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Introduction
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Sample application: Slat and Flap system
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System Architecture

• Auto-Flap function
– Automatically adjusts 

flap position according 
to load

• Critical Events
– Asymmetric Flap 

Position
– Powered runaway
– Inadvertent Flap 

Retract due to Auto-
Flap Function

• Extensive Monitoring
– To detect critical 

eventsFlap-
Controller 
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Model Based Development of Avionics 
Applications
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Model based Development Process

Aircraft level

System level

Equipment level

Requirement
“For the current flaps setting, CAS shall not exceed VF.”
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The Statemate Model

• Auto-Flap function
– Automatically adjusts 

flap position according 
to load

• Critical Events
– Asymmetric Flap 

Position
– Powered runaway
– Inadvertent Flap 

Retract due to Auto-
Flap Function

• Extensive Monitoring
– To detect critical 

events
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STATEMATE

• Industry standard case tool 
marketed by I-Logix Inc

• Activity Charts
– System Architecture
– Information Flow
– Environment

• State Charts
– visual real-time 

programming language
– hierarchy
– orthogonal states
– algorithms

• Animation
• Simulation
• RP code generation
• documentation

Formal published semantics
Damm, Pnueli, … 98
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A sample StateChart
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Example: Model characteristics

• Static measures
– 30 charts, most instances of 

generic charts
– 164 data-items (mostly floats)
– 38 conditions, 12 events
– Arrays, records, user defined 

types
– 7 timers

• Explicit representation as flat 
finite state machine would 
require 35 000 states

• Exhaustive testing would require 
to cover 275 possible input 
values in each step
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Verification of Safety Requirements

• A typical aircraft level safety requirement related to the 
High-Lift System:

“For the current flaps setting, CAS shall not exceed VF.”

- CAS : Calibrated Air Speed 
- VF : maximum allowed speed for a given flaps position + 7 knots.
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Verification Environment
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Results

• Verification of full scale ECU models
– Dealing with complex types (reals, arrays, ...)
– Dealing with real-time (counters, watchdogs, ..)
– Dealing with extremely large designs (e.g. a full autopilot)
– Dealing with the full range of modeling constructs of COTS tools used in 

industrial practice
• Advances in verification technology

– Tight integration of BDD, SAT, constraint solving, LP based engines
– Range of automatic abstraction techniques, including predicate abstraction
– Infinite state verification for unbounded object creation and real-valued 

models
• Advances in Formal Requirement Capture

– Optimized Requirement representations through pattern libraries
– Live Sequence Charts

See www.ses.informatik.uni-oldenburg.de
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The safety analysis process
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Aircraft Level
Requirements

Allocation of
Aircraft Functions

to Systems

Development
of System

Architecture

Allocation of
Requirements to

Hardware &
Software

System
Implementation

Certification

System Development ProcessSafety Assessment Process

Aircraft

Functions

System

Functions

Failure Condition, Effects,
Classification, Safety Objectives

Failure Condition, Effects,
Classification, Safety

System

Architecture

Item Requirements

Aircraft Level
FHA

System Level
FHA Sections

PSSAs
Architectural

Requirements

CCAs

Functional Interactions

Failure
Conditions
& Effects

Separation

Requirement

SSAs

Implementation

Results

Separation
Verification

Item Requirements
Safety Objectives,
Analyses Required

Physical System

Objectives

AIRCRAFT FUNCTIONAL HAZARD ASSESSMENT (FHA) 

Aircraft function 
list:

Ex: control aircraft 
on ground

Aircraft Functional Failure assessment.

For each aircraft function analysis of effects in case of function
single failure and in case of failure combination

- Functional failure effects
- Detection
- Crew actions
- Effects classification
- Associated significant Failure Condition
- Justification materials
- Qual. And quant. Objectives and requirements

ARP 4754 and 4761

• Aircraft Recommended 
Practices

• De facto standard on 
involved processes
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14.09.1993 -
Aircraft thought it was 
still airborne, because 
only two tons weight 
lasted on the wheels 
due to a strong side 
wind and the landing 
maneuver. The computer
did not allow braking. 
The plane ran over the 
runway into a rampart.
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Causes - official report

Causes of the accident were incorrect decisions and actions of the 
flight crew taken in situation when the information about             
windshear at the approach to the runway was received.
Windshear was produced by the front just passing the aerodrome; 
the front was accompanied by intensive variation of wind 
parameters as well as by heavy rain on the aerodrome itself. 
Actions of the flight crew were also affected by design features of 
the aircraft which limited the feasibility of applying available 
braking systems as well as by insufficient information in the 
aircraft operations manual (AOM) relating to the increase of the
landing distance. 
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Faults, hazards, and accidents

Legal behaviours
accidents

illegal behaviors

A component
failure

A fault

A hazardous state A transition due to environmental threats
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Failure
• attribute of behavior of physical

system/ component of system
• fails to perform under its 

intended function at a given 
period of time in spite of 
operating under specified 
constraints

• Distinction between
– systemic failures

• due to design errors
– physical failures

• due to e.g. Fabrication faults, 
EMC, wear-out, broken 
interconnect, stuck relays, ...

