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1 Introduction

Low-cost, high-resolution sensors are broadly used in various industry fields.
Medical surveillance, earth observation, manufacturing and security control are
only a few of the common sensor applications. In these fields, sensing devices
are used to detect events or changes in the measurements. The produced data
is an unlabelled series of data points indexed in time order, called time series
(TS). Formally expressed, a time series T is a sequence of n ∈ N real values,
T = (t1, ..., tn), ti ∈ R [SEL21]. As sensors produce vast amounts of time series,
the interest in analysing the temporally ordered data has peaked. For instance,
TS analysis includes tasks, such as classification [Ism+19; DPW20], similarity
search [SH12], motif discovery [Mue+09; SL23a], anomaly detection [Blá+21]
and segmentation [Gha+17; SEL21].

Time series segmentation (TSS) is a particularly crucial part of TS exploration.
As described in [ESL23], TSS methods aim to identify state changes in real-world
processes by distinguishing changes in the statistical distribution or shape of the
measured values in a post hoc manner. During a segmentation, an input TS is
divided into a sequence of discrete segments that are (semantically) dissimilar
to neighbouring segments to reveal the underlying system properties. In this
way, happenings of interest, usually causing a state change in a system, can be
detected promptly. The task of detecting such signal shifts is called change point
detection (CPD) [TOV19], while a segmentation represents an ordered sequence
of change points. As monitoring data streams for important or unexpected events
is crucial for all sensor application fields, various methods for TSS have been
proposed, which are briefly outlined in the following subsection.

1.1 State-of-the-art TS Segmenation

Typically, TSS is formulated as an unsupervised learning task, aiming to divide
a TS into segments without using labelled or pre-defined categories. Moreover,
studies regarding TSS often categorise the existing algorithms as either domain-
specific or domain-agnostic [ESL23].
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Many domain-specific TSS approaches have been proposed and successfully
applied in fields, such as medical condition monitoring [Bos+03] and climate
change detection [DVB03]. In [TOV19], the authors review prominent domain-
specific CPD and TSS methods and outline three main subcategories: i) Kernel-
based methods, ii) Likelihood-based methods, and iii) Graph-based methods. A
common drawback of all subtypes is that they require the user to select domain-
dependent hyper-parameters, such as window size, CPD threshold, and season-
ality. Although domain-specific TSS can also be advantageous when tailored
solutions are necessary for a particular domain problem, such approaches have
limited versatility and adaptability, high complexity and risk of bias. The draw-
backs mentioned above are considered impactful, especially in research, where
frequently applying an algorithm to new data should be of reasonable time and
computational complexity.

In contrast to domain-dependent TSS techniques, domain-agnostic algorithms
follow more generalised data-driven approaches that do not require in-depth do-
main expertise and frequent customisation of model hyper-parameters. There-
fore, domain-agnostic TSS approaches allow easy implementation across domains
associated with low time and computational costs. Some prominent examples of
domain-independent TSS algorithms are FLOSS [Gha+17], Autoplait [MSF14],
and HOG-1D [ZI16]. For a long time, FLOSS has been considered the state-of-
the-art for CPD and TSS. The approach proposed in [Gha+17] annotates an
input TS with a bespoke arc curve, which is a vector that contains for each
index i the number of arcs that cross over i. The local minima of this number
indicate state change points. FLOSS distinguishes itself from many domain-
agnostic methods as it enables online or streaming segmentation, while others
(e.g., [TOV19; Lai+13]) are only defined for batch data. Moreover, FLOSS does
not assume that all data is segmentable and provides ways of dealing with this
hurdle. However, all of the above-mentioned domain-agnostic algorithms have
similar drawbacks. Utilising domain-dependent TSS may lead to oversimplifica-
tion, as it may not fully capture the intricacies of a particular domain, leading
to lower accuracy compared to a well-tailored domain-specific method.

