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1 Introduction

Set containment joins are a straightforward way of joining complex data: Given two
relations both including a field with set data, those tuples shall be joined where each
entry of the set of the first relation’s set data field is completely contained in the set of
the second relation’s set data field.

A common example (see Mamoulis, 2003) of a set containment problem is the matching
of people, people’s skills, jobs and job skills. The way to answer “Which people are
matching which job?” depends on the used data structures. In relational databases
set attributes are usually modeled by normalized mapping using a separate relation for
every single set attribute. People and their skills are then modeled with one relation
containing some information about them and a separate relation containing one skill and
one people id per line. The same applies to the job relation. To answer the question
based on these relations, you have to join all four resulting relations together.

A more intuitive option is to keep the skill sets as data fields within the two containing
relations1. A set containment join using both skill set fields will then answer the
question above.

Set containment joins can be formally defined as follows:
Definition 1 (Set containment join). Given two relations R,S such that R.A and S.B
are set values. Set containment join is then defined as

R ./A⊆B S := {(r, s) | r ∈ R, s ∈ S, r.A ⊆ s.B}.

Apart from this, set containment join algorithms are most times discussed on a simplified
data model: R and S are then tuples containing only an identifier and the data set field
which consists only of integers.

1Ramasamy et al. (2000a) introduced this as “nested representation” in contrast to the unnested
representation where the set is represented as a separate relation.
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2 Related work

Set containment joins are shown to be a hard problem – in fact finding an optimal join
strategy is NP-complete (Cai et al., 2001). They are well-studied and there are many
algorithmic approaches. Most authors implement data structures for set containment
joins as well as set equality joins and superset joins.

Starting in 1997, Helmer and Moerkotte (1997) introduced the first set containment join
algorithms. They implemented some basic join strategies: nested-loop joins, sort-merge
join, hash-based joins and a first version of a tree join. Afterwards different authors
developed better algorithms at each of these techniques. Today set containment joins
are often evaluated either doing nested-loop-evaluation or using an index structure on
the inner relation and a loop over the outer relation.

When we evaluate a set containment join in nested loop manner, set containment joins
are strongly related with set containment querying. Set containment querying means
comparing a single set against a relation containing multiple sets. This is what is done in
the inner loop of a nested loop , too. That is why some querying algorithms can also be
used to compute joins and therefore are taken into account for the join problem.

2.1 Signature files

Signature-based join algorithms don’t use the whole data itself but a smaller essence of
them, their signature. This allows the algorithms to work more efficiently, but comes
with the price of less precision and therefore false-positives and the need to dismiss
them.

Signature functions infer – at least at small b which is the normal use case – that multiple
sets are encoded into the same signature. Comparing signatures can tell you if an element
is not included in a set. Comparing signatures can also tell you if it may be included.
Comparing signatures cannot tell you that one element is surely included in a set. This
leads to false-positives when comparing signatures of sets.

NL, SSF, ST and SNL (Helmer and Moerkotte, 1997, 2003; Mamoulis, 2003) create
signature files of the inner join relation in a first step. In a second step they create
signatures of the outer relation on the fly and match them against the inner relation.
The third step does the verification which dismisses false positives. SSF and ST are two
variants of NL which change the storage representation of the signature file of the inner
relation: SSF stores them one after another in a sequential file while ST builds up a
signature tree over them.

SHJ, ESH and LSJ (Helmer and Moerkotte, 1997, 2003; Melnik and Garcia-Molina,
2001) perform a hash-join over the signatures. The inner relation is therefore hashed
with the signature function. In SHJ, the resulting buckets are kept in memory while
LSJ extends them to get copied to secondary storage. To perform a join the entries
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of the outer relation are hashed one after another and merged with the signatures of
the sets in the resulting bucket. ESH extends this approach by using a extensible hash
function.

2.2 Hashing

Another approach to set containment join is directly hash based. PSJ (Ramasamy et al.,
2000b), APSJ, DCJ and ADCJ (Melnik and Garcia-Molina, 2002, 2003) use hashing on
the single elements of the sets to find matching candidates. This avoids signing the sets
but uses more space to save the whole item sets.

PSJ and as well its extension APSJ do an adaption of a grace hash join: both relations
are hashed using the same hash function and their buckets are written to disk. After-
wards the matching buckets are read two at a time and the contents get merged using
additionally saved signatures. The elements of one of the relations that shall be joined
are put into the bucket resulting from the hashing of only one chosen set element. The
elements of the other relation must be put into all of the resulting buckets (leading to a
lot of replication).

