
Memory thrifty workflow resource
assignment

Bachelor Thesis Exposé

Florian Georg Friederici

August 30, 2023

Abstract
Scientific workflow management systems (SWMS) allow non-tech-savvy persons to express
their specific scientific calculation problems in a domain-specific language. To solve them,
SWMS get processes executed without requiring in-depth knowledge of the underlying
computation systems. The downside of this abstraction is, that the impact of resource
requirements from such workflow descriptions on the availability of concrete resources
is less tangible. Consequently, it is more difficult for workflow developers to estimate
the memory resource requirements. In [10], Lehmann et al. introduce a REST API to
exchange workflow scheduling information between SWMS and resource managers (RM).
They also presented a scheduler based on this API, which we will extend to facilitate
models and algorithms for memory resource estimation to allow a memory thrifty resource
assignment. To achieve this, this thesis will research the required background, design
an architecture, and build a prototype. We will conduct tests and experiments with the
prototype, to validate the approach.

1 Introduction
This thesis will focus on the following scenario: There is a SWMS and a concrete scientific
workflow Ψ, that contains many tasks. For example, an Earth observation workflow that
analyses hundreds of gigabytes of data from thousands of satellite images, as described
in [11].

While different SWMS fulfil the same purpose, their concrete implementation and
usage are different. To allow our approach to be generic, we decided to use a model, which
is not bound to a specific SWMS implementation. We will use the following notation
for the workflow description. We start with an example and explain the elements in the
later paragraphs. Figure 1 provides an example of a workflow consisting of four tasks ϑ1,

1



Figure 1: Example workflow model with four distinct tasks

ϑ2, ϑ3, and ϑ4. The interconnection, shown by arrows in Figure 1, is stored in a mapping
called M .

First, we start with the dataflow on the outer task level: In Figure 1, the first task ϑ1
takes the input data −→α and creates some intermediate data −→

β1. The intermediate data
is the input for ϑ2 and ϑ3. These tasks create additional intermediate data −→

β2 and −→
β3,

which is the input to the fourth task ϑ4 to create the workflow output result −→ω .
Secondly, Figure 2 provides an insight into the tasks: Every task ϑn consists of input−→

in , output −→on, parameters Pn and algorithm An. Let’s elaborate more about the need
for −→

i , −→o , and −→
β . −→on denotes all the output of An, regardless of its further use in other

contexts. −→
βn is a subset of −→on, containing all the data that the workflow will pass on

to other tasks. In the example above, −→
i2 is the subset of −→

β1, that is the input for the
specific task ϑ2 and −→

i3 is the subset of −→
β1, that is the input for the specific task ϑ3.

−→
β2

and −→
β3 will be joined, and a subset of them will form −→

i4 .

Figure 2: Detail view of a task

In general, a workflow Ψ is the collection of tasks ϑ, the input data −→α , intermediate
processing data −→

β , the processing output result −→ω , and a mapping M that indicates
which tasks are associated to which data input and data outputs. Through the mapping
M , at least one task will be associated to −→α , and at least one task will be associated to
−→ω .

2



Each task ϑn is a black box implementation of any algorithmic transformation An

of input data −→
in and parameters Pn to output data −→on. For this thesis, we expect the

results to be deterministic. We assume that the calculation of A requires a finite time
and always finishes, either successful or failing. Tasks ϑ may share the same A and P ,
and only differ by the data (−→i , −→o ).

At the time of Ψ’s start, (−→β , −→ω ) are unknown, and the input data −→α , as well as the
tasks ϑ and their mapping M might be incomplete. At the start of each single ϑn, we
specify that (An,

−→
in , Pn) must be known and −→on is unknown. The SWMS will calculate a

directed acyclic graph (DAG) from the known tasks ϑ and their I/O-mapping M .
The makespan of Ψ is the time between the start of the workflow and the end of

execution of the latest tasks in the workflow, corresponding to the use of the term in
related literature like in [10]. Different factors may impact the makespan of Ψ, such as
the amount of processing resources assigned to the tasks, the order and node assignment
of the tasks, the complexity and purpose of A, the selection of P, and the size of −→α , −→

β ,
and −→ω .

Witt et al. showed in [18] that a learning approach for memory allocation can surpass
user estimates. They further state that “Regression based memory allocation has the
highest potential where input sizes and memory usage vary strongly and are highly
correlated”. Consequently, in this thesis, we will assume that there is a correlation
between the size of −→

i and maximum memory usage µmax. We further assume that there
is no trade-off between calculation time and memory usage possible, i.e., the algorithms
will not dynamically adapt. Even though many real-world tools offer such an option, we
decided to exclude this for this thesis.

