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Introduction

According to the third international consensus definition of sepsis, published in 2016, sepsis is a state of a
“life-threatening organ dysfunction caused by a dysregulated host response to infection” [1]. Although sepsis
is a common condition - between 1979 and 2015, the number of cases was estimated at 50 million per year [2]
- the mortality through sepsis is still high. The mortality rate was 17% for sepsis and 26% for severe sepsis
during these years [2]. Since sepsis is considered a medical emergency, treatment, and resuscitation, restoring
life or consciousness, should start as soon as the diagnosis is made [3]. As a pathogen induces sepsis, often
bacteria, early antibiotic treatment is common as part of the initial intervention. However, this also bears
the risk of inappropriate treatment linked to higher mortality [4].
In this regard, there are two main challenges: on the one hand, the effective and rapid diagnosis of sepsis
that also examines the trigger of sepsis, and on the other hand, the assessment of the current physical state
of the sepsis patient. The Fraunhofer IGB’s In-vitro Diagnostics research group, where the master thesis
research project will be conducted, has worked intensively on the first topic in the past and has developed
a pipeline for the diagnosis of sepsis pathogens based on Next-generation-sequencing (NGS) data [5, 6, 7].
The focus of this master thesis will be on the second topic. In the context of determining a patient’s current
state, we speak of their phenotype. “The word ’phenotype’ refers to some deviation from normal morphology,
physiology, or behavior” [8]. Phenotypes to be studied include, for example, those of patients with a lower
chance of survival or ineffective treatment.
To characterize phenotypes, mainly NGS data of human circulating cell-free DNA (cfDNA) will be used.
cfDNA is defined as “DNA liberated from the confinement of cells into any type of extracellular space” [9].
cfDNA has become a useful biomarker in the last two decades [9]. The extraction of cfDNA is minimally
invasive as only blood samples are taken [9]. Furthermore, it can serve as a “source of diverse biological and
pathological information” [9]. Since human cfDNA is the product of necrosis or apoptosis [10], we can derive
information about which cells are going into cell death from features such as fragment length, amount, or
methylation patterns [11]. Thereby, we also derive information about the current condition of the patient.
cfDNA is particularly interesting in sepsis, as the heterogeneity of patients makes characterization based on
classical biomarkers, for example, blood levels or disease-specific assessment scores, difficult [10].
To effectively use the information contained in the cfDNA features, an algorithm is needed to identify highly
informative features and predict the phenotype of each patient with high accuracy. Because it is not yet fully
understood which attributes of the cfDNA might be the most promising features [10], an algorithm that makes
its own selection is preferable. Machine learning (ML) can provide this functionality. “ML models are capable
of producing knowledge about domain relationships contained in data, often referred to as interpretations”
[12]. Fleuren et al. have shown in their systematic review and meta-analysis of the performance of ML in
sepsis diagnostics that the accuracy of the algorithms is often better than that of traditional methods, even if
ML models lack interpretability [13]. A lack of interpretability means that it is often not understood how an
ML model arrives at a particular solution. As a result, it is not clear whether this judgment can be trusted.
The latter is seen as a problem, especially in clinical practice [13]. Although this study does not fully address
the research topic, as it deals with sepsis diagnostics, the results can be transferred to ML applications in
sepsis phenotyping.

Formulation of objectives

In my master thesis, I will examine cfDNA data of sepsis patients to find features that yield information on
the patient’s phenotype. The patient’s risk of death will be the initial phenotype to be studied, as many
predictors for this case can be used as a performance comparison. Different ML algorithms will be used to
predict phenotypes since no optimal solution is yet known. A value of 0.9 for the area under the receiver
operating characteristic (ROC) curve (AUC) is set as the target for the diagnostic ability of any predictor
being developed, bearing in mind that the priority of sensitivity or specificity may vary depending on the
context. This is to ensure comparability with state-of-the-art algorithms. Higher targets cannot be set due
to the limited size of the data set. Ultimately, the interpretability of each predictor is made a criterion for its
evaluation. The contribution of the features to decision-making is analyzed, examining whether these effects
can be explained by the literature. The key research question will be how accurately and comprehensibly an
ML model can be created for phenotyping sepsis patients based on NGS data from cfDNA.