DCJ extends PSJ by avoiding the replication of one relation into that many buckets.
Instead, in intermediate steps the relation which gets replicated is switched multiple
times. This way the replication factor can be kept low at the price of a more difficult
hashing procedure. Melnik and Garcia-Molina (2003) evaluated this to be competitive
to the signature based variants depending on the element domain size and the data
corellation rate.

2.3 Inverted files

Inverted files represent the sets of the relations differently: for each item in these sets a
list of all containing sets is created. The inverted files are stored on disk and most times
accessible using a B-tree.

Joining with inverted files is done mainly by merging different inverted file lists. For
each item contained in at least one set in at least one of the relations, the set lists from
the inverted files are compared and matching candidates are extracted. Helmer and
Moerkotte (1997) evaluated the basic inverted file algorithm IF as much faster and using
less storage space than signature based methods.

IF (Helmer and Moerkotte, 2003) , BNL and IFJ (Mamoulis, 2003) differ by the strategy
how to handle the overflow of main memory. BNL, which Mamoulis (2003) evaluated
as the fastest one, uses the techniques from the well known block nested loop join: The
item lists are read in blocks small enough for main memory to avoid reading all the items
many times from secondary storage (this implies that some tuples must still be carried
over block limits).
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OIF (Terrovitis et al., 2011) as a set containment querying algorithm extends the inverted
files. They use ordered lists and a b-tree is laid over them to access certain parts of the
file directly. The algorithm works by finding candidates on the least frequent items
and dismiss candidates on other items. It outperformed other inverted file solutions for
querying.

2.4 Trees

In the early beginning Helmer and Moerkotte (1997) introduced a first tree technique
called Tree Join. This tree represents all data of the inner relation in a binary tree. Each
non-leaf node has two children with the same node label – an item of the sets. One of
them is labeled “match” which contains the subtree of all sets containing the element
represented in this node label. The other one is labeled “nomatch” and is used for all
other sets. For joining the outer relation is looped and every single item set is matched
against the tree. Helmer and Moerkotte (1997) stated this technique as not competitive
even against simple sort-merge join or nested-loop join (e.g. NL).

As other authors adopted the idea of trees as a data structure for the set data, especially
prefix trees showed as a helpful data structure. Prefix trees are trees where for the content
of each node in the tree is fully represented by the path to its position. Because the
set elements represented have to have an order to get a unique path, an arbitrary order
has to be chosen first. Each node of the prefix tree holds a list of tuple identifiers that
contain exactly this set (the list can be empty). Each edge is labeled with an element
of the alphabet over the set elements.

When extending a prefix tree to a prefix trie (Baeza-Yates and Ribeiro-Neto, 1999) the
edge labels can instead be lists of elements. A list of e.g. two labels means the same as if
there were a node between with just one anchestor and the two edges would be labeled
each with one item. This extension can save a lot of time and storage space especially
when compromising long chains of nodes into a single node.

Trees have been used by two algorithms that do set containment query answering in-
stead of set containment join evaluation: MixIIT (Hossain and Jamil, 2010) and HTI
(Terrovitis et al., 2006). Both mix a tree with inverted files by using the tree for the
most frequent items and the inverted files for all other items. HTI uses a prefix trie to
hold the top-k frequent items while infrequent items are only stored in an inverted file.
At MixIIT, a concept closure tree holds the items with the top entries while all other
are in an inverted file as well.

Jampani and Pudi (2005) introduced another tree based set containment join, called
PRETTI. PRETTI uses a prefix trie for the inner relation and inverted files for the
outer relation. The prefix trie is then traversed down while maintaining lists of match
candidates destillated from the inverted files.
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2.5 State of the art algorithm: PRETTI

Pretti uses a prefix trie to represent the inner relation. The outer relation is stored as
inverted files. To evaluate a set containment join, each child of the root of the prefix
trie is treated separately: A list of all match candidates for this node (at the beginning
this means all sets containing this node) is held. For each child of the node – which
represents a item –, the containing list is taken from the inverted files and merged with
the current candidate list. This merge step is repeated recursively for each node deeper
down the . Whenever a node of the trie represents an item set the current candidate list
is outputted.

The partitioned signature join methods outperform all other signature based methods
and are competitive with hashing methods (see Ramasamy et al., 2000b; Mamoulis,
2003). While basic inverted file techniques are slower, the fastest inverted file algorithm
BNL beats even PSJ (see Mamoulis (2003)) by combining the advantages of inverted
files and partitioning. Jampani and Pudi (2005) evaluated their algorithm PRETTI as
even faster and more efficient than BNL. Therefore PRETTI is the most efficient set
containment join algorithm so far.

