Representable Disjoint NP-pairs

Olaf Beyersdorff

Institut für Informatik

Humboldt- Universität zu Berlin

Germany

1

Outline of the talk

- disjoint NP-pairs
- propositional proof systems and bounded arithmetic
- disjoint NP-pairs corresponding to proof systems

Disjoint NP-pairs

(A, B) is a disjoint NP-pair (DNPP), if $A, B \in NP$ and $A \cap B = \emptyset$.

Reductions between DNPP

Let (A, B) and (C, D) be DNPP.

- 1. $(A,B) \leq_p (C,D)$, if there exists $f \in \mathbf{FP}$ such that $f(A) \subseteq C$ and $f(B) \subseteq D$.
- 2. $(A,B) \leq_{s} (C,D)$, if there exists $f \in FP$ such that $f^{-1}(C) = A$ and $f^{-1}(D) = B$.

Simple properties

(A,B) is called p-separable if there exists $C \in \mathbf{P}$ with $A \subseteq C$ and $B \cap C = \emptyset$.

Fact: If $(A,B) \leq_p (C,D)$ and (C,D) is p-separable then also (A,B) is p-separable.

Problem: Does there exist a polynomially inseparable DNPP?

Yes, if $\mathbf{P} \neq \mathbf{NP} \cap \mathbf{coNP}$.

Problem: Do there exist pairs that are \leq_p - or \leq_s -complete for the class of all DNPP?

Simple properties

Fact: For every (A, B) there exists (A', B') such that $(A, B) \equiv_p (A', B')$ and A', B' are NP-complete.

Proof: $(A', B') = (A \times SAT, B \times SAT)$

Problem: Are \leq_p and \leq_s different?

Proposition: $\mathbf{P} \neq \mathbf{NP}$ iff there are DNPP (A, B) and (C, D), such that A, $B, C, D, \overline{A \cup B}$ and $\overline{C \cup D}$ are infinite and $(A, B) \leq_p (C, D)$, but $(A, B) \not\leq_s (C, D)$.

Examples 1. a nontrivial p-separable pair $CC_0 = \{(G, k) \mid G \text{ contains a clique of size } k\}$ $CC_1 = \{(G, k) \mid G \text{ can be colored by } k - 1 \text{ colors } \}$ (CC_0, CC_1) is p-separable (Lovász [1979]) 2. a pair from cryptography $RSA_0 = \{(n, e, y, i) \mid (n, e) \text{ is a valid RSA key, } \exists x \ x^e \equiv y \mod n \}$ and the *i*-th bit of x is 0} $RSA_1 = \{(n, e, y, i) \mid \dots \text{ is 1} \}$

If RSA is secure then (RSA_0, RSA_1) is not p-separable.

Propositional proof systems

A propositional proof system is a polynomial time computable function P with $\mathrm{rng}(P)$ =TAUT.

A string π with $f(\pi) = \varphi$ is called a P-proof of φ .

Motivation: proofs can be easily checked

Examples: truth table method, Resolution, Frege-Systems

Propositional proof systems

A proof system P is simulated by a proof system $S (P \leq S)$ if S-proofs are at most polynomially longer than P-proofs.

P is optimal if P simulates all proof systems.

Open problem: Do optimal proof systems exist?

Proof systems and bounded arithmetic

Let L be the language of arithmetic using the symbols

 $0, S, +, *, \leq \dots$

 Σ_1^b -formulas are formulas in prenex normal form with only bounded \exists -quantifiers, i.e. $(\exists x \leq t(y))\psi(x,y)$.

 Σ_1^b -formulas describe NP-sets.

 $\Pi^b_1 \text{-formulas: } (\forall x \leq t(y)) \psi(x,y) \ \Rightarrow \text{coNP-sets}$

Representable disjoint NP-pairs

A Σ_1^b -formula φ is a representation of an NP-set A if for all natural numbers a

$$\mathcal{N} \models \varphi(a) \iff a \in A.$$

A DNPP (A,B) is representable in T if there are Σ_1^b -formulas φ and ψ representing A and B such that

$$T \vdash (\forall x)(\neg \varphi(x) \lor \neg \psi(x)).$$

DNPP from proof systems

To a proof system P we associate a canonical DNPP $(Ref(P), SAT^*)$:

$$Ref(P) = \{(\varphi, 1^m) \mid P \vdash_{\leq m} \varphi\}$$
$$SAT^* = \{(\varphi, 1^m) \mid \neg \varphi \in SAT\}$$

Proposition: If P and S are proof systems with $P \leq S$ then $(Ref(P), SAT^*) \leq_p (Ref(S), SAT^*).$

 $\text{Proof: } (\varphi, 1^m) \mapsto (\varphi, 1^{p(m)}) \text{ where } p \text{ is the polynomial from } P \leq S.$

Proposition: There are non-equivalent proof systems with the same canonical pair.

A second pair from a proof system

Let P be a proof system.

 $U_1(P) ~=~ \{(arphi, \psi, 1^m) ~|~~ arphi, \psi ext{ are propositional formulas }$

without common variables,

$$\neg \varphi \in SAT, P \vdash_{\leq m} \varphi \lor \psi \}$$

$$U_2 = \{(\varphi, \psi, 1^m) \mid \varphi, \psi \text{ are propositional formulas } \}$$

without common variables,

$$\neg \psi \in SAT\}.$$

Complete NP-pairs

Let (T, P) be a pair.

 $DNPP(T) = \{(A, B) \mid (A, B) \text{ is representable in } T\}$

Theorem: 1. DNPP(T) is closed under \leq_p -reductions. [Razborov 94]

2. $(Ref(P), SAT^*)$ is \leq_p -complete for DNPP(T). [Razborov 94]

3. $(U_1(P), U_2)$ is \leq_s -complete for DNPP(T).

Proof: 1: code polynomial time computations in T

2+3: representability: use $T \vdash Con(P)$

hardness: use the simulation of T by P

Implications

Proposition [Razborov 94]: If S is an optimal proof system then $(Ref(S), SAT^*)$ is \leq_p -complete for the class of all DNPP.

```
Proof: Let (A, B) be a DNPP.
```

Choose a theory T such that (A, B) is representable in T.

Let P be the proof system corresponding to T.

Then $(A, B) \leq_p (Ref(P), SAT^*).$

 $S \text{ optimal} \Rightarrow P \leq S \Rightarrow (Ref(P), SAT^*) \leq_p (Ref(S), SAT^*)$

Implications

Proposition: If P is an optimal proof system then $(U_1(P), U_2)$ is

 \leq_s -complete for the class of all DNPP.

Proposition [Glaßer, Selman, Sengupta 04]: There exists a \leq_p -complete pair iff there exists a \leq_s -complete pair.

Open Problems

- Does $(U_1(P), U_2) \equiv_s (Ref(P), SAT^*)$ hold?
- Does the existence of \leq_s -complete pairs imply the existence of optimal proof systems?
- Find combinatorial characterizations of $(Ref(P), SAT^*)$ or $(U_1(P), U_2)$.