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1 Contribution

To help janelia research scientist with their segmentation of drosophila melanogaster
neurons, an instance segmentation algorithm is applied. In [13], the authors de-
scribe a desirable segmentation pipeline for the processing of neuron images:
first a fast instance segmentation algorithm should be applied. Which is fol-
lowed by an error detection mechanism, that queries automatic correction via
e.g. flood-filling networks or a manual correction by an annotator. Instead of
error detection, I propose a probabilistic model as the backbone for the instance
segmentation step. The probabilistic model should output local uncertainty es-
timates. This spatial information can then be used for the error correction step.

2 Data/Preprocessing

The dataset consists of several raw 3D volumes of microscopic images of the
drosophila melanogaster central nervous system with dimensions ranging from
349 × 680 × 680 to 401 × 982 × 895 with voxel intensities measured in three
channels. The ground-truth consists of volumes which assign every voxel that
is part of a neuron the associated neuron ID. Therefore the dataset poses an
instance segmentation problem. The preprocessing is carried out as proposed in
[8].

3 Instance Segmentation Algorithm

To reduce the spatial information that is lost when splitting the volumes into
smaller subvolumes, a segmentation algorithm that is parameter efficient is nec-
essary. Therefore several instance segmentation algorithms are reviewed: region
of interest (ROI) based algorithms like Faster R-CNN[18], Mask R-CNN[7] and
Retina Net[14][9] all propose bounding boxes for instance segmentation and
combine these with prediction masks obtained by semantic segmentation al-
gorithms. These algorithms often have problems with thin and long structures
[4]. Since neurons often build intertwined structures and are typically thin and
long, bounding boxes will likely fail on our dataset.
Metric learning methods are introduced to overcome this limitation [4][2]: The
general idea is to learn an embedding space, where pixels that correspond to the
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same object instance are near each other and pixels that correspond to other
object instances are far. This is implemented as a CNN that gets a slice of the
volume as input and predicts for every voxel a vector that marks a point in the
embedding space. The loss function of this embedding is based on some distance
measure (e.g. euclidean distance), that accounts for the distance between each
pair of voxels. To construct a segmentation, seed voxels are chosen based on
some heuristic[4] or queried via user inputs[2] and all voxels that are sufficiently
near to the seed in the embedding space are segmented as a single instance.
Another idea is to use a clustering algorithm on the embeddings and interpret
each cluster as an instance, [3] use a variant of the mean shift algorithm to do so.

I will review more literature and try to dig deeper into both, metric learning
for instance segmentations. I will choose one instance segmentation model and
compare the different probabilistic backbones for it.

4 Probabilistic Models and Uncertainty

The above described segmentation models, based on metric learning, all use
semantic segmentation algorithms as a backbone. A branch of semantic seg-
mentation models incorporate ideas from probabilistic modelling, where models
predict a distribution over labels and thus are capable of quantifying the local
uncertainty of the model parameters. Furthermore, probabilistic computer vision
algorithms are for some benchmark datasets the current state of the art [17].
Kendall and Gal [10] mention that predictive uncertainty consists of two kinds of
uncertainties. Epistemic (or model) uncertainty, that arises from the uncertainty
about the model parameters. Aleatoric uncertainty arises from perturbations in
the data and can therefore be modelled as a function of the data. They stress that
epistemic uncertainty is important for safety critical applications and training on
small datasets. Therefore I’ll focus on models that capture epistemic uncertainty
but also try to model aleatoric uncertainty.

