2015).
[88] SAN PEDRO, M.O.Z., SNOW, E.L., BAKER, R.S., MCNAMARA, D.S., and HEFFERNAN, N.T., 2015. Exploring Dynamical Assessments of Affect, Behavior, and Cognition and Math State Test Achievement. In Proceedings of the 8th International Conference on Educational Data Mining (2015).