Representable Disjoint NP-pairs

Olaf Beyersdorff
Institut für Informatik
Humboldt- Universität zu Berlin
Germany

Outline of the talk

- disjoint NP-pairs
- propositional proof systems and bounded arithmetic
- disjoint NP-pairs corresponding to proof systems

Disjoint NP-pairs

(A, B) is a disjoint NP-pair (DNPP), if $A, B \in \mathbf{N P}$ and $A \cap B=\emptyset$.

Reductions between DNPP

Let (A, B) and (C, D) be DNPP.

1. $(A, B) \leq_{p}(C, D)$, if there exists $f \in \mathbf{F P}$ such that $f(A) \subseteq C$ and $f(B) \subseteq D$.
2. $(A, B) \leq_{s}(C, D)$, if there exists $f \in \mathbf{F P}$ such that $f^{-1}(C)=A$ and $f^{-1}(D)=B$.

Simple properties

(A,B) is called p-separable if there exists $C \in \mathbf{P}$ with $A \subseteq C$ and $B \cap C=\emptyset$.

Fact: If $(A, B) \leq_{p}(C, D)$ and (C, D) is p -separable then also (A, B) is p-separable.

Problem: Does there exist a polynomially inseparable DNPP?
Yes, if $\mathbf{P} \neq \mathbf{N P} \cap \mathbf{c o N P}$.

Problem: Do there exist pairs that are \leq_{p} - or \leq_{s}-complete for the class of all DNPP?

Simple properties

Fact: For every (A, B) there exists $\left(A^{\prime}, B^{\prime}\right)$ such that
$(A, B) \equiv_{p}\left(A^{\prime}, B^{\prime}\right)$ and A^{\prime}, B^{\prime} are NP-complete.
Proof: $\left(A^{\prime}, B^{\prime}\right)=(A \times \mathrm{SAT}, B \times \mathrm{SAT})$

Problem: Are \leq_{p} and \leq_{s} different?

Proposition: $\mathbf{P} \neq \mathbf{N P}$ iff there are $\operatorname{DNPP}(A, B)$ and (C, D), such that A, $B, C, D, \overline{A \cup B}$ and $\overline{C \cup D}$ are infinite and $(A, B) \leq_{p}(C, D)$, but $(A, B) \not \leq_{s}(C, D)$.

Examples

1. a nontrivial p-separable pair
$C C_{0}=\{(G, k) \mid G$ contains a clique of size $k\}$
$C C_{1}=\{(G, k) \mid G$ can be colored by $k-1$ colors $\}$
$\left(C C_{0}, C C_{1}\right)$ is p-separable (Lovász [1979])
2. a pair from cryptography

$$
\begin{aligned}
& \qquad \begin{array}{ll}
R S A_{0}=\{(n, e, y, i) \mid & (n, e) \text { is a valid RSA key, } \exists x x^{e} \equiv y \bmod n \\
& \text { and the } i \text {-th bit of } x \text { is } 0\}
\end{array} \\
& R S A_{1}=\{(n, e, y, i) \mid \ldots \text { is } 1\}
\end{aligned} \text { If } \mathrm{RSA} \text { is secure then }\left(R S A_{0}, R S A_{1}\right) \text { is not p-separable. }
$$

Propositional proof systems

A propositional proof system is a polynomial time computable function P with $\operatorname{rng}(P)=$ TAUT.

A string π with $f(\pi)=\varphi$ is called a P-proof of φ.

Motivation: proofs can be easily checked
Examples: truth table method, Resolution, Frege-Systems

Propositional proof systems

A proof system P is simulated by a proof system $S(P \leq S)$ if S-proofs are at most polynomially longer than P-proofs.
P is optimal if P simulates all proof systems.

Open problem: Do optimal proof systems exist?

