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1 Introduction

The volume of biomedical literature has continued to expand at a record pace—PubMed
now indexes more than 35 million citations and releases over one million new records
annually, creating an urgent need for automated text–mining pipelines that can keep
domain experts abreast of the latest findings [1]. Transformer–based language models,
popularised by the seminal Attention Is All You Need architecture [33], have become the
de-facto backbone of state-of-the-art named-entity recognition (NER) systems; domain-
adapted variants such as BioBERT push performance further by pre-training on biomedical
corpora [22]. Tools like HunFlair2 now deliver accurate, end-to-end recognition and
normalisation of genes, species and diseases without task-specific engineering, enabling
large-scale information extraction in life-science workflows [32].
Yet the computational cost of running Transformer models has raised widespread

environmental and financial concerns: training a single large NLP model can emit as
much CO2 as five American cars over their lifetime [31], and inference already dominates
the energy bill for many production systems [13]. The “Green AI” agenda therefore
calls for research that values efficiency on par with accuracy [30], a message echoed by
recent carbon-footprint studies on large-language-model deployment [10]. Regulatory
momentum is also accelerating; the EU Artificial Intelligence Act urges transparency
over energy use and resource consumption for high-impact AI applications [2].
Model-side optimisations such as structured pruning [12], movement pruning [29],

integer-only quantisation [17], and 8-bit BERT compression [38] have shown promise in
reducing compute and memory demands, while serving-time techniques like continuous
dynamic batching (vLLM ) can boost throughput by an order of magnitude without
extra latency [8]. However, their combined impact on energy efficiency for domain-specific
NER remains under-explored. Motivated by these gaps, this thesis provides the first
systematic comparison of pruning, dynamic batching and quantisation—individually and
in combination—on HunFlair2 inference, reporting both task performance and fine-grained
energy metrics.

2 Fundamentals and Related Work

A sound understanding of this thesis requires situating its experiments within the broader
scientific context of neural-network architectures and efficiency research. Accordingly, the
present chapter first reviews the Transformer framework and the HunFlair2 biomedical
NER toolkit before surveying three complementary optimisation strategies—pruning,
dynamic batching and quantisation—that aim to reconcile state-of-the-art accuracy with
sustainable computation [12,18,33].

2.1 Transformer Models

The Transformer is a deep-learning architecture introduced by Vaswani et al. in 2017 that
forgoes recurrence in favour of multi-head self–attention, yielding highly parallelisable
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sequence processing and superior performance on translation benchmarks [33]. A canonical
Transformer consists of stacked encoder and decoder blocks, each combining a self-attention
sublayer with a position-wise feed-forward network, wrapped by residual connections and
layer normalisation to ensure stable training [33]. Self-attention allows every token to
attend to all other positions in a single input sentence, enabling efficient modelling of
long-range dependencies relative to recurrent neural networks [33]. Bidirectional encoder-
only adaptations such as BERT [9] and RoBERTa [23] pre-train on large corpora with
a masked-language objective and then fine-tune on downstream tasks. Decoder-only
variants underlie generative systems like GPT-3, which showcased few-shot abilities at
unprecedented quality [6], whereas unified encoder–decoder models such as T5 treat every
NLP task in a text-to-text fashion [28]. Domain-specific pre-training further extends
these gains; BioLinkBert, for instance, markedly outperforms general BERT models
on biomedical NER, relation extraction and QA [21]. Prior to the Transformer era,
transfer learning in NLP largely relied on recurrent models like ULMFiT [14], but these
have since been superseded by Transformer variants. Despite their success, Transformers
are computationally and energy intensive, motivating research into pruning, dynamic
computation and quantisation—optimisations that this thesis will benchmark.

2.2 HunFlair2

HunFlair2 is an open-source biomedical NER+entity-normalisation toolkit built on the
Flair NLP framework [4]. It employs a single Transformer-based sequence tagger that joint-
ly recognises five biomedical entity types—genes/proteins, chemicals, diseases, species and
cell lines—leveraging contextual embeddings from domain-adapted language models such
as BioBERT [21,32]. Sharing parameters across entity types through multi-task learning
reduces memory consumption and improves robustness on heterogeneous corpora []. The
model integrates a neural linker that maps each mention to standard identifiers (e.g. MeSH,
Entrez Gene), producing normalised outputs suitable for downstream knowledge-base
integration [32]. In a 26-corpus benchmark, HunFlair2 achieved the highest average F1

among nine competing biomedical NER/NEN tools, highlighting its cross-corpus generali-
sation [32]. These gains arise from extensive cross-corpus training, residual character-level
embeddings and a CRF decoding layer added on top of Transformer representations [36].
Thanks to its simple Python API, GPU-accelerated PyTorch backend and permissive
MIT licence, HunFlair2 lets researchers quickly experiment with efficiency techniques
such as pruning, dynamic batching and quantisation in biomedical NER [4,36].