• Characterization of operating 
constraints crucial

Legal behaviours
accidents

illegal behaviors

A component
failure

A fault
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Typical Physical Failures

• Stuck-at
– Value remains at constant 

level
• Ramp-down

– Value gradually decreases 
to given constant level

• Random
– Value stays at some 

randomly chosen value
• Noise

– Value is randomly changed 
within given range around 
nominal value

• Delay
– Value is transmitted with 

given delay

• Transient / Persistent

• Attached to design entities
– Wires, links
– Sensors
– Actuators
– Processors
– …
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Hazard Severity Categories for civil aircraft

Category Definition 

Catastrophic would prevent continued safe flight and landing 

Hazardous would reduce the capability of the aircraft or the ability of 
the crew to cope with adverse operating conditions to the 
extent that there would be 
 a large reduction in safety margins or functional 
capabilities 
 physical distress or higher workload such that the flight 
crew could not be relied upon to perform their task 
accurately or completely 
 adverse effects on occupants, including serious or 
potentially fatal injuries to a small number of those 
occupants 

 
Major as above, but items viewed disjunctively 

Minor not major and e.g. slight reduction in safety margin, or 
slight increase in crew workload, such as routine flight 
plan changes, or some inconveniences to occupants 

No effect on operational capability of aircraft nor incease of crew 
workload  
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Hazard probability classes for aircraft systems
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Fault Trees
• Start from “Top Level Event” 

– The hazardous situation to be 
avoided

• Reduces this to failure events 
– Leafs of fault tree

• Explicate causal reasoning
– Using non-standard semantics 

of boolean connectives
– AND: subtrees must have both 

become true at some point in 
time

– OR: one of subtrees must 
become true at some point in 
time

• Cut set: a set of events whose 
joint occurrences causes the 
TLE

• Minimal cut set: a cut set, 
where each conjunct is 
necessary for causing the TLE
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SYSTEM FUNCTIONAL HAZARD ASSESSMENT (FHA) 

System function 
list

System Functional Failure assessment.

For each system function, analysis of effects in case of function single 
failure and in case of failure combination

- Functional failure effects
- Detection
- Crew actions
- Effects classification
- Associated significant Failure Condition
- Justification materials
- Qual. And quant. Objetives and requirements
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PRELIMINARY SYSTEM SAFETY/ 
RELIABILITY ASSESSMENT (PSSA)

Failure Condition supporting materials

For each Failure Condition identified in the FHA, assessment that the
Requirement/ Objectives are met:

- Dependence diagram or Fault Tree
- Failure modes and failure apportionnement
- Probability evaluation
- Dormant failures maintenance task periodicities
- Justification material
- Equipment and software criticality and DAL 

Failure Condition list from system FHA

DEMANDS FOR:
Common cause studies

Crew error analysis

Maintenance error analysis

Ground and flight tests

Segregation in installation
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SYSTEM SAFETY/RELIABILITY ASSESSMENT (SSA)  

Failure Condition supporting materials

For each Failure Condition identified in the FHA, updating of the 
assessment that the Requirement/Objectives are met:

- Dependence diagram or Fault Tree
- Failure modes and failure apportionnement
- Probability evaluation
- Dormant failures maintenance task periodicities
- Justification material
- Equipment and software criticality and DAL 

Failure Condition list from system FHA
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Model Based Safety Analysis

… using Formal Verification Technology
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Issues with classical fault tree analysis

• The coherency issue
– How do models used for safety analysis relate to the actual design?
– How can safety engineers keep track with ongoing evolvements and 

changes in design models?
• The plausibility issue

– How can a system designer relate a cut set to „her“ model?
– How can she understand, how the cut-set can arise?

• The accuracy issue
– How can mission phases,
– How can numerical threshholds
– .... be assessed without gross overapproximation?

