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Comparing semantically enriched experimental

protein networks in colorectal cancer

Author: Marc N. Bux

Tutors: Prof. Dr. Ulf Leser
Philippe Thomas

1 Motivation

With more than one million cases on a global scale and a mortality rate of approximately 33%
in the developed world, colorectal cancer (CRC) remains one of the major causes of death in
human [1]. Even though numerous improvements have been made to CRC therapy, the over-
all knowledge on the disease remains poor, resulting in a lack of predictability of treatment
benefit and disease outcome. This makes further research all the more crucial considering
CRC being the cancer with the second most frequent lethal outcome.
Due to a lack of reliable protein and genetic markers, prognostication is currently limited
to mostly clinical staging and pathological analysis of cancer tissue [2]. In order to improve
reliability of disease prognosis and treatment prediction, it would be desirable to find new
biomarkers that are easily detectable and have a high predictive value. Ideally, the predictions
of these markers should also have a sound biological explanation.
The most important example of such a marker in CRC is the KRAS mutation in exon 2 which
serves as a negative predictive marker for treatment with epidermal growth factor receptor
(EGFR) specific antibodies cetuximab [3] and panitumumab [4]. Unfortunately, finding new
biomarkers like KRAS fulfilling above mentioned criteria is a daunting task. It requires the
researcher to have comprehensive knowledge on the molecular structures and processes in-
volved in the disease.
However, as biomedical knowledge is expanding at an exponential rate [5] and the intercon-
nectedness of molecular systems is being revealed, it is becoming more and more difficult
for highly specialized researchers to keep track of the broad spectrum of publications on a
given research topic. These continuing trends result in an increasing interest in bioinformatic
approaches to refine, summarize and process the vast amounts of data.
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2 Aim

The aim of this diploma thesis is the development of a method that detects and showcases
differences between several protein-protein-interaction (PPI) networks derived from high-
throughput experimental data. The purpose of this method is to aid researchers in deriving
and asserting hypotheses on molecular interactions that might be common or distinct in dif-
ferent manifestations of CRC. Ultimately, by affecting the design of future experiments, this
could lead to the discovery of new prognostic or predictive biomarkers.
We will develop the method described above using KRAS as an example. To this end, two
weighted protein networks - so-called “data networks” - for CRC cell lines with positive and
negative KRAS mutation status are constructed by computing gene co-expression profiles.
In order to reduce noise and include findings from biomedical literature, these networks are
then integrated into a major protein network, called the “knowledge network”. This network
is assembled from a set of publicly available protein databases and enriched through Text
Mining applications. Integration of protein networks is performed by mapping proteins on
their unique Uniprot identifier and combining edge weights using a probability combination
function.
Subsequently, proteins in both integrated networks are ranked using centrality analysis. By
comparing the resulting lists of proteins, regions of interest containing major differences be-
tween protein ranks are located. These regions of interest are then ranked once again and can
be visualized in such a way that allows researchers easy orientation and possibly new hints
on the mechanics of the disease.
The idea behind this procedure is that diseases with similar phenotypes are likely to be the
consequence of mutations in identical or functionally related genes [6]. Finding similar or
different regions of interest in protein networks of CRC cell lines might therefore shed some
light in the molecular mechanisms of the disease. This could reveal potential markers or
therapeutic targets of the disease. Since complex disorders like cancer cannot be sufficiently
described as a list of involved genes, a network-based approach seems a lot more promising
to identify potential subnetwork markers [7].

3 Approach

3.1 Experimental Data Networks

A gene expression microarray consists of an array of spots, each containing a large number of
single-stranded oligonucleotides (e.g. sections of genes) specific to the spot, so-called probes.
In a microarray experiment, mRNA sequences are extracted from a sample and converted
to fluorophore-, silver-, or chemiluminescence-labeled cDNA targets. Labeled cDNA targets
hybridized with probes are then detected and counted in order to measure the expression
levels of genes in the sample.
In this diploma thesis, high-throughput data is employed from a DNA microarray experiment
which is conducted for CRC cell lines with positive and negative KRAS mutation status. Gene
expression is measured at different points in time. Genes are filtered by variance in expression
over time, leaving only genes with a significant expression profile for further examination.
In order to capture co-expression between genes, correlation between remaining gene expres-
sion profiles is then determined within investigated cell lines. For genes showing significant
positive or negative correlation, gene co-expression is assumed with a probability accord-
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ing to their respective correlation coefficient. Based on gene co-expression identified this
way weighted protein networks are built for proteins and interactions corresponding to co-
expressed genes. This way, two experimental data networks are assembled, one each for
KRAS+ and KRAS- cell lines.