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State of the art

There are several simple predictors of mortality in sepsis patients in the literature, with variations in the
number of days mortality was measured. “Simple” means in this context that no ML algorithm is used. In
general, two groups of predictors can be differentiated. The first group are scores calculated based on the
presence of symptoms, the exceeding of specific levels of biomarkers, or certain biometrical features like old
age. If the score crosses a threshold, mortality is predicted within the given time frame. Examples for the
first group are the SIRS-criteria (AUC 0.76) [14], the qSOFA score (AUC 0.81) [14] and SOFA score (AUC
0.75) [15], and the SMRS score (AUC 0.789) [16]. It is important to emphasize that these scores were not all
invented to characterize sepsis disease. The other group contains important biomarkers that are part of the
immune response. If the value of the specific biomarker is outside the normal range, this will be associated
with mortality. Examples for this group of predictors are initial blood lactate (AUC 0.664) [17], procalcitonin
(PCT) (AUC 0.76) [18], and interleukin 6 (IL-6) (AUC 0.785) [19] levels. Measuring blood lactate levels is
one of the simplest approaches. Therefore, an AUC value of 0.664 should be the baseline for any predictor.
ML has already been used to predict mortality in sepsis patients. However, the algorithms here are also
mainly based on biometric data, symptom and disease data, and biomarker levels. The time frames in which
mortality is predicted are not always identical. Hu et al. trained seven ML algorithms on the sepsis data of
the Medical Information Mart for Intensive Care (MIMIC-III) [20], which is a large, single-center database
comprising information relating to patients admitted to critical care units at a large tertiary care hospital.
Their best-performing algorithm is an eXtreme Gradient Boosting (XGBoost) algorithm, which achieves an
AUC value of 0.884 [20]. Karlsson et al. used a Balanced Random Forest Classifier and 91 variables reflecting
emergency department (ED) presentation to predict 7- and 30-day mortality and reached an AUC value of
0.83, respectively 0.8. The research team led by Park utilized data from the US Nationwide Inpatient Sample
(NIS), the largest all-payer inpatient care database in the United States, to train six commonly employed
ML algorithms [22]. The neural network achieved the best performance with an AUC value of 0.893 [22].
Wernly et al. took a different approach by using only arterial blood gases (ABG) to predict mortality, as
these are routinely determined even in heavily loaded ICUs [23]. This design ensures applicability in all
ICUs, not only in the particularly well-equipped ones [23]. Their long-short term memory (LSTM) network,
a neural network, could reach an AUC value of 0.93 [23]. Of course, we cannot discuss all existing algorithms
here. However, referring to the systematic review by Wu et al., which generally deals with the use of artificial
intelligence in sepsis, it can be said that deep learning, particularly, has shown success in mortality prediction
in sepsis [24].
The use of human cfDNA analysis is already more widespread in cancer diagnostics. There, it is used as an
input to cancer diagnostic tests based on ML. A primary goal is to develop a noninvasive tool that can diagnose
cancer and its type, a so-called multi-cancer early detection test (MCED) [25]. Early and simple diagnoses
of the kind of cancer would allow more precise treatment of patients and are, therefore, a high priority. The
analysis of human cfDNA is promising because cancer cells shed special cfDNA, cell-free circulating tumor
DNA (ctDNA) [26]. To identify and interpret the ctDNA, ML algorithms are used. Christiano et al. focused
on fragmentation profiles of cfDNA to find significant differences between cancer and non-cancer patients for
different cancer types using a gradient tree boosting machine learning model [27]. The fragmentation profile
describes, among other things, the length of the fragments and their genomic position. In another study,
Jamshidi et al. compared a variety of ML classifiers for MCED, each using a distinct feature of cfDNA [25].
