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1 Introduction

Recent advancements in deep learning, particularly within the fields of natural
language processing (NLP) and computer vision (CV), coupled with the emer-
gence of multi-modal approaches, have initiated significant research efforts in
the area of vision-language (VL) tasks. These tasks, e.g. image captioning
(given an image, describe the content in natural language), change captioning
(given images of the same region at different times, describe the changes if any
occurred) and visual question answering (VQA) (given an image and a question
in natural language, answer the question in natural language in the context of
the image content), hold substantial academic significance due to their capabil-
ity to express a higher degree of domain comprehension compared to relatively
simpler tasks, such as image classification, which can be reformulated and solved
by a vision-language model (VLM).

Furthermore, vision-language tasks enable the interaction of non-experts
with data through intuitive natural language interfaces. Especially in the do-
main of remote sensing and post-disaster analysis this can be crucial since the
ability to evaluate satellite or drone imagery with respect to the needs of first
responders e.g. finding a traversable road after a flood event or describing the
changes in a region influenced by wild-fire or landslide scenarios.

However, training a model that performs well in this domain is hard due
to the scarcity of labeled high-quality data. One major explanation is that the
vast amounts of unlabeled data would require significant amounts of manual
efforts in order to be useful in a supervised learning task. This emphasizes
the development of label efficient approaches that produce meaningful repre-
sentations based on the visual input and by that enabling language decoders to
produce accurate solutions for the downstream task. One way to address this
challenge is by the means of generative models that work on the image domain.
These models can learn strong representations without labeled data e.g. gener-
ative adversarial networks[1] (GANs) or denoising diffusion probabilistic models
(DDPMs)[2]. Especially the latter saw recent breakthroughs and where able to
show high-quality generated images besides also providing high scalabilty and
parallelizability.

The goal of the associated study project is to provide a overview of the
necessary theoretical background and the current state of the art as well as
evaluate the capabilities of these DDPMs to provide meaningful representations
for VLMs applied to a small-scaled proof of concept.

2 Related work

As gathering a comprehensive understanding of the current state of the art will
be a major part of the pending study project, we will only give a brief overview
considering the most relevant approaches for the study project in this exposé.

In recent developments within the field of vision-language tasks, there has
been a notable shift from highly specialized expert models to bigger, general-
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istic foundation models predominantly built on transformer-based[3] encoder-
decoder architectures. This evolution is caused by the increased availability of
vast datasets, enhanced computing resources, and the advancements in semi-
supervised or self-supervised training techniques. Consequently, this paradigm
shift has led to the creation of model architectures containing billions of param-
eters, exemplified by GIT[4] and Flamingo[5], which have significantly advanced
the state-of-the-art in tasks such as image classification, image captioning, and
visual question answering.

In contrast to these monolithic architectures, there is a growing trend of
leveraging specialized pretrained expert models that possess domain-specific
knowledge. One of the most recent exemplars is the Prismer[6] architecture.
The integration of pretrained expert models empowers the architecture to re-
quire significantly less training data and resources for domain adaptation.

However, a common limitation of these models is their training on conven-
tional RGB images. This may not always align with the requirements of remote
sensing environments, where factors such as distribution, perspective, spatial
resolution, and spectral attributes can significantly differ. Furthermore, remote
sensing tasks often involve multi- or hyper-spectral data, which adds complex-
ity to the problem. To address these challenges, various approaches have been
proposed. For instance, Lobry et al.[7] formulated the VQA task tailored to
remote sensing and introduced a benchmarking dataset. Their proposed net-
work architecture incorporates a ResNet-152[8] for visual feature extraction and
a skip-thoughts RNN[9] to extract relevant information from questions, aggre-
gated by a learnable feature fusion module and fed into a prediction head for
answering questions. Building upon this foundation, Siebert et al.[10] enhanced
the approach by incorporating VisualBERT to fuse visual and textual features.
Progress in VL tasks extends beyond VQA and also includes innovations in
change captioning. For example, Chang and Ghamisi [11] introduced a self-
attentive encoder for fusing visual features extracted from bi-temporal satellite
images, propagating the resulting representations to a transformer decoder re-
sponsible for caption generation.

