Humboldt-Universität zu Berlin - Mathematisch-Naturwissenschaftliche Fakultät - Komplexität und Kryptografie

Tuples of Disjoint NP-Sets

Olaf Beyersdorff


Disjoint NP-pairs are a well studied complexity-theoretic concept with important applications in cryptography and propositional proof complexity. In this paper we introduce a natural generalization of the notion of disjoint NP-pairs to disjoint k-tuples of NP-sets for k ≥ 2. We define subclasses of the class of all disjoint k-tuples of NP-sets. These subclasses are associated with a propositional proof system and possess complete tuples which are defined from the proof system.

In our main result we show that complete disjoint NP-pairs exist if and only if complete disjoint k-tuples of NP-sets exist for all k ≥ 2. Further, this is equivalent to the existence of a propositional proof system in which the disjointness of all k-tuples is shortly provable. We also show that a strengthening of this conditions characterizes the existence of optimal proof systems.

PDF: tuples_journal.pdf