Thereby, cfDNA methylation offered the best results for MCED [25]. Although research in this field mainly
focuses on diagnostics, many methodological developments exist for using cfDNA sequencing data in ML
models. These may guide the phenotype prediction of sepsis patients with ML models. The work of Jamshidi
et al. is most relevant for building an ML model with cfDNA data, as it provides many clues as to what
features can be extracted from it. Regarding the use of cfDNA in sepsis, the In-vitro diagnostics research
group of the Fraunhofer IGB, Stuttgart has developed an NGS-based “Sepsis Identifying Quantifier” (SIQ)
that uses sequences of pathogenic cfDNA to diagnose sepsis [5] respectively septic shock [6]. Besides, the
performance of the first algorithm has been shown in a multicentre study involving internal medicine and
surgical intensive care units (ICU) in hospitals with the highest possible level of care [7]. In addition, levels of
cfDNA have already been used to predict sepsis mortality in some studies (AUC 0.79 [28], AUC 0.97 [10]).
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Way of proceeding

An ML model will be created to predict the mortality of sepsis patients. Then, if the applied methods of
trait extraction and engineering work well in combination with the ML model, an extension of the model is
worked on, or a similar model is trained for other phenotypes and diagnostic questions.
The data used to build an ML model originate from the multicenter, non-interventional, prospective clinical
study to evaluate the utility of the SIQ score in sepsis pathogen diagnosis [7]. Fraunhofer IGB participated
in this study as the central diagnostic collaborator [7]. This study includes 500 patients with suspected or
proven sepsis based on sepsis-3 criteria [30]. A plethora of clinical parameters and metadata were collected
for each patient in the study. In addition, there is NGS data of cfDNA based on plasma samples and two
sets of blood cultures (2x aerobic / 2x anaerobic) per patient, all taken at baseline (admission to ICU) and
72 hours afterward [30]. All patients in this study are of legal age and have consented to participate in the
study [30]. The data was collected in seventeen clinics across Germany [30]. The final outcome assessment
of the patients was conducted after 28 days [30].
The most time-consuming step in building an ML model to predict phenotypes of sepsis patients is expected
to be feature extraction and selection. The paper of Jamshidi et al. [25] will be used as a methodological
blueprint. Features that are mentioned in this paper are whole genome (WG) methylation, single nucleotide
variant (SNV) with and without white blood cell (WBC) background removal, somatic copy number alter-
ation (SCNA), fragment endpoints, fragment lengths and allelic imbalance [25]. Since neither methylation
data nor white blood cell reference data are available in the dataset for this research, the focus will be on
SNVs, SCNAs, fragment endpoints, and fragment lengths. In addition, fragment end motifs and possibly
other features will be considered depending on the availability of other literature. Unlike in their paper,
the objective will not be to focus on one type of feature only but to combine several into one ML model.
Nevertheless, it is not certain that all of these traits are important enough to be included, as their importance
has only been demonstrated in cancer. Furthermore, the model design will consider clinical and NGS-based
pathogen diagnostic data.
An SNV is a “single nucleotide (nt) substitution” [29]. A subset of these mutations can influence multifac-
torial diseases or traits and is a potentially interesting feature for the ML model. To use SNV information,
polymerase chain reaction (PCR) duplicates of the sequences of DNA fragments are first grouped to be sum-
marized using mean collapsed coverage [25]. SNVs in the sequences are then identified by a Bruijn graph
assembler [25]. A noise model gives the SNVs a score representing their distinctiveness from the reference
cohort [25]. SNVs with too low a score or similarity to a DNA damage artifact are filtered out [25]. Based
on these SNVs, a fixed-length vector is created for each patient by assigning every gene the maximum allele
fraction of any SNV [25].
Copy number variations (CNV) are genome sections repeated several times. The number of repeats depends
on the individual [31]. SCNAs are “somatic changes to chromosome structure that result in gain or loss in
copies of sections of DNA” [32]. These changes are not hereditary but happen during cell division and can
also affect regions crucial in other cellular processes [32]. To use SCNAs for ML, the DNA reads are divided
into bins of 100 kb (kilobases) [25]. This number of reads per bin is then subtracted from a baseline of the
reference cohort [25]. These numbers are finally corrected for GC bias [25], the human genome has a higher
GC content than would be possible by random chance [33], and systemic effects [25].