3 Two prefix tries

As seen in section 2, there are some well-working solutions to the set containment join
problem. Nevertheless one approach is left open for evaluation: joining using two prefix
tries, one for each of the joined relations.

The prefix tries should work similar to the ones used for PRETTI. To join two of them,
the tries have to get some kind of intersected. Although this makes us traversing
two tries, the containment evaluation is still promising: In contrast to the PRETTI
algorithm, we can avoid handling large inverted lists and instead handle small tree
nodes.

The intersection of two prefix tries for set containment evaluation works in the following
manner:

• Each node represents the set that is expressed by the path to this node. The node
contains a list of tuples which contain this set.

• Moving foreward is asymmetric: At the tree representing the inner relation, we
cannot walk “over” nodes. At the outer relation tree, we can and we will. At the
tree representing the inner relation, go deeper iff we find a matching node at the
outer tree. At the tree representing the outer relation, go deeper as long as there
is a chance to find a matching node.

The tree shown in figure 1 represent two relations. Relation “A” contains tuples with the
sets {B}, {B,E} and {C}. Relation “B” contains tuples with the sets {A}, {B}, {B,C}
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Figure 1: Example of two trees representing sets of sets.

and {B,D,E}. The resulting join pairs for A ./⊆ B shall be ({B}, {B}), ({B}, {B,C}),
({B}, {B,D,E}), ({B,E}, {B,D,E}) and ({C}, {B,C}).

3.1 Basic algorithm

As a starting point we propose the basic algorithm shown in figure 2.

Jampani and Pudi (2005) already did set equality joins using two prefix tries. They did
not explain why they did not use the same approach for set containment joins. This
confirms the suggestion that such a basic solution will be too slow while traversal to
be competitive with PRETTI. Extensions to improve its performance will therefore be
discussed in section 3.2.

1 search ( na , nb ) :
2 i f conta insTuples (na ) and nb = na

3 output (na , nb )
4
5 for cb ∈ ch i l d (nb )
6 i f na = nb

7 for ca ∈ ch i l d (na )
8 i f ca ≥ cb
9 search (ca , cb )

10 else
11 i f na ≥ cb
12 search (na , cb )

1 output (na , nb ) :
2 p r i n t tup l e s (na ) × tup l e s (nb )
3 for cb ∈ ch i l d (nb )
4 output (na , cb )

Figure 2: Basic algorithm for finding set containments in two existing prefix trees
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The algorithm contains one main recursive walk over both prefix trees at the same time.
The evaluation of the join a ./⊆ b is started by calling search(roota, rootb). The algorithm
then works in two parts: The main function search traverses two given trees to find pairs
of subtrees that may contain matches. The helper function output traverses the found
pairs of subtrees, but just outputs pairs of nodes that are surely matching.

search tries to match two subtrees at each call. In the first call these are the whole trees.
As a first part (starting from line 2), the algorithm tests “Can we output the given nodes
as matching partners?”. If na matches nb and na represents sets, we can surely output
nb and its descendants as matching partners of na.

As second part the search function is traversing deeper down the tree - “Where are
potentially matching children?”. If it’s currently looking at two matching nodes (line 6),
then the function is called recursively for all possibly matching pairs of child nodes. As a
simple pruning strategy, pairs that cannot match are ignored: If cb is already larger than
ca, cb will never be found in ca or its descendants because of the tree construction which
is based on a fixed order. If we are currently looking at two nodes which don’t match
(line 10), we traverse only the left using the same simple pruning strategy. In both cases
search is called recursively for all potentially matching combinations of subtrees.

The output function receives two subtrees that are surely matching. It prints the cartesian
product of the tuple lists contained by the root nodes . If two sets are set contained,
this implies that the first set also is contained in every superset of the second one –
represented in the tree as descendants. Therefore output also calls itself on every child of
the second root node recursively.

3.2 Extensions

The basic algorithm cannot efficiently handle cases when a matching partner in the outer
relation is searched that could be a leaf or deep down node of the tree. Especially it
cannot efficiently prune subtrees in which a matching partner could have been a node
down at the bottom but actually isn’t contained. Instead this algorithm traverses the
whole tree searching for a possible matching partner. An example is shown in figure 3:
Given Set2 ./⊆ Set1 shall be evaluated, the value “H” could be a child of every single
node of Set1. Therefore every path in Set1 has to be traversed to look for matching
partners of “H”.