2.3 Pruning

Neural network pruning is a model compression technique that involves removing unne-
cessary parameters or structures (such as weights, neurons, or filters) from a trained
model to reduce its size and computational requirements. This idea dates back to early
work like Optimal Brain Damage by LeCun et al. (1990), which showed that removing
low-saliency weights can have minimal impact on accuracy [20]. Modern approaches
have revived and expanded pruning for deep networks; for instance, Han et al. (2015)
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demonstrated that iteratively pruning and retraining a network can reduce the parameter
count by an order of magnitude without significant loss in accuracy [12]. Pruning can be
unstructured (removing individual weights) or structured (removing entire neurons or
channels), the latter of which is often more hardware-efficient. By eliminating redundant
computations and memory accesses, pruning not only accelerates inference but also
lowers energy consumption. For example, in NLP models like BERT, fine-tuning with
pruning methods (e.g., movement pruning) can yield highly sparse models that maintain
performance while using considerably less computational resources [29].

2.4 Dynamic Batching

Dynamic batching is a technique to improve the efficiency of neural network inference
by aggregating multiple incoming requests and processing them together as a single
batch. Unlike static batching with a fixed batch size, dynamic batching adaptively forms
batches on the fly (often based on short time windows or queue thresholds) to maximize
hardware utilization without incurring excessive latency. Grouping several requests into
one forward pass allows the model (especially on parallel hardware like GPUs or TPUs) to
amortize memory and compute overheads across multiple inputs, significantly increasing
throughput per unit of energy. This approach leads to better resource utilization. For
instance, the Clipper serving system employed adaptive batching to boost throughput
while meeting strict latency constraints [7]. In the context of large language models,
recent systems like vLLM implement continuous dynamic batching to achieve order-of-
magnitude higher token throughput while maintaining low latency [8]. Overall, dynamic
batching reduces idle time and ensures that compute units operate near their optimal
capacity, thereby improving energy efficiency per query.

2.5 Quantization

Quantization is the process of reducing the numerical precision of a model’s parameters and
operations, typically by converting 32-bit floating-point weights and activations to lower
bit-width representations such as 8-bit integers. This compression technique dramatically
lowers the memory footprint of neural networks (e.g., 8-bit quantization cuts memory usage
by 4×) and enables the use of faster, low-precision arithmetic instructions. By replacing
high-precision operations with low-cost integer or fixed-point operations, quantization
can substantially increase inference speed and reduce energy consumption [18]. Proper
quantization (via post-training calibration or quantization-aware training) can preserve
most of the model’s accuracy, as demonstrated by Zafrir et al. (2019) who achieved
near-original performance with an 8-bit BERT model [38]. Moreover, modern hardware
units (e.g., NVIDIA Tensor Cores and Google TPUs) are optimized for low-precision
math, which amplifies the efficiency gains of quantization. In extreme cases, researchers
have even explored 1-bit or binary neural networks [15], which maximize efficiency (though
typically at the cost of some accuracy). Overall, quantization is a crucial technique for
deploying deep models in resource-constrained environments, offering a favorable trade-off
between model fidelity and operational efficiency.
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3 Evaluation

This section briefly presents the biomedical NER datasets (MedMentions, Bio-ID (Bio-
Creative VI), tmVar3.0, SourceData- NLP, and the Variome Corpus) and the hardware
telemetry interfaces (NVML and RAPL) used to evaluate model accuracy and energy
consumption.

3.1 Datasets

This study evaluates model performance on five contemporary biomedical NER corpora:
MedMentions, Bio-ID (BioCreative VI), tmVar3.0, SourceData-NLP, and the Variome
Corpus [3, 5, 24,35,37].

