
Ulf Leser

Datenbanksysteme II:
Recovery

Ulf Leser: Implementation of Database Systems 2

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing
• Recovery in Oracle

Ulf Leser: Implementation of Database Systems 3

Transactions

• Transactions are the building blocks of operations on data
– Sequences of SQL commands, possibly embed. in a host language

• Motivation: Consistency
– Data in a database ”always” must be consistent

• Inconsistency only tolerated temporarily
• Inconsistency only tolerated in a controlled manner

• Informal definition: Given a consistent database, any
transaction that runs in isolation will perform changes such
that the database after executing the transaction is
consistent again
– But not necessarily in-between

• Consistent DB + TX + Synchronization → Consistent DB

Ulf Leser: Implementation of Database Systems 4

Consistent States

• A database instance should be an image of a fraction of
the real world

• Simple consistency rules
– “Peter” is not an Integer
– “Lehmann-Krause-Ufflhard-Beiersdorf” is longer than 40 characters
– Every course at a university can have only one responsible teacher
– A marriage is a connection between two people
– There can be no tax rate above 100%
– -300 ° Celsius is not a valid temperature

• Techniques
– Data types (real, varchar, date, …)
– Data model (cardinality of relationships)
– Constraints: Primary key, unique, foreign key, check, …

Ulf Leser: Implementation of Database Systems 5

Consistent States

• More complex consistency rules
– As there are no purple cats, the attribute “color” of a relation “pets”

must never be “purple” if the attribute “type” is “cat”
– 29.2.2005 is not a valid date
– Moving money from one account to another must not change the

total amount of money over all accounts
• To move X Euro from A to B, we must subtract X from account A and

add X to account B
• As things cannot happen at the very same time, in between the two

movements the database is necessarily inconsistent

• Techniques
– Trigger
– Transactions & synchronization

Ulf Leser: Implementation of Database Systems 6

Formally

• TX define consistent states
• Definition:

A transaction T is a sequence of operations that, when
executed in isolation, moves a database from one
consistent state into another consistent state.

• Reverse direction
– Every state that is reached after all transactions in a database have

finished successfully is called consistent
• All operations on a database must be part of a transaction

– TX can be single commands or sequences of commands
– You might not notice, e.g., autocommit
– There are no “outside TX” operations: Whenever a TX ends, a new

one is started automatically

Ulf Leser: Implementation of Database Systems 7

ACID Properties

• TX must fulfill four requirements
• Atomicity: All-or-nothing: Every TX happens entirely or not

at all
• Consistency: Every TX moves a DB from a consistent state

to a consistent state
• Isolation: Every TX can act on data as if there were no

further TX running concurrently
• Durability: Changes performed by a TX are stable

– Stable = preserved against failure of known kinds

Ulf Leser: Implementation of Database Systems 8

ACID Properties

• Atomicity: Every TX happens entirely or not at all
– TX cannot stop somewhere in the middle – need to be rolled back

• Consistency: Every TX moves a DB from a consistent state
to a consistent state
– Recently, highly distributed protocols introduced “eventually

consistent”
• Isolation: Every TX can act on data as if there were no

further TX running concurrently
– Not always achieved / achievable – see next lecture

• Durability: Changes performed by a TX are stable
– This is duty of the recovery manager

Ulf Leser: Implementation of Database Systems 9

Transactional Operations

• Start T
– Usually performed implicitly
– Every command after an abort or a commit starts a new TX

• Commit T
– Successful end of a TX; a consistent state is reached and must be

preserved
• Rollback T (abort)

– Failure of a transaction; all changes must be undone
• Savepoint T (makes things easier)

– Sets a mark in the middle of a transaction (no consistent state)
– Allows a transaction to be roll-backed to this mark
– One-level nested transactions

Ulf Leser: Implementation of Database Systems 10

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing
• Recovery in Oracle

Ulf Leser: Implementation of Database Systems 11

Recovery

• TX are sequences of operations that take time to execute
• If we switch off power in-between

– No ACID: TX was not executed entirely or nor
– No ACID: States within a TX are inconsistent by definition
– No ACID: changes may not be durable

• Recovery: Actions that allow a database to implement
transactional behavior (ACID) despite failures
– By taking proper actions before the failure happens
– Does not work for all types of failures

• ACID: Next lecture

Ulf Leser: Implementation of Database Systems 12

Hardware Model

• Assumption: Memory is volatile, disk is durable
• Assumption: Data in memory is lost, data on disk is stable
• Types of events

– Desired events
– Undesired but expected (known unknowns)
– Undesired and unexpected (unknown unkonwns)

CPU

M D

Ulf Leser: Implementation of Database Systems 13

Types of Failures

• Undesired but expected
– Expected and compensated by recovery manager
– CPU stops
– Memory is corrupted and CPU stops (CRC check, etc.)
– RDBMS or OS crashes due to program bug

• Hopefully not a bug in the recovery manager!

• Undesired and unexpected
– Not expected by the recovery manager
– Wrong program
– Memory is corrupted and CPU does not notice / stop
– Media failure (but RAID etc.)
– Machine and all discs burn down (but Backup etc.)
– Machine gets infected by malicious and clever virus

Ulf Leser: Implementation of Database Systems 14

Recovery

• Recovery happens when
– A transaction aborts – roll-back all changes
– A failure occurs and the DB crashes

• During DB-startup, the recovery manager must be able to
– Recognize that there was a crash
– Restore a consistent state of the database

• All previously committed changes are present (durability)
• All previously uncommitted changes are not present (atomicity)
• Hence: Must know about all TX and their states at time of failure

– All! No matter how long ago
• Prepare for crash during ongoing recovery

– Move to normal operations afterwards
– Should do this as fast as possible

Ulf Leser: Implementation of Database Systems 15

Limits

• Still, errors do happen
• Still, recovery does take time
• Still, security breaks corrupt your data
• Still, media failures do occur

• To ensure 24x7x52 operations, use other methods on top
– Backup, RAID, cluster with failover, hot-stand-by machine, …

Ulf Leser: Implementation of Database Systems 16

First Approach

• Naïve approach
– Phase 1: All changes within a TX are only applied in main memory

• Never write anything to disk before COMMIT
– Phase 2: Upon COMMIT, write all changed blocks to disk

• Crash during phase 1
– Nothing has been written
– Everything is fine, atomicity and durability is preserved

• Crash during phase 2
– Some blocks/changes have been written, some not
– We do not know which, cannot rollback – atomicity / durability hurt

Ulf Leser: Implementation of Database Systems 17

Example

• Assume constraint “A=B” and a transaction T
– T performs <start; A := A*2; B := B*2; commit;>

• Sequence of operations (assume a write-through)
read (A); A := A*2
write (A);
read (B); B := B*2
write (B);
commit;

A: 8
B: 8

A: 8
B: 8

memory disk

16
1616

16

Ulf Leser: Implementation of Database Systems 18

Failure

• Assume constraint A=B and transaction T
– T performs A := A*2; B := B*2; commit;

• Sequence of operations (assume a write-through)
read (A); A := A*2
write (A);
read (B); B := B*2
write (B);
commit;

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

Ulf Leser: Implementation of Database Systems 19

Architecture of a Recovery Manager

• In the following, we talk of “objects”
– Usually means tuple (+ attribute)
– Could also be block (more later)

Transactions

Concurrency Control
Manager

Recovery-Mgr.

Buffer-Mgr.

Secondary
Storage

Main Memory
Log

DB

Log

Cache

Ulf Leser: Implementation of Database Systems 20

Transactions

• Transactions do
– Read(X): Read object

from block X
– Write(X): Write object

into block X