This problem cannot be avoided by choosing a different order over the set items in the
tree. Regardless of the chosen order there is always an item which is down in the tree.
Even if we choose a frequency ordering of the set items at the price of counting all the
frequencies, searching for the last item is less frequent, but not impossible.

We suggest two ways to cope with this problem. The first one is storing some extra
information in each node that allows us to prune unprofitable subtrees early. The second
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Figure 3: Bad case of basic algorithm tree algorithm: When Set2 ./⊆ Set1 is evaluated,
each node in Set1 has to be traversed although no matching partner will be found.

one is to encode the prefix trie in a different way such that the encoding of the trie itself
already contains information about pruning chances.

3.2.1 Using signatures

Storing extra information is expensive as the nodes of the tree get bigger and use more
storage space so the tree traversal gets slower. That’s why it is important to balance
the weight of the extra information against the benefit of using it. What kind of small
but helpful information can we store in the nodes?

We can use the well-known signature encoding (introduced in section 2.1) to represent
the contents of all children of a node. A signature “ABCEG” at the root node of Set1 in
figure 3 for example would let us prune the whole tree traversal: Already at visiting the
first node we know that “H” won’t be found in any child of it. These signatures could
be saved for every node so that pruning at deeper nodes gets possible.

The benefit of these signatures is obvious, but they need a lot of extra storage . There
are at least two options to reduce the weight of these signatures:

• The signatures can be shortened. This implies the occurrence of false positives –
leading to traversals of the tree without finding join pairs.

• Not every node of the tree has to contain a signature. This again leads to traversals
of the tree without finding join pairs – at least down to the next signature.

3.2.2 Encoding of reachability information

Instead of storing extra information, the additional information about the tree can be
saved in the encoding of the tree itself. Interval encoding allows us to decide whether a
certain element is contained in a subtree by simple arithmetics.

For each node in a tree the interval encoding is defined as follows:
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Figure 4: Trees from figure 3 with additional interval encoding.

Set1:

A [2,6]
B [3,3] [7,8]
C [4,4] [8,8]
E [5,5]
G [6,6]

Set2: H [2,2]

Figure 5: Interval encoding of the trees in figure 4.

Definition 2 (Preorder-interval encoding). The interval I of each node N in a tree is
I(N) := (i1, i2) with

i1 := preorder(N)

and
i2 := max({preorder(S) | S ∈ subtree(N)})

The tree is saved as a list of lists. For each letter of the alphabet a list of intervals is
saved.

This encoding allows us to prune subtrees not containing a certain element very early.
The question “Is ‘1’ contained in a subtree of a node B?” can easily be answered:

contains(subtree(B), “1′′) = true⇐⇒ ∃A : val(A) = “1”∧I1(B) ≤ I1(A)∧I2(A) ≤ I2(B).

In figure 4 the trees from figure 3 are annotated using interval encoding. This encoding
results in a list representation like in figure 5.

Interval encoding allows us to prune bad cases like from figure 3 very early. This comes
at the cost of a totally different encoding scheme:

• All information that was saved within the nodes before must now be stored else-
where – namely the lists of relation tuples.

• The interval lists are accessed very often. To make the encoded join performing
well they have to be accessible at low cost.
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Especially the second one seem to be relevant to the effectiveness of the whole join
algorithm implementation. There seems to be no possibility to do these lookups in
constant time. We plan to solve this by searching ordered lists accessible through a hash
table.

4 Evaluation

To evaluate the proposed set containment join algorithms, four different algorithms shall
be benchmarked:

• The state-of-the-art algorithm PRETTI.

• The basic algorithm proposed in section 3.1.

• The signature extension from section 3.2.1.

• The reachability information extension from section 3.2.2.

To evaluate the algorithms, different datasets with different specifics (e.g. set cardinali-
ties) will be used. The benchmark will be done as a self join.

• BMS (Zheng et al., 2001), a collection of software click-stream data. This is the
data set Jampani and Pudi (2005) already used to benchmark PRETTI.

• FLICKR, a collection of photographs and its title and tags.

• KOSARAK (Goethals, 2013), a collection of a new portal click-stream data.

• NETFLIX, a collection of movies and user ratings.

The benchmark should answer the following questions: How do the solutions perform?
Which of them is better in which case? Do the extensions really solve the problem or
instead add too much overhead?
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