Recently, another domain-agnostic approach to TSS has been proposed, called
Classification Score Profile (ClaSP) [SEL21]. ClaSP is a novel, highly accurate,
parameter-free TSS algorithm that reduces the TSS segmentation problem to a
binary TS classification problem of identifying regions by similar shapes. Given
the assumption that subsequences extracted from the same TS segment are
mutually similar (self-similar) and dissimilar from subsequences belonging to
another segment, ClaSP iteratively determines change points by finding where
the performance of the binary classifier is highest. As described in [ESL23], the
binary classifier is trained to determine whether a subsequence belongs to the
left or the right part and its class label. In this way, the ClaSP inventors use
established supervised TS analysis methods to solve TSS, an unsupervised TS
problem. To this end, the research described in [ESL23] shows that ClaSP is not
only fast and scalable but also outperforms FLOSS in terms of accuracy.
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1.2 Problem statement

The overview of existing TSS approaches presented above shows a clear trade-off
between domain-specific and domain-agnostic TSS algorithms. On the one hand,
domain-dependent methods offer results with high accuracy for a specific field
of application, while domain-independent ones only achieve limited accuracy.
On the other hand, domain-specific approaches require tedious incorporation
of domain knowledge and have high complexity and limited applicability. In
contrast, domain-agnostic approaches are more adaptable and suitable for a
broader range of applications. Although the interest in utilising domain-agnostic
TSS approaches has vastly grown, achieving high accuracy in various domains
is a hurdle, even for state-of-the-art algorithms. For instance, the developers of
ClaSP outline in [SEL21] that making their classifier more powerful is still an
open research question.

2 Project Goal

The goal of this project is to address the research gap pointed out in [SEL21],
namely to improve the state-of-the-art TSS algorithm ClaSP by making its clas-
sification step more accurate without negatively impacting its runtime. In this
way, ClaSP might provide accuracy in various domains comparable to the results
achieved by domain-specific TSS approaches. Since ClaSP treats the TSS prob-
lem as a binary classification, this work will consider established methods for
improving the performance of time series classification algorithms, such as ap-
plying dilation [DPW20; SL23b]. Furthermore, this project aims to evaluate the
attempted improvement in terms of algorithm accuracy and runtime and com-
pare the results to the ones achieved by the proposed initial ClaSP algorithm
and some of its competitors, such as FLOSS [Gha+17], Autoplait [MSF14] and
BOCD (Bayesian online Changepoint Detection) [AM07].

3 Approach: Dilation Mapping

This project’s approach to improving the state-of-the-art domain-agnostic TSS
method ClaSP is based on dilation or, more specifically, a dilation mapping. To
clarify which part of the algorithm can be enhanced via applying a dilation map-
ping, this section will first give a brief overview of ClaSP’s functionality, followed
by an explanation of the inner workings of dilation and dilation mapping.

As presented by the authors of ClaSP in [SEL21], the novel TSS approach is pro-
vided with a TS T with length |T | = n as input. First, a classification score profile
is computed in the following way: T is partitioned into overlapping windows of
fixed length w, which are used to generate hypothetical splits for increasing off-
sets i ∈ [w + 1, ..., n− w − 1], while extracting features for each window. The
window length w is the only hyper-parameter of ClaSP. Then, each split is in-
terpreted as a binary classification problem Y = {0, 1} by attaching label 0 (1)
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to all windows to the left (right) of the split point. A binary k-nearest-neighbour
classifier (k-NN) is trained on the features and evaluated via a cross-validation
score. The result is recorded for each offset i, representing the classification score
profile of T . Finally, every local maximum in the profile is interpreted as a po-
tential change point.

Fig. 1: Example of the difference between the usage of a sliding window with
dilation (left) and the primary application of dilation mapping, followed by a
standard sliding window operation (right), as shown in [SL23b].

Dilation is a technique that increases the receptive field of a filter, such as a
sliding window, by inserting gaps between the entries in the filter. The total
number of values is kept constant. An example of the functionality of a sliding
window with dilation d = 2 (gap of 1 between each value) is shown on the left
side of Figure 1. The sliding window is shifted along T . As the dilation is set to 2
for this example, the sliding window operation yields two subsequences starting
at uneven (blue) and even (yellow) offsets. Applying dilation has been proven to
effectively enable processing data at different scales (e.g., ROCKET TS classifier
[DPW20]). As ClaSP also implements a sliding window as one of its first steps
towards TSS, adopting dilation is a promising way to improve ClaSP’s feature
extraction accuracy without significantly increasing its complexity.