In addition to advancements in vision-language tasks, recent developments
in Denoising Diffusion Probabilistic Models (DDPMs) have demonstrated their
ability to generate high-quality and realistic synthetic visual data[2]. The funda-
mental concept underlying DDPMs involves learning to predict noise iteratively
added to an input image. Upon completing the training process, noise sampling
yields high-fidelity synthetic outputs. This indicates a profound understanding
of the underlying domain which we aim to exploit to provide beneficial repre-
sentations for current VL challenges. Up until now, denoising diffusion models
have been used for various other task besides general image generation such as
super-resolution[12], music synthesis[13] and even change detection in remote
sensing images [14] or cloud removal in sentinal-2 images[15]. Especially, the
latter show promising performance on remote sensing data which provides ad-
ditional motivation for this study project.
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3 Goal and Approach of the study project

3.1 Goal

The focus of the study project will be to evaluate the performance of DDPM
models as encoders for VLMs in the domain of remote sensing datasets. There-
fore, the study project will first provide an insight into the state of the art
literature for VLMs, DDPMs and foundation models in general. It will also
provide an overview of the theoretical background, the used datasets and used
evaluation metrics used for common VL tasks. Furthermore, a DDPM will
be implemented and trained on the FloodNet[16] VQA dataset as well as the
LEVIR-CC[17] dataset. Finally, a RoBERTa[18] model will be used as a lan-
guage decoder. We will apply this decoder as a frozen model as well as fine-tuned
on the respective datasets. The performance of the resulting architecture will
be evaluated using the corresponding metrics provided in the original papers to
provide comparability. To furthermore provide a sense for the performance of
the underlying encoder we will also replace the DDPM with a fine-tuned ViT[19]
evaluate and compare the performance of both systems.

3.2 Approach

During the study project we will integrate a DDPM as encoder for visual infor-
mation for VL tasks. An RoBERTa-Model will be used as encoder for natural
language inputs and as decoder in order to provide natural language output.
The base idea is to train a DDPM on the target dataset in order to learn mean-
ingful representations of the underlying distribution and to extract key features
which would be characteristic during the sampling of similar images.

Usually, DDPMs consist of a Diffusion process which gradually adds noise to
an input image. The obstructed input image is then fed through an U-Net which
learns to predict the added noise. After infering the noise it is than subtracted
from the obstructed image and the reconstruction error is measured in order to
provide a learning signal to the model.

During inference and fine-tuning of the full VLM, images are diffused and
reconstructed. During this process, the hidden states of the diffusing U-Net
are aggregated and fused in order to create a global representation that can
be fed into the RoBERTa-Model e.g. by the means of cross-attention or early
fusion. The major challenges that need to be solved during the study project
are the design of the aggregation and fusion operators and the integration with
an existing large language model (LLM).

The architecture is depicted in figure 1. It displays the basic architecture as
well as information flow inside the model. We omitted the detailed visualization
of the RoBERTa-Model as it is an Transformer encoder as described in the
original transformer paper trained in a specific way.
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Figure 1: Visualization of the planned architecture. The schematic descrip-
tion of the RoBERTa-Model is omitted, since this is essentially the standard
Transformer encoder as described in Vaswani et al.[3]. An image is encoded by
aggregating the internal representations of the U-Net during the inverse diffu-
sion process. It is than passed through an fuse layer which is responsible for
the aggregation of multiple hierarchical states during different timesteps of the
inverse diffusion process.

4 Datasets and Evaluation

Once we implemented the described approach, we will train and evaluate the
model using two publicly available datasets that contain remote sensing images
and incorporate different VLM-tasks. The following sections will describe the
datasets and the evaluation method in further detail.
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4.1 Datasets

In this project, we conduct an thorough evaluation of our approach utilizing
two distinct datasets, each of which presents unique challenges in the domain
of VL tasks.

The first dataset, known as FloodNet[16], is a post-disaster UAV dataset
captured in after the Hurricane Harvey in Texas, USA. It comprises of high-
resolution 4000x3000 pixel images, this dataset serves as a VQA benchmark
in the remote sensing domain, providing approximately 11,000 image-question
pairs. On average, there are 3.5 questions per image, hand-crafted and catego-
rized into distinct question types, including yes-no queries, simple and complex
counting inquiries, and condition recognition. The dataset authors also included
segmentation masks and baseline model evaluations for tasks such as classifica-
tion, semantic segmentation, and VQA. They reported the evaluated accuracy
on each type of question.

The second dataset that is used is called LEVIR-CC[17]. It contains change
captioning data consisting of an image pair at two different timestamps and five
sentences describing any observed changes. Comprising approximately 10,000
256x256 satellite images, the dataset is gathered using the Google Earth API.
In addition, the authors developed an architecture to provide a solution to the
change captioning problem. The implemented architecture was build of three
stages a CNN-based feature extractor, a dual-branch transformer encoder and a
transformer decoder. They evaluated the approach and reported BLEU scores
at various n-gram levels[20], METEOR[21] , ROUGE-L[22] and CIDEr-D[23]
scores.

4.2 Evaluation

In this study project, we will evaluate our approach using the described datasets.
Our approach will be trained on the corresponding training splits, with model
selection carried out on dedicated validation sets. We will use the test data
partitions to compute scores according to the previously reported scores in the
dataset literature. Moreover, in order to provide comparability, we substitute
the initially described DDPM with a ViT architecture. Subsequently, we apply
the same procedure to the modified architecture, thus enabling a meaningful
comparative analysis with the reported benchmark scores.
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