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1 Introduction

In modern days, data collection is an ubiquitous task. There is an abundance
of data sources such as sensors for weather, health data, IT monitoring metrics,
or stock prices. This showcases the comprehensive spread of data across a wide
range of domains. The collected data is real-valued and temporally ordered. Such
structured data is also called time series. This vast pool of information provides
rich material for analysis, either by humans or by machines, which can yield
highly beneficial insights. Contradictory to the ease with which humans are able
to analyse and classify data, classifying data and detecting semantic changes in
its behaviour can be a hard task for machines.

The challenge lies among others in the associated cost of data analysis [Yeh+16].
Due to the large quantity of data it is challenging to decide which sections of
the data should be analysed if the cost of analysing the whole data set exceeds
the amount of available resources. Here, the field of time series analysis presents
a specific research subarea called time series segmentation. This research fo-
cuses on dividing a time series into sets of segments that hold homogeneous
statistical attributes within themselves yet remain heterogeneous when com-
pared with each other, where between two sections a so called change point is
allocated. Interestingly, though the homogeneous sections exhibit consistent be-
haviour which requires specific domain knowledge to interpret, the detection of
changes that occur between different segments can be more agnostic of their
domain [Gha+17] and warrant the creation of domain-independent algorithms
like FLOSS [Gha+17] and AutoPlait [MSF14]. Segmentation of time series can
be harnessed to provide alerts or updates regarding a change in the state of
the system being observed. Additionally, the information of a detected change
point could prompt the allocation of further resources for analysing a particular
subset. Therefore, change point detection has an expansive array of potential
applications.

Within the research area of change point detection, the concept of the Clas-
sification Score Profile (ClaSP) has been introduced in [SEL21]. This profile
describes a transformation on an input time series which allows the reduction
of the change point detection problem to finding peaks in the profile. In order
to compute the classification score profile, an input time series is split into win-
dows which are then repeatedly assigned to either the left or the right side of a
hypothetical split in the time series. In order to reduce these to a profile, a set
of k-Nearest-Neighbour (k-NN) classifiers will be trained on each of these hypo-
thetical split points and evaluated in a cross-validation setting. The aggregated
score of these classifiers then denotes the ClaSP, which indicates the most likely
change point in the time series by its global maximum. Usually an Euclidean
distance metric is used by the k-NN classifiers to assess how similar any two seg-
ments are to each other, which prompts an evaluation of the impact of different
distance metrics on the accuracy of ClaSP.

The proposed research aims to address this topic by implementing an al-
gorithm for a different distance metric, the prefix-suffix distance, which was
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proposed in [IK19], in order to compare the accuracy of ClaSP when using this
new metric as compared to the previously used Euclidean distance metric.

Compared to the Euclidean distance, the prefix-suffix distance metric is gap
invariant, it allows for a region between matching regions of the subsequences
which is not compared between the two. This enables matching of subsequences
of varying lengths and implies that prefix-suffix distance allows for more permis-
sive matching of similar regions which exhibit behaviours of differing lengths.

This expose describes the goal and evaluation criteria for a masters thesis. As
such the next section describes the definitions required to convey the proposed
research, followed by a section to describe the research goal itself. This is fol-
lowed by a final section which describes the planned evaluation of the proposed
research.

2 Definitions and Notation

This section focuses on the definitions and notations of expressions and concepts
which are used throughout this expose, using [SEL21] and [IK19] for reference.
First, we will introduce the definition for a Time Series.

Definition 1 (Time Series). A time series (TS) T is a sequence of n ∈ N real
values, T = (t1, . . . , tn), ti ∈ R. The values are also called data points.

Using this, we can introduce the definition of a subsequence of a time series.

Definition 2 (Subsequence). Given a TS T of length n, a subsequence Ts,e of T
with start offset s and end offset e consists of the contiguous values of T from
position s to position e, i.e. Ts,e = (ts, . . . , te) with 1 ≤ s ≤ e ≤ n. The length
of Ts,e is |Ts,e| = e− s+ 1.