However, introducing dilation to an algorithm is associated with much effort in
rewriting the code-base. To address this issue, the authors of [SL23b] introduce a
modified approach, called dilation mapping, that has a similar effect as dilation
and is much more feasible to apply. The proposed transformation of reordering
all values in the input TS can be applied as a pre-processing step. An example is
shown on the right side of Figure 1 to elaborate this method further. To mimic
the functionality of a sliding window with dilation of 2, first, every uneven index
of the input TS is taken, and then the resulting subsequence is concatenated to
every even index. Afterwards, an ordinary sliding window operation is applied.
The example is chosen to be conceptually equivalent to the application of a
sliding window with dilation of 2 without reordering the input TS. However, the
same process can also be designed for higher dilation factors (d > 2).
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As proven in [SL23b], the dilation mapping is an operation with linear space and
time complexity in the length of the input TS. Without altering any aspect of the
ClaSP algorithm itself and by simply re-ordering the time series, the method can
become dilated and profit from all the advantages of dilation, such as capturing
essential data patterns at different scales. On the downside, as visible in Figure
1, by applying dilation mapping, a few additional windows are generated at the
intersection of the re-ordering (coloured in grey). However, the longer the input
TS is, the less this issue impacts the quality of the results. Since captured time
series representing real-world processes are typically sizable and the application
of dilation mapping has been shown to effectively mimic dilation and maintain
the advantages it brings in [SL23b], this project will focus on applying dilation
mapping in the context of ClaSP.

4 Evaluation

After the dilation mapping implementation step, the modified TSS approach will
be evaluated to be compared to its baseline (ClaSP) and some of its competitors.
The evaluation will resemble the experiments that the developers of ClaSP de-
scribe in [SEL21]. The following subsections give a more detailed overview of the
benchmark datasets and the evaluation metrics this project will utilise.

4.1 Benchmark Datasets

For the evaluation of ClaSP, 98 datasets have been used, all of which can be found
on the website dedicated to ClaSP [SEL]. 32 of these datasets are segmentation
datasets that capture biological, mechanical or synthetic processes and have been
used for evaluating FLOSS [Gha+17], which makes them a suitable candidate for
comparing the performance of the different approaches. The 66 other datasets
are semi-synthetic datasets curated by the authors of ClaSP from the UCR
archive [Dau+19]. Starting with 120 UCR archive datasets, ClaSP’s developers
apply various data cleaning and munging approaches to develop the 66 datasets
suitable for TSS methods analysis.

The number of change points that need to be detected varies from dataset to
dataset: 49 input TS consist of 2 segments (1 change point), 22 datasets have 3
segments, 10 datasets have 4 segments, 11 datasets have 5 segments, 1 dataset has
6 segments, and 5 datasets have 7 segments. Furthermore, besides the baseline
(ClaSP), the following five TSS algorithms will be used for comparison: Auto-
plait [MSF14], FLOSS [Gha+17], BOCD [AM07], Binary Segmentation (BinSeg)
[SK74] and the window-based change point algorithm with L2 cost function de-
scribed in [TOV19].

4.2 Metrics

Using the above-mentioned datasaets, the performance of the proposed method
will be evaluated in terms of runtime and accuracy. More precisely, the model



6

accuracy will be calculated using the following evaluation metric, proposed in
[Gha+17] and adopted by [SEL21]:

error =
1

n · |cptspred|
·

∑
p∈cptspred

min
p′∈cptsT

|p− p′| (1)

Given an input TS T , a set of predicted change points cptspred, and a set of
ground truth change points cptsT , with each location in [1 ...n], a normed error ∈
[0...1] is computed as shown in equation 1. Overall, the relative distances between
every predicted change point p and the closest ground truth change point p′

are summed up and normalised. Although this metric has the disadvantage of
possibly matching multiple predicted change points to the same ground truth
change point, this project will also adopt it to allow easier comparison of results
to the outcomes of other published algorithms.
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