Every time the resource manager (RM) prepares an execution environment for one ϑ,
it must reserve physical resources (i.e., CPU and memory).

Figure 3: SWMS submits tasks to RM, and they will run on a worker node

The RM will schedule ϑ on a concrete worker node, see Figure 3. But it is important
to note that we assume that the RM is not workflow-aware beyond that. Each worker
node is subject to CPU and memory limitations. So, the RM must utilize the resources
to capacity, to achieve a short makespan.

Real-world scenarios often use Kubernetes as a RM. The SWMS will wrap every ϑ

3



into a container, and those into Kubernetes pods. For memory constraints, there are two
parameters that can be specified: ‘requests’ and ‘limits’. Those values do have a massive
impact on the scheduling and execution of pods. According to the documentation in
[1], ‘request’ formulates a lower, and ‘limits’ an upper bound on the memory available.
The pod only will get scheduled when the RM can grant the lower value. The RM will
terminate the pod if it tries to exceed the limit.

In today’s realizations, the workflow developers must provide the values for resource
requirements if they would rather not rely on inappropriate, static defaults. For example,
using Nextflow as a SWMS, there are the ‘cpus’ and ‘memory’ directives. Those can be
static values, or dynamically increase, as described in [13]. If the memory estimation for
a ϑ is too generous, resources are left unused. On the other hand, if too little memory
is assigned, ϑ will terminate with an out of memory error and ϑ must be rerun, which
might increase the makespan. In [16], Tovar et al. discussed this job sizing problem.

2 Research Question
Witt et al. made comparisons of predictive performance modelling research approaches
in [17]. Scientific workflows with a huge number of similar tasks present an opportunity
to test and validate such models against real-world workflows and data. Prior work by
Witt et al. in [18] was based on captured data. This thesis will focus on the integration
of models and algorithms for memory resource estimation to allow a memory thrifty
resource assignment during SWMS and RM runtime. We will investigate the following
questions:

1. Which models or algorithms are suitable for a realistic prediction of memory
requirements for our scenarios, without the presence of historical data?

2. How to integrate a module that can learn and estimate the memory requirements
of a task into a system of SWMS and RM, where to interface with the existing
components?

3. How to design this module in a way, that can incorporate different algorithms or
models?

4. How fast can the estimation converge to values that do impact the makespan?

5. How does the scheduling affect the learning progress?

We will do the practical evaluation as an extension to the ‘Common Workflow Scheduler
for Kubernetes’ (CWS) [9]. The expected outcome of this work will include the theoretical
foundation, experiment setups and measurements, which we will document in the thesis,
as well as the concrete implementation.

4



3 Related Work
There are many scientific workflow management systems (SWMS) available. Examples
of SWMS are: Nextflow [8], Snakemake [6], and Pegasus [20]. The main task of SWMS
is to automate the execution of data analytics workflows. The SWMS therefore offers an
abstraction to separate the workflow’s logic from the concrete execution environment.
Nextflow, offers a Groovy-based domain-specific language (DSL) for the workflow de-
scription, and can then execute it on multiple platforms. Snakemake uses a ‘Snakefile’
with rules that specify the workflow in small steps. Pegasus uses a declarative YAML file
to describe the workflow and converts it into a directed acyclic graph (DAG).

A SWMS typically sends the workflow tasks to a RM, which is responsible for executing
the concrete data analytics workflow steps, cf. Figure 3. The RM manages the compute
resources in the cluster, and is responsible for orchestration, scaling, and management of
applications. This work will focus on Kubernetes [2] as a RM. Among the advantages of
Kubernetes are, the wide adoption across the industry and the capability to be either
self-hosted or rented as a managed service from cloud providers. Kubernetes can even
run locally on a single device for development purposes, for example with minikube [3].
Besides Kubernetes, other resource managers like HTCondor [12] or Slurm [15] exist.

In [10], Lehmann et al. introduce an interface that allows the exchange of workflow
related information between the SWMS and the RM. Their proof-of-concept (PoC)
implementation is the ‘Common Workflow Scheduler for Kubernetes’ (CWS) [9]. The
available PoC implementation uses Nextflow and Kubernetes. Furthermore, Lehmann et
al. discuss the impact of different workflow scheduling algorithms and the scheduling of
SWMS tasks on resource managers.