These preliminary definitions allow us to define a segmentation of a time
series as well as the general problem of finding a meaningful segmentation. Note
that detecting a single change point in a time series will create a meaningful
segmenation into two segments for this time series.

Definition 3 (Segmentation). A segmentation of a TS T into C + 1 segments is
an ordered sequence of change points (or splits) ti1 , . . . , tiC with 1 < i1 < · · · <
iC < n.

Definition 4 (Time Series Segmentation). The problem of time series segmen-
tation (TSS) is to find a meaningful segmentation of a given TS T under the
assumption that T was generated by a process with discrete states. A segmenta-
tion is considered meaningful when the change points between two subsequent
segments correspond to state changes in the underlying process.

In order to solve the problem of finding a meaningful segmentation of a time
series into and devise two segments, ClaSP relies on the Distance Profile of a
time series as part of its k-NN classification step.
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Definition 5 (Distance Profile). A distance profile D ∈ Rn−m+1 of a time series
T and a given query Ti,i+m is a vector which stores dist(Ti,i+m, Tj,j+m)∀j ∈
[1, 2, . . . , n−m+ 1] for any distance function dist.

The Distance Profile relies on a distance function, of which we will define two.
Firstly, the Euclidean distance is currently being used by state-of-the-art ClaSP
implementations. Scondly, the prefix-suffix distance which will be implemented
as part of this thesis.

Definition 6 (Euclidean distance). The Euclidean distance of two subsequences
of equal length Ta,b and Tx,y of a time series T is defined as

diste(Ta,b, Tx,y) =
2
√

(ta − tx)2 + (ta+1 − tx+1)2 + · · ·+ (tb − ty)2

with b− a = y − x = m

Definition 7 (Prefix-Suffix-Distance). The prefix-suffix distance of two subse-
quences Ta,b and Tx,y of a time series T , given a prefix-/suffix length s and
a maximum don’t-care length r, with a ̸= x, b ̸= y, is defined as
distps(Ta,b, Tx,y) = min (diste(Ta,a+s, Tx,x+s) + diste(Tb−s,b, Ty−s,y)) with

0 ≤ b− a− 2s ≤ r

0 ≤ y − x− 2s ≤ r

where diste(Ta,a+s, Tx,x+s) is the distance between the prefixes of Ta,b and Tx,y

and diste(Tb−s,b, Ty−s,y) is the distance between the suffixes of Ta,b and Tx,y and
the regions Ta+s,b−s and Tx+s,y−s denoting the don’t care regions of Ta,b and
Tx,y.

Note that the subsequences Ta,b and Tx,y are not required to be of the same
length in order to compute their prefix-suffix distance as opposed to the Eu-
clidean distance. Fig. 1 displays two subsequences of a time series with different
lengths, which are coloured by prefix, suffix and don’t-care regions. This presents
a pair of subsequences which are highly similar when compared with the prefix-
suffix distance, as they exhibit almost identical prefixes and suffixes with only
the length of the don’t care regions differing.

Definition 8 (Classification Score Profile). Given a TS T and a window-length
w, a Classification Score Profile (ClaSP) is a real-valued sequence S of length

Fig. 1: Two subsequences of a time series measured by [Par+10], which depict
the X-axis acceleration of a person using an elevator, Figure taken from [IK19]



5

n. The i-th value in S is the cross-validation score s ∈ [0, 1] of a classifier C
trained on a binary classification problem with labels Y = {0, 1}. For index
i ∈ [w+1, n−w− 1] training samples are created by assigning label y = 0 to all
windows to the left WL =

⋃
j∈[1,...,i−w] Tj,j+w and y = 1 to all windows to the

rightWR =
⋃

j∈[i−w+1,...,n−w+1] Tj,j+w. Values S[1, . . . , w] and S[n−w−1, . . . , n]
are set to 0, giving a very small blind spot.

Using these definitions we can now lay out the proposed research as well as
its evaluation criteria in the following sections.