3.2 Literature-curated Knowledge Network

The data networks only contain particular sets of assumed protein interactions based on
observed gene co-expression profiles. In order to reduce noise and semantically enrich exper-
imental CRC data, a much larger knowledge network has to be consulted. This knowledge
network is assembled from major public literature-curated PPI databases: DIP [8] IntAct [9]
Mammalian MIPS [10] HPRD [11], MINT [12] and BioGrid [13].
Since these databases are mostly annotated by hand, they do not contain all the protein
interactions discovered and published in literature to date. Additional PPIs are therefore
added to the knowledge network using a Text Mining approach. Gene names are identified
and normalized to their Entrez Gene identifiers using GNAT1, a named entity recognition
framework for biomedical applications [14]. Protein interactions between the retrieved genes
are then predicted with jSRE2, a tool for relation extraction through supervised machine
learning techniques [15].
It has recently been reported that literature-curated databases are not as reliable as com-
monly perceived [16]. Protein interactions retrieved via Text Mining are expected to contain
a significant number of false positives as well. Therefore, consensus reliability estimates are
computed as proposed in [17] in order to gauge the reliability of data sources used to build
the knowledge network.
PPIs are then assigned a weight in the form of a confidence value by combining the reliability
values of sources reporting the given PPI. This could be employed using the Noisy-OR func-
tion w = 1 −

∏
i(1 − ri) where ri is the reliability of a source i. The Noisy-Or function, as

displayed in figure 1, has the desirable property that the confidence of an interaction is high
when it is mentioned in at least one reliable source yet increases with additional evidence.
This is especially relevant as it reduces the probability of false negatives, which are difficult
to identify in biologics.

Figure 1: Combination functions favoring agreement among sources. Image taken from [18].

1http://cbioc.eas.asu.edu/gnat/
2http://hlt.fbk.eu/en/technology/jSRE
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3.3 Data Integration

It would be desirable to examine the experimental protein networks in the light of existing
biomedical knowledge available from literature. Both data networks are therefore indepen-
dently integrated into the knowledge network. Integration is performed using the Hanisch
Logit probability combination function, as discussed in [18] and illustrated in figure 1. Specif-
ically, this is accomplished by computing the average of the logistics functions of edge weights

logit =
logistic(ei)+logistic(ej)

2 , where logistic(x) = 1
1−e−s(x−v) . As suggested in [19] the param-

eter v could be set to the mean of the distributions and s could be set to 6
v to allow for a

moderate slope.
The Logit combination function features a sinusoidal curve and requires an edge to be present
in both networks in order for it to be given a score above 0.5 in the combined network. Also,
the combination function is expected to favor protein interactions that are strong in experi-
mental data networks, yet are at least moderately present in the knowledge network. This is
largely due to the distribution of correlation being expected to lean more towards 1 than the
distribution of combined reliability estimates, as observed in [18].
The relevance of the resulting integrated protein networks to CRC can be evaluated by imple-
menting a similar approach as in [20]. Specifically, established disease proteins related to CRC
can be used as seeds and expanded using any of the protein networks. In the sub-network
created this way, new candidate disease proteins can be predicted through centrality analy-
sis. By performing leave-one-out cross-validation, CRC-specific relevance of the investigated
protein network can be measured as the average rediscovery rate of known disease proteins.

3.4 Network Comparison

After experimental data networks have been integrated into the global knowledge network,
protein nodes can be ranked within integrated networks by applying a centrality measure.
Centrality analysis could be conducted by performing an iterative random walk on graphs,
as described in [21], or by employing the PageRank Algorithm [22], as realized in [20]. This
results in a ranked list of proteins for each of the integrated data networks with focal proteins
being assigned a higher rank.
The rationale behind this procedure is that genes associated with a particular phenotype or
disease are not randomly scattered in the protein network. Instead, they have been observed
to cluster together and occur in central network positions, as reported in [23]. Therefore,
protein nodes featuring high centrality values are likely relevant to the specific disease.
The aim of this work is to locate regions of interest in protein networks featuring major dif-
ferences in protein interactions of KRAS+ and KRAS- CRC. Therefore, the two ranked lists
of proteins have to be compared to one another. For each protein, the corresponding ranks
in both integrated networks are contrasted with one another. This results in another ranked
list of proteins capturing the differences of centrality in KRAS+ and KRAS- networks.
The researcher can then browse this ranked list, recognize entities well-known for being dis-
tinctive of KRAS+ or KRAS- CRC and encounter unexpected findings. When discovering
a particularly interesting entity, its surroundings can be visualized as subgraph of the av-
erage of KRAS+ and KRAS- integrated networks in Cytoscape [24]. Visualization allows
the analyst orientation in their well-understood biological domain and investigation of un-
expected findings. This explorative approach might help in the assertion and generation of
novel hypotheses on the mechanics of CRC on the molecular level.
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Figure 2: The complete process of building the protein networks and ranking proteins by
centrality.
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4 Expected Results

At the very minimum, the methods described above should be able to replicate knowledge
on KRAS mutation and pathways. As an example, the KRAS signaling cascade is worth
mentioning. It is depicted as part of the EGFR signaling pathway in figure 3 and described
in [2].
It is expected, that once the introduced methods have been shown to successfully rediscover
established knowledge, they will be able to aid scientists in generation and consolidation of
hypotheses. This might influence the design of new experiments and, ultimately, the discovery
of new CRC-specific biomarkers.
Additionally, the proposed methodology is not limited to the investigation of KRAS+ and
KRAS- cell lines. Instead, once abovementioned processes have been validated to benefit CRC
research, they can be applied to various other medical fields. For example, protein networks
of different cancer cell lines could be compared to the same cell lines treated with certain
medications.

Figure 3: The epidermal growth factor receptor signaling pathway. Image taken from [2].
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