In [5], Bader et al. address the resource allocation issues that arise in heterogenous
clusters. They claim that beyond the rough metrics, like core count or total memory,
fine-grained heterogeneity aspects do make performance differences, that impact the
prediction of tasks duration and therefore lead to suboptimal allocation choices. They
also base their work on Nextflow and Kubernetes, and their approach to task monitoring
and labelling is of interest for our proposed work.

In [18], Witt et al. suggests the ‘low-wastage regression’ (LWR) method to reduce the
amount of wasted memory and compares it with the approach from Tovar et al. [16]. In
[19], Witt et al. present an approach to learn peak memory usage of tasks. Both [18]
and [19] use the ‘Memory Allocation Quality’ (MAQ) as a measure to characterize the
quality of a scheduler’s memory allocation decisions.

4 Approach and Methodology
To address the research questions, we will break the problem down into three sub-problems
and solve them individually. First, how to get statistics and monitoring data from the
running tasks. Secondly, how to construct a model for memory usage prediction. And
thirdly, how to feed back the prediction data and change future tasks accordingly. We
will discuss those three sub-problems in the following paragraphs. Figure 4 illustrates the

5



Figure 4: Additions to the systems architecture

systems architecture and where the building blocks for those sub-problems are located.
Statistics/monitoring of tasks ϑ: To provide the second sub-problem with the necessary

input data, we need to collect data about the size of −→
i for each task ϑ and monitor

the maximal memory usage µmax during execution. There are two main possibilities to
gather such data: The Nextflow integrated tracing [14], or the Kubernetes integrated
metrics [4].

Model for memory prediction: As per definition (A,−→i ,P) will be known on the start of
each ϑ. After the execution of ϑ, −→o will be known as well, and additionally µmax from the
statistics/monitoring information subtask. The purpose of this second sub-problem will
be to derive a proper model from the observed relationship between (A,−→i ,P) and µmax,
so that we can estimate µmax from (A,−→i ,P) of future ϑ. This also includes determining
which combination of (A,−→i ,P) observations are sufficiently similar to each other to be
meaningful.

Feedback of the prediction data: In the current implementation, Nextflow sends all
tasks to Kubernetes right after the start of the workflow. We will use the workflow-aware
Common Workflow Scheduler [9] and extend it so that it changes the task’s memory
requirements from our predictions before the tasks start. Kubernetes pods resource
specifications were immutable in the past, so any change would require the task to be
resubmitted. However, thanks to KEP-1287 [7], this will change in upcoming Kubernetes
versions.

The concrete experimental setup will include two variations. One, that we can easily
start on a single machine for development and troubleshooting purposes. And a second
that mimics a real-world environment with distributed worker nodes on physical or virtual
hardware.

6



5 Goals and Limitations
We will set up a SWMS with RM and integrate our prototype implementation of memory
prediction into it. The technological foundation will be oriented on the works of [10] and
[5], i.e., it will be based on Nextflow and Kubernetes and aims to extend the Common
Workflow Scheduler [9]. This will be the basis for our experimental evaluation and be
available for the public under a permissive open-source licence to replicate our results, as
well as extend it for future research. Our experiments will target the following points:

• Effective interfacing with existing components
• Modular construction for replaceable models or algorithms
• Fast prediction model convergence
• Effects of scheduling to the learning progress

We expect that our approach cannot derive a memory prediction model under the following
circumstances:

1. Low number of ϑ. The threshold is subject to this work.
2. Very different ϑ. We will evaluate the impact of the characteristics.
3. Suitable ϑ are already running. Even if 1 and 2 are met, the approach can only

improve the execution of future tasks.

Given those limitations, we will focus the evaluation on synthetic workflow descriptions
with specially crafted tasks that target our research questions. We will consult real-world
workflows to ensure general applicability whenever feasible.

References
[1] The Kubernetes Authors. Assign Memory Resources to Containers and Pods. url:

https://kubernetes.io/docs/tasks/configure- pod- container/assign-
memory-resource/ (visited on Aug. 13, 2023).

[2] The Kubernetes Authors. Kubernetes. url: https://kubernetes.io/ (visited
on Aug. 13, 2023).

[3] The Kubernetes Authors. Welcome! — minikube. url: https://minikube.sigs.
k8s.io/docs/ (visited on Aug. 13, 2023).

[4] The Kubernetes Autors. Node metrics data — Kubernetes. url: https://
kubernetes.io/docs/reference/instrumentation/node-metrics/ (visited on
Aug. 13, 2023).