• The completeness issue
– How can a safety designer assert, that all minimal cut sets have been 

identified?
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The ESACS Approach 
towards ARP 4754 and 4761

• Model Based Approach
– Conceptual models for early 

Analysis
– Model Based System 

Development
• Reduce Level of 

misconception between 
System-Designers and Safety 
Engineers

Supported by GROWTH
http: //www.esacs.org
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Embedding failures into System Models

• User specifies fault configuration
– Associates with design units failure modes

• Fault configurations guide “patching” of semantic 
representation of Statemate model
– Each failure is represented by

• Boolean input: failure occurs when set
• Boolean local variable: set once failure has been observed
• Failure model: automata based semantic representation of 

effect of failure
– Glue logic disconnects “nominal semantics” driving design 

unit upon occurrence of failure input, switches to failure 
model

• Allows full propagation of failure effect on all design 
entities
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Model Checking Based Safety Analysis

• ModelChecking based FTA tool automatically 
performs fault-tree analysis on system model 
taking into account injected failure modes

• Computed fault-tree represents all minimal cut 
sets leading to given top-level event

• Cut sets can be analysed on extended system 
model using simulation: how can this cut set 
arise?

• Fault-trees can be exported to FTA+ for analysis 
of failure probabilities

Event 1

Event 2
Event 4

Event 3

Event 4
Event 2
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BDD based FT generation

TLE

initial states

1) ensure nominal correctness

If the design is
(nominally) correct

this path does not exist

2) ⇒ there is no path to the 
top-level event (TLE)

3) Extend the model with failures 
triggered by additional inputs

4) Introduce additional local variables recording
the occurence of failures (Failure Variables)

5) Check what valuations of failure variables
allow the TLE to be reached ... 

However, failures 
introduce

additional paths
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BDD-Verfahren

(e,c=0), (e,c=1), 
(e,c=2),     …
(e,c=79), (e,c=80),
(e,c=0)
_

e

c6c6
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∨ e ∧ c=0
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01

- +BDD: Binary Decision Diagram
= binärer Entscheidungsgraph.

Dient zur kompakten Darstellung von Mengen.
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BDD based FT generation

⇒ Checking for occurrence of failures can be 
deferred until TLE has been reached

It is guaranteed (by model extension) that failure
variables are never reset

TLE

initial states

Setting of 
failure variables

⇒ Can use classical reachability analysis to check whether failures lead to TLE
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Reachability based FT generation

• Compute BDD representing 
intersection of TLE with set 
of reachable states

• Project to local variables 
representing occurrence of 
failures

• Translate this BDD into 
disjunctive normal form

• By BDD reduction rules, all 
conjuncts are minimal cut 
sets

• Yields flat fault-tree
• (ongoing extension: reflect 

structure of model)

TLE

initial states
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simple SAT-based 
methods don´t work

⇒ incomplete (as long as model diameter is not reached)
⇒ (for practical reasons) also incomplete with respect

to number of possible failure combinations
Example:

There are 1275 possibilities to have at most two
(but at least one) failure activated among 50 
possible failures.

initial states

TLE

Perform „drive-to“ 
analysis
for certain failure 
combinations
with BMC methods

Using extended model T‘:
Init(s0) ∧ T‘(s0,fv1,s1) ∧ ... ∧ T‘(sn-1,fvn,sn) 
∧ noloop(s0,...,sn) ∧ TLE(sn) 
∧ fv = fv1 ∨ ... ∨ fvn
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Using Abstraction
traditional abstraction techniques are safe also when 
constructing fault trees (due to percistency of setting of 
local variables associated with failures)

TLE

fv1 fv5 fv3 fv4 fv2 fv5

Resulting fault tree will be too pessimistic:

If this is an abstract fault tree ...

fv4 fv3

... this might be the right one
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Concretizing abstract fault-trees
TLE

fv1 fv5 fv3 fv4 fv2 fv5

Trying to concretize
abstract cut sets:

Abstract cut set
not reachable
⇒ some failure 
variables are missing

? ?

Abstract cut set C
reachable
⇒ C is concrete cut set

initial states

perform BMC based „drive-
to-cut-set“ (non-cut-set fv set 
to false)

Can use abstraction refinement:

for each (non concretizable) abstract cut 
set C perform FT computation for C ∧ TLE
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Example (cont.)

• TLE: The Flap System outputs 
RETRACT and EXTEND shall 
never be true at the same time.

• Injected FMs (random/persistent):
– RETRACT_EV (EVENT 3)
– EXTEND_EV (EVENT 4)
– SHUTDOWN_EV
– ALL_STOPPED_CN (EVENT 1)
– INHIBIT_STARTUP_CN (EVENT 

2)
• Cut-sets show, that controller is not 

protected against failures impacting 
inhibit-startup

– Nominal usage: hydraulic 
pressure too low

– Uncontrolled occurrences due to 
failures can cause contradicting 
actuator settings for flap system
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Conclusion

• Model Based Safety Analysis is seen as a key 
objective by avionics companies to further improve 
the (already high!) quality of the safety analysis 
process

• Feasibility demonstrated in ESACS, further 
enhancements and optimization as part of ISAAC 
project

• Ongoing cooperation with Airbus in Depnet project 
addresses compositional approaches to safety 
analysis
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