The nuclease activity in the cells mainly determines the fragment endpoints and lengths because the nucle-
ases are responsible for the generation and clearance of cfDNA [34]. As the nuclease activity depends on the
current state of the cells, it could be a good indicator of the phenotype of a patient. To extract fragment
endpoint information, two count vectors are used for each test and reference cohort, each corresponding to
the genome length [25]. Significant endpoint positions are then identified per chromosome using hierarchical
Bayesian modeling [25]. Normalized numbers of fragments ending in the selected positions are then used
as input vectors [25]. For fragment length analysis, the fragment length distribution is calculated for each
patient in the test and reference cohort and summarized using the mean density per fragment length across
participants per cohort [25]. The values obtained are then normalized, and a fragment length probability is
calculated based on the test and control distribution and controlled for GC bias [25]. To obtain an input
vector, the genome is divided into 100kb regions, which are then given a score based on the average proba-
bility of the fragments being part of the test cohort [25].
Since there are many potential features to choose from, an embedded supervised feature selection strategy
such as Least Absolute Shrinkage and Selection Operator (LASSO) can be used to find the most appropriate
feature selection regarding accuracy and interpretability. A tool like the “glmnet” package in R is a candidate
for use. As already described, it will not be possible to precisely define the properties of the ML model to
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be developed. Moreover, this may vary depending on the input the ML model is to process and the output
it is to produce. For example, the number of phenotypes to be predicted is not yet fixed. The literature
discussed can offer a selection proven effective in exemplary cases. In the work of Jamshidi et al., kernel and
elastic binomial logistic regressions, a convolutional neural network, and an XGBoost classifier performed
best [25]. Other algorithms that are used are Lasso regression, random forest [22], or support vector machine
(SVM) [24]. Supervised learning and reinforcement learning are prevalent. Unsupervised learning is referred
to only once with a link to the K-means algorithm [24]. Many papers conclude that deep neural networks
or XGBoost classifiers provide the best results. [20, 23, 24, 25]. Neural networks, however, are out of scope
with the cohort size of the study to be used.
To assess ML models, the AUC value will be most important as it is “widely recognized as the measure of a
diagnostic test’s discriminatory power” [35]. The AUC of the Receiver ROC (Receiver Operating Character-
istic) curve is a simple way to compare classifiers capturing both sensitivity (true positive rate) and specificity
(true negative rate) [35]. Furthermore, the AUC is calculated in each study, so we achieve a comparison to
the current state of the art [17, 20, 21, 22, 23]. But also, the AUC value has “drawbacks, including the de-
coupling from the class skew” [36], meaning the asymmetry observed in a probability distribution. Therefore,
one can also include the AUC of the precision-recall curve (PR) in the evaluation of the model. The AUC-PR
combines the precision (positive predictive value) and the recall (true positive rate) of the classifier [36].
Additionally, the ML model shall be judged based on its interpretability and comprehensibility. The value of
an ML algorithm in medicine is only given if its functioning can be sufficiently explained. A way to appre-
hend ML models is SHAP (SHapley Additive exPlanations) [37]. SHAP assigns an importance value to each
feature a model uses for a particular prediction [37]. One can also look at the average importance or examine
which values of the selected feature have the most influence [20]. By this means, it is easier to understand
why the algorithms come to a particular conclusion. SHAP is not the only instrument that was developed
for this purpose. Arguments in favor of its usefulness are that SHAP has already been used successfully in
several papers on sepsis mortality prediction [20, 22]. Moreover, in their paper, Lundberg and Lee describe
SHAP as more intuitive than other comparable instruments [37]. Furthermore, since the interpretability of
an ML model does not necessarily lead to reliance, the observed effects of the features on the model need to
be justified by a literature review.
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