[5] Jonathan Bader, Lauritz Thamsen, Svetlana Kulagina, Jonathan Will, Henning
Meyerhenke, et al. “Tarema: Adaptive resource allocation for scalable scientific
workflows in heterogeneous clusters”. In: 2021 IEEE International Conference on
Big Data (Big Data). IEEE. 2021, pp. 65–75.

[6] Johannes Köster. Snakemake - A framework for reproducible data analysis. url:
https://snakemake.github.io/ (visited on Aug. 13, 2023).

7

https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/
https://kubernetes.io/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://kubernetes.io/docs/reference/instrumentation/node-metrics/
https://kubernetes.io/docs/reference/instrumentation/node-metrics/
https://snakemake.github.io/


[7] Vinay Kulkarni and contributors. In-Place Update of Pod Resources #1287. url:
https://github.com/kubernetes/enhancements/issues/1287 (visited on
Aug. 25, 2023).

[8] Seqera Labs. A DSL for parallel and scalable computational pipelines — Nextflow.
url: https://www.nextflow.io/ (visited on Aug. 13, 2023).

[9] Fabian Lehmann, Jonathan Bader, Friedrich Tschirpke, Lauritz Thamsen, and Ulf
Leser. Common Workflow Scheduler for Kubernetes. Version v1.0. May 2023. doi:
10.5281/zenodo.7603176. url: https://doi.org/10.5281/zenodo.7603176.

[10] Fabian Lehmann, Jonathan Bader, Friedrich Tschirpke, Lauritz Thamsen, and
Ulf Leser. How Workflow Engines Should Talk to Resource Managers: A Proposal
for a Common Workflow Scheduling Interface. 2023. arXiv: 2302.07652 [cs.DC].

[11] Fabian Lehmann, David Frantz, Sören Becker, Ulf Leser, and Patrick Hostert.
“FORCE on Nextflow: Scalable Analysis of Earth Observation Data on Commodity
Clusters.” In: CIKM Workshops. 2021.

[12] HTCondor team at UW-Madison. Home. url: https://htcondor.org/ (visited
on Aug. 13, 2023).

[13] S.L. Seqera Labs. Processes — Nextflow 23.04.1 documentation. url: https:
/ / www . nextflow . io / docs / latest / process . html # dynamic - computing -
resources (visited on Aug. 13, 2023).

[14] S.L. Seqera Labs. Tracing & visualisation — Nextflow 23.04.1 documentation. url:
https://www.nextflow.io/docs/latest/tracing.html (visited on Aug. 13,
2023).

[15] Slurm Team. Slurm Workload Manager. url: https://slurm.schedmd.com/
overview.html (visited on Aug. 13, 2023).

[16] Benjamin Tovar, Rafael Ferreira da Silva, Gideon Juve, Ewa Deelman, William
Allcock, et al. “A job sizing strategy for high-throughput scientific workflows”. In:
IEEE Transactions on Parallel and Distributed Systems 29.2 (2017), pp. 240–253.

[17] Carl Witt, Marc Bux, Wladislaw Gusew, and Ulf Leser. “Predictive performance
modeling for distributed batch processing using black box monitoring and machine
learning”. In: Information Systems 82 (2019), pp. 33–52.

[18] Carl Witt, Jakob van Santen, and Ulf Leser. “Learning low-wastage memory
allocations for scientific workflows at icecube”. In: 2019 International Conference
on High Performance Computing & Simulation (HPCS). IEEE. 2019, pp. 233–240.

[19] Carl Witt, Dennis Wagner, and Ulf Leser. “Feedback-based resource allocation for
batch scheduling of scientific workflows”. In: 2019 International Conference on
High Performance Computing & Simulation (HPCS). IEEE. 2019, pp. 761–768.

[20] Pegasus WMS. Pegasus WMS – Automate, recover, and debug scientific computa-
tions. url: https://pegasus.isi.edu/ (visited on Aug. 13, 2023).

8

https://github.com/kubernetes/enhancements/issues/1287
https://www.nextflow.io/
https://doi.org/10.5281/zenodo.7603176
https://doi.org/10.5281/zenodo.7603176
https://arxiv.org/abs/2302.07652
https://htcondor.org/
https://www.nextflow.io/docs/latest/process.html#dynamic-computing-resources
https://www.nextflow.io/docs/latest/process.html#dynamic-computing-resources
https://www.nextflow.io/docs/latest/process.html#dynamic-computing-resources
https://www.nextflow.io/docs/latest/tracing.html
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html
https://pegasus.isi.edu/

	Abstract
	Introduction
	Research Question
	Related Work
	Approach and Methodology
	Goals and Limitations
	References