4.1 Modelling Epistemic Uncertainty

A number of candidate probabilistic backbones which can model aleatoric un-
certainty are reviewed:

Bayes by Backprop: Blundel et al. [1] propose a model where each parameter
w is a random variable. By employing the reparametrization trick (here for a
gaussian random variable):

w ∼ N (µ, σ) = µ+ σ · ε, with ε ∼ N (0, 1) (1)

the model can be trained via gradient descent based optimization techniques. Un-
fortunately the model shows slightly lower performance than comparable models
and the number of parameters doubles due to the center and scale parameters for
every parameter, which makes it impractical for the task at hand. Nevertheless
it is a good starting point to get into the topic of probabilistic models.
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Deep Ensembles: Lakshminarayanan et al. [12] propose the use of ensembles
of random initialized and independently trained frequentist models to gather
multiple predictions. The empirical mean and standard deviation of these models
is then interpreted as their prediction and the associated uncertainty. I could
incorporate the idea and form an ensemble of multiple probabilistic models and
analyze their accuracy and uncertainty in comparison to the baseline models.

MC Dropout Gal and Ghahramani [5] show that neural networks with dropout
can be seen as approximate bayesian neural networks with Bernoulli prior. They
use dropout at test time to gather a number of varying predictions for a sample
and then interpret their mean and variance as prediction and uncertainty. It is
shown that this does not yield good results for semantic segmentation tasks [11],
but there exists a variety of other bayesian approximations through regulariza-
tion [15]. I will choose one of them for comparison.

Probabilistic U-Net Kohl et al. [11] propose a U-Net architecture that injects
multivariate gaussian noise parameterized by a conditional variational autoen-
coder into the last layer of a U-Net and compare this to other probabilistic
versions of U-Net. In order to use this technique on unambiguous tasks, pseudo
labels have to be introduced that split labels into sublabels. As far as I un-
derstood, this technique was just used to check if the empirical frequency of
occurences of the sublabels in the predictions approximately matches their theo-
retical frequency in the dataset. From my perspective the model is probably not
suitable for the task at hand, but this needs further investigation which could
be part of the thesis.

M-Heads U-Net Kohl et al.[11] also describe a M -Heads U-Net model, that
augments a U-Net by placing M parallel output layers on the network, which
yield M different prediction maps. These predictions can then be used to calcu-
late the empirical mean and variance and lead to good segmentation performance
[11]. The model could be further augmented by using the Shake-Shake regularizer
[6] on the M parallel heads, which is known for increasing performance for image
recognition multi-branch networks. This regularizer draws M random numbers
from a categorical distribution with equal probabilities, multiplies the predic-
tions of the M branches with these random numbers and sums them up to a
final prediction. New random numbers are drawn for the back-propagation step,
so that each head gets a noisy gradient, leading to more decorrelated feature
maps [6]. As in [5], the regularizer could be used at test time to draw multiple
different predictions. According to the central limit theorem, these predictions
should be normally distributed. The shake-shake regularizer will be tested for
this model and eventually included in the thesis.
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4.2 Modelling Aleatoric Uncertainty

Aleatoric Uncertainty can be modelled as a function of the input data. Therefore
models that predict the parameters of a distribution can be used for that task.
The essential idea is to modify the objective function, such that the segmentation
error gets weighted by the inverse of the predicted variance, while also penalizing
high variances via a regularization term [10]. I have not found a paper, that uses
it on instance segmentation tasks and have to do further research into this area.
I will review more literature, among others the following paper and look for ways
to modify the objective function, so that I can infer the aleatoric uncertainty.

Laplace U-Net for Microscopic Image Restoration Weigert et al. [19]
propose a U-Net architecture that predicts the center and scale parameters of
a Laplace distribution for a given input image and show good performance on
image restoration tasks. To implement the model, only the shape of the output
layer of the U-Net has to be changed from one to two channels and the voxel
predictions have to be drawn from a Laplace distribution.

4.3 Uncertainty Evaluation

The uncertainty estimates of the models are analyzed and compared according
to [16].

5 Discussion

The annotation of the aforementioned drosophila melanogaster volumes requires
trained experts and is therefore expensive to obtain, while more unlabeled raw
data is already available. Therefore a semi-supervised approach, that is capa-
ble of incorporating knowledge from unlabeled training data is desirable and
should therefore be part of the discussion. Another part that could be in the
discussion is about active learning strategies that rank unlabeled data based in
their informativeness and therefore could help to prioritize the work of manual
annotators.
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