3 Research Goal

In order to compare the accuracy of the ClaSP algorithm using the two different
distance metrics, Euclidean distance and prefix-suffix distance, the focus of this
research will be to implement the algorithm for prefix-suffix distance efficiently
into the aeon-Toolkit [dev]. This toolkit already provides an implementation
of the ClaSP algorithm as well as a suitable implementation to calculate the
z-normalized Euclidean distance, which will allow a for direct comparison of
the two approaches. Since the original proposal for prefix-suffix distance only
accounts for use with a 1-NN classifier [IK19], which stands in contrast to the
optimal configuration with a 3-NN classifier for ClaSP [SEL21], the proposed
research presents two steps of implementation:

1. Implementing the prefix-suffix distance algorithm for use with a 1-NN clas-
sifier as described in [IK19]

2. Adapting this implementation for usage with k-NN classifiers, particularly a
3-NN classifier, in an efficient manner if feasible

The first step will facilitate an implementation of the prefix-suffix distance
algorithm as it is laid out by the original authors. Once this implementation is in
place it needs to be adapted to fit the necessary adapters of the existing ClaSP
algorithm. Furthermore the existing ClaSP algorithm needs to be adjusted to
accept a 1-NN classifier instead of the current 3-NN classifier. This will allow a
first comparison of ClaSP with Euclidean distance to ClaSP with the prefix-suffix
distance in terms of accuracy and computational efficiency. The exact evaluation
criteria will be outlined in Sec. 4.

Once the implementation of the first step is successfully completed, the algo-
rithm for calculating the prefix-suffix distances needs to be extended to output
the required information to serve as input to 3-NN classifiers. The main focus
of this task lies on keeping the computational complexity of the implementa-
tion low. Upon completion of the implementation the evaluation will span a
comparison between ClaSP with a 3-NN classifier using the Euclidean distance
metrics and ClaSP with a 3-NN classifier using the prefix-suffix distance metric.
This evaluation will again consider the accuracy of the model as well as the
computational efficiency. Furthermore a comparison in terms of accuracy and
computational efficiency to ClaSP with a 1-NN classifier using the prefix-suffix
distance will be possible.
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4 Evaluation

In order to evaluate the accuracy of ClaSP with the prefix-suffix distance, we
will apply the same set of time series as used in [SEL21] using the prefix-suffix
distance and a 1-NN classifier for the first described goal. To achieve comparable
results, we will apply the ClaSP algorithm with the z-normalized Euclidean
distance metric and a 1-NN classifier to the same 98 data sets.

To evaluate the effectiveness of the k-NN adapted prefix-suffix distance met-
ric, which will be implemented as defined in the second goal, we will reuse the
results from the [SEL21] paper using the Euclidean distance metric and a 3-NN
classifier. This will allow us to compare the results directly with an analysis
using the adapted prefix-suffix distance and a 3-NN classifier as well as facili-
tate a comparison between the prefix-suffix distance metric with two different
classifiers, 1-NN and 3-NN. Based on the evaluation results, ClaSP using the
prefix-suffix distance metric can be compared to FLOSS, Window-L2, BOCD,
BinSeg-L2, and Autoplait as seen in [SEL21] for a more comprehensive analysis
against some state of the art competitors. All algorithms will use the same eval-
uation metric as it is used in [SEL21] and defined in [Gha+17], which sums the
distances between annotated change points and predicted change points and then
normalizes the value to a range of [0, 1], with 0 representing the best possible
score.

When assessing the effectiveness of the prefix-suffix distance, the evaluation
should take into account that this metric might surpass Euclidean distance only
within certain group of data sets. Regardless of the comparative performance of
ClaSP when using either of these two metrics, the proposed research is set to
include an analysis of specific data sets wherein one metric demonstrates superior
performance over the other.

Moreover, it is important to evaluate different values for the new input pa-
rameter don’t-care-length in the evaluation of prefix-suffix distance. To procure
the most optimal results for ClaSP with the prefix-suffix distance, this parameter
should ideally be chosen as a small multiple of the prefix-/suffix length [IK19].
To determine this parameter’s optimal value, a strategy similar to the window
size selection process as outlined in [SEL21] should be used.
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