MedMentions comprises 4 392 PubMed titles and abstracts published in 2016, exhaustively
annotated with more than 350 000 UMLS-linked concept mentions spanning 21 semantic
types [24]. Its breadth and size make it a strong benchmark for broad-coverage biomedical
NER.
Bio-ID supplies figure-legend text (plus full-text context) curated for eight entity clas-
ses—including gene/protein, miRNA, small-molecule, organism, cell line and tissue menti-
ons—within the BioCreative VI Interactive ID Assignment track [5]. The legend modality
complements abstract- and full-text corpora and stresses fine-grained normalisation.
tmVar 3.0 offers 500 full-text PubMed articles densely annotated for genetic variant
mentions of diverse types (e. g. SNPs, copy-number variants) and normalised to dbSNP
or ClinGen allele identifiers [37]. This corpus targets sequence-variant recognition and
bridging to reference databases.
SourceData-NLP collects figure-legend annotations from 18 689 figures in 3 223 molecular-
and cell-biology papers, totalling over 620 000 entity mentions across eight biomedical
classes, together with experimental-role metadata [3]. Its scale and multimodal focus
enable evaluation in settings with long, context-rich sentences.
Variome Corpus is a domain-specific resource of inherited-colorectal-cancer full-text
articles annotated with 11 entity types (variants, genes, diseases, etc.) and 13 relations,
providing a challenging low-resource benchmark for variant-centric NER and relation
extraction [35].

3.2 Energy Measurement Tools

To quantify the energy footprint of each experimental run we rely on two software
telemetry interfaces: NVIDIA’s Management Library (NVML) for GPUs and Intel’s
Running Average Power Limit (RAPL) for CPUs [16, 25]. NVML is the C-level API
that powers nvidia-smi; it delivers real-time readings of GPU power draw, temperature
and utilisation that can be polled programmatically at millisecond resolution [25]. By
integrating NVML sampling (e.g. 100 ms interval) into training or inference loops,
researchers obtain per-batch energy profiles without external meters [34]. RAPL, exposed
via model-specific registers, accumulates joule-level energy consumption for the CPU
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package, cores and DRAM domains, enabling precise CPU-side measurements with
negligible overhead [16]. These counters can be accessed through Linux perf or user-
space libraries, providing millisecond-granularity power data for CPU-bound inference
workloads [16]. Comparative studies show strong correlation between NVML/RAPL
readings and external power meters, validating their use for energy-efficiency benchmarking
in machine-learning research [19].

4 Implementation

4.1 Dataset Assembly

To create a heterogeneous yet compact benchmark, we merge the sentence–level splits of
MedMentions (genes/proteins, diseases, species) [24], Bio-ID (figure-legend genes/proteins,
species) [5], tmVar 3.0 (gene/protein symbols in full texts) [37], SourceData-NLP (legends
with gene products, diseases, species) [3], and the Variome Corpus (inherited-cancer texts
with genes and diseases) [35] into a single evaluation set. All corpora are converted to a uni-
form scheme and collapsed onto three unified labels(GENE, SPECIES, and DISEASE)without
further re-training, as the study focuses strictly on inference-time behaviour.

4.2 Baseline Inference Setup

We run the off-the-shelf HunFlair2 tagger provided by the Flair framework [11] on the
merged corpus, recording its latency, F1, memory footprint, and power draw. Because
HunFlair2 is already pretrained on a broad mix of biomedical texts, no fine-tuning or
domain adaptation is performed; this establishes a “vanilla” inference reference.

4.3 Single Optimisation Passes

Pruning — Weights are removed by magnitude-based movement pruning at sparsity
levels [29]; the pruned checkpoints are evaluated as-is to isolate pure inference effects.
Quantisation — We employ two precision settings: float16 (FP16) for rapid pro-

totyping and int8 dynamic quantisation following the Q8BERT recipe [38], letting us
compare moderate versus aggressive bit-width reduction.

4.4 Dynamic Batching

— Inference is served via TorchServe using its native dynamic-batching feature (max batch size

= 16, max batch delay = 5 ms), which aggregates requests that arrive within the delay
window into a single micro-batch. This strategy amortises pre-/post-processing over-
head and drives the GPU at higher utilisation; prior evaluations report up to 10–15 ×
throughput gains for encoder-style Transformer models under similar settings [26,27].
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4.5 Combined Pipeline

For the end-to-end test we first quantise the model to int8, then prune to 50 % sparsity,
and finally deploy it via dynamic batching. This ordering minimises memory traffic before
sparsity masking and leaves batching logic hardware-agnostic.

4.6 Logging and Metrics

GPU power, utilisation and VRAM are sampled every 100 ms via NVIDIA’s NVML
API [25], while CPU package energy is captured with Intel’s RAPL counters [16]. From
these traces we derive average/peak power (W), total energy (J), maximum RAM/VRAM
(MB), wall-clock runtime (s) and micro-averaged F1.
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