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Scientific data analysis applications continually grow in complexity and
data sizes. This growth increases the need for automation, reproducibility,
and scalability in scientific applications. Scientific Workflow Management
Systems (SWMSs) such as Nextflow [1], Pegasus [2], and Snakemake [3]
provide a solution by allowing users to abstractly describe their complex
applications as data analysis workflows consisting of several abstract tasks.
The SWMSs handle the data management and execution of workflows on
typically heterogeneous, distributed clusters.
Usually, the heterogeneity of the cluster resources extends to I/O speeds,

computational speeds, and memory access speeds. However, resource managers
like Kubernetes1, YARN [4], or Slurm [5] do not consider resource differences
beyond the number of required CPU cores and memory when scheduling
the execution of tasks. Additionally, tasks in a workflow may differ greatly
in resource usage as some are computationally intensive while others are
I/O-heavy. For a reduction in workflow execution makespan, it is therefore of
interest to consider tasks’ resource usage and clusters’ heterogeneity when
making scheduling decisions.
For resource-aware scheduling decisions, the scheduler requires historic

runtime data or needs to deduce the resource properties of the tasks and the
system during the execution of the workflow. Using historic runtime data is
impractical as it makes the scheduling method only possible if historic data is
available and the input data, workflow, and cluster do not change. In contrast,
the deduction of resource properties during runtime allows resource-aware
scheduling for every execution without storing historical data including cold
start executions.

1https://kubernetes.io/
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Tarema [6] determines tasks’ resource usage during runtime and node
resource characteristics through benchmarks. Each node and each task receives
labels for their resource characteristics. Based on these labels, the scheduler
maps computationally expensive tasks to nodes with faster CPUs and I/O-
heavy tasks to nodes with higher I/O speeds. However, additional benchmarks
need to be executed for this approach.

1 Related Work

The cluster scheduling problem deals with assigning jobs to heterogeneous computing
resources while considering the multidimensionality of resources, the heterogeneity of jobs,
the highly fluctuating resource availability, and an optimization goal such as wall clock
time [7]. Resource scheduling research has focused on designing scalable and heterogeneity-
aware architectures and algorithms to best deal with these characteristics [7]. However,
workflow scheduling remains a difficult problem due to its NP-hardness [8].

In this chapter, we will discuss heterogeneous cluster scheduling in general and then for
clusters specifically. After that, we will discuss Tarema’s [6] heterogeneity-aware workflow
scheduling and CherryPick’s [9] approach to learning cluster resources.
Researchers have developed many different workflow scheduling techniques for het-

erogeneous clusters [7]. The popular HEFT [10] algorithm and its dynamic adaptation
P-HEFT [11] both require knowledge about task execution times. This is not feasible in
many real-world applications.
Runtime systems like StarPU [12] for task scheduling on heterogeneous architectures

have been proposed but are usually designed for high-performance architectures and
not for scientific workflow executing in commodity clusters. Resource-aware scheduling
approaches for clusters such as R-Storm [13] and RAS [14] focus on maximizing resource
utilization without considering task characteristics or resource heterogeneity. In contrast,
Rupam [15] is a heterogeneity-aware scheduling approach designed for Spark [16], an
engine for task execution on clusters.
Rupam considers multiple aspects of heterogeneity beyond different numbers of CPU

cores or different memory amounts. Like Rupam, the Tarema system [6] considers
different computation, reading, and writing speeds. Tarema groups cluster nodes with
similar performance based on benchmarks and ranks each node for each soft resource
characteristics under investigation. Task monitoring data allow tasks to similarly be ranked
into percentiles for each resource usage characteristic. Tarema labels tasks according
to these percentiles allowing it to schedule tasks in the highest percentiles regarding a
resource characteristic to nodes with the highest ranks for that resource characteristic
and tasks in lower percentiles to nodes with lower ranks. The scheduler chooses the node
such that the mean absolute error between node and task labels is minimal. Thus, the
chosen node provides resources with similar characteristics to what the task uses. This
approach is SWMS-independent, unlike Rupam which is explicitly designed for Spark
executions.
CherryPick [9] is not a scheduling approach but learns cluster configurations for
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cloud computing using downsampled test executions. CherryPick optimizes the cluster
configuration for a given workload using Bayesian optimization while executing test
runs allowing the user to choose a fitting cluster configuration for their needs. Bayesian
optimization allows CherryPick to find a near-optimal solution after a few runs of the
workload without providing a pre-defined format for the performance model. The fast
convergence and adaptable model format make the method attractive for workflow
applications because the scheduler usually does not know the format of tasks and having
many unoptimized runs before finding the best solution is expensive on a cluster. However,
CherryPick finds the optimal cluster configuration before workload execution and includes
cloud provider prices in the calculation instead of optimizing task allocation on a provided
cluster making the approach unsuitable for workflow scheduling.