Proof systems and bounded arithmetic

Let L be the language of arithmetic using the symbols

$$
0, S,+, *, \leq \ldots
$$

Σ_{1}^{b}-formulas are formulas in prenex normal form with only bounded
\exists-quantifiers, i.e. $(\exists x \leq t(y)) \psi(x, y)$.
Σ_{1}^{b}-formulas describe NP-sets.
Π_{1}^{b}-formulas: $(\forall x \leq t(y)) \psi(x, y) \Rightarrow$ coNP-sets

Representable disjoint NP-pairs

A Σ_{1}^{b}-formula φ is a representation of an NP-set A
if for all natural numbers a

$$
\mathcal{N} \models \varphi(a) \Longleftrightarrow a \in A
$$

A DNPP (A, B) is representable in T if there are Σ_{1}^{b}-formulas φ and ψ representing A and B such that

$$
T \vdash(\forall x)(\neg \varphi(x) \vee \neg \psi(x))
$$

DNPP from proof systems

To a proof system P we associate a canonical DNPP $\left(R e f(P), S A T^{*}\right)$:

$$
\begin{aligned}
\operatorname{Ref}(P) & =\left\{\left(\varphi, 1^{m}\right) \mid P \vdash_{\leq m} \varphi\right\} \\
S A T^{*} & =\left\{\left(\varphi, 1^{m}\right) \mid \neg \varphi \in S A T\right\}
\end{aligned}
$$

Proposition: If P and S are proof systems with $P \leq S$ then $\left(\operatorname{Re} f(P), S A T^{*}\right) \leq_{p}\left(\operatorname{Ref}(S), S A T^{*}\right)$.

Proof: $\left(\varphi, 1^{m}\right) \mapsto\left(\varphi, 1^{p(m)}\right)$ where p is the polynomial from $P \leq S$.

Proposition: There are non-equivalent proof systems with the same canonical pair.

A second pair from a proof system

Let P be a proof system.

$$
\begin{aligned}
& U_{1}(P)=\left\{\left(\varphi, \psi, 1^{m}\right) \mid \quad\right. \varphi, \psi \text { are propositional formulas } \\
& \text { without common variables, } \\
&\left.\neg \varphi \in S A T, P \vdash_{\leq m} \varphi \vee \psi\right\} \\
& U_{2}=\left\{\left(\varphi, \psi, 1^{m}\right) \left\lvert\, \begin{array}{ll}
& \varphi, \psi \text { are propositional formulas } \\
& \text { without common variables, } \\
& \neg \psi \in S A T\}
\end{array}\right.\right.
\end{aligned}
$$

Complete NP-pairs

Let (T, P) be a pair.
$D N P P(T)=\{(A, B) \mid(A, B)$ is representable in $T\}$

Theorem: 1. $D N P P(T)$ is closed under \leq_{p}-reductions. [Razborov 94]
2. $\left(\operatorname{Re} f(P), S A T^{*}\right)$ is \leq_{p}-complete for $D N P P(T)$. [Razborov 94]

Proof: 1: code polynomial time computations in T
2+3: representability: use $T \vdash \operatorname{Con}(P)$
hardness: use the simulation of T by P

Implications

Proposition [Razborov 94]: If S is an optimal proof system then
$\left(\operatorname{Re} f(S), S A T^{*}\right)$ is \leq_{p}-complete for the class of all DNPP.

Proof: Let (A, B) be a DNPP.
Choose a theory T such that (A, B) is representable in T.
Let P be the proof system corresponding to T.
Then $(A, B) \leq_{p}\left(\operatorname{Ref}(P), S A T^{*}\right)$.
S optimal $\Rightarrow P \leq S \Rightarrow\left(\operatorname{Ref}(P), S A T^{*}\right) \leq_{p}\left(\operatorname{Ref}(S), S A T^{*}\right)$

Implications

Proposition: If P is an optimal proof system then $\left(U_{1}(P), U_{2}\right)$ is
\leq_{s}-complete for the class of all DNPP.
Proposition [Glaßer, Selman, Sengupta 04]: There exists a \leq_{p}-complete pair iff there exists $\mathrm{a} \leq_{s}$-complete pair.

Open Problems

- Does $\left(U_{1}(P), U_{2}\right) \equiv_{s}\left(\operatorname{Ref}(P), S A T^{*}\right)$ hold?
- Does the existence of \leq_{s}-complete pairs imply the existence of optimal proof systems?
- Find combinatorial characterizations of $\left(\operatorname{Ref}(P), S A T^{*}\right)$ or $\left(U_{1}(P), U_{2}\right)$.