2 Goals

This work aims to investigate the Tarema scheduling approach without running node
benchmarks but instead learning the node characteristics at runtime while still dynamically
labeling tasks according to their resource usage.
The Tarema system deduces task labels for resource characteristics well enough to

make better scheduling decisions than round-robin, fair, fill nodes, and shortest-job-
fastest-nodes approaches [6]. But Tarema’s scheduling decisions rely on accurate node
characteristics provided by benchmarks. It is our goal to investigate whether we can
learn node characteristics at runtime with enough accuracy to perform similarly to
offline Tarema. We aim to analyze the inaccuracies that might occur when learning node
characteristics at runtime in combination with Tarema’s dynamic task labeling as these
may influence each other.

3 Implementation

We will implement our resource-aware scheduling approach for Nextflow and Kubernetes.
Lehmann et al. propose a common workflow scheduler interface [17] and provide an
implementation of their interface as a Nextflow extension2 and Kubernetes scheduler3.
We will extend them to implement our approach.

We will use a machine learning model to estimate the nodes’ resources by observing
the execution of different tasks. This model will use Bayesian optimization to produce
good results within a few task runs and to allow for uncertainty. Uncertainty is high
on a cluster especially with this approach because Tarema’s dynamic task labels and
the new model for the cluster resources will change simultaneously. Having two dynamic
components will inevitably cause inaccuracies and uncertainty.
The node characteristics model will consider all abstract tasks with enough task

instances to derive characteristics from their execution. Besides the node and the task,

2https://github.com/CommonWorkflowScheduler/nf-cws
3https://github.com/CommonWorkflowScheduler/KubernetesScheduler
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we plan to use the uncompressed input size of each task instance as a parameter for
the Bayesian optimization. The model’s predictions for the node resources will inform
task-node mappings using Tarema’s labeling approach.
The execution order of the tasks and their node placements will influence the amount

and kind of training data that will be available to the model. As long as the model’s
uncertainty for node resources is high, our scheduler will assign tasks to nodes randomly
in order to collect data without any bias. Our scheduling approach will prioritize task
instances whose abstract task has the least number of finished instances (LLF). Witt et al.
propose LLF as the best task prioritization technique when learning resource properties
during runtime [18].

4 Evaluation

We will evaluate our scheduling approach by comparing the runtimes of different workflows
on a university-internal cluster with Tarema and the round-robin task ranking approach
Rank Min-RR.
The university-internal cluster gives us control and reduces the noise and inconsistencies

usually present when using virtual machines in the cloud and removes the financial costs
associated with cloud services. Cloud services would allow choosing different cluster
configurations whereas we will need to create different kinds of heterogeneity by running
noise and stressing tools.
Tarema makes scheduling decisions based on more accurate data than we will be able

to because the Tarema approach runs benchmarks instead of learning infrastructure
characteristics at runtime. We want to ascertain if our approach is on par with the
Tarema approach and outperforms the round-robin approach Rank Min-RR. Thus, we
will investigate our scheduler’s performance when learning the cluster resources during
execution and its performance when we hard-code the resource information. With
hard-coded resource information, our approach should perform like the original Tarema.
Additionally, we will compare our approach to the task ranking strategy Rank Min-RR
which prefers smaller input size tasks and assigns nodes using the round-robin principle.
Rank Min-RR is one of the best-performing scheduling strategies evaluated by Lehmann
et al. [17].

To evaluate the scheduling approaches we will execute nf-core [19] workflows. We will
choose workflows that differ in structure in order to test as many behaviors as possible.
We will execute each workflow with each scheduling strategy a minimum of three times
to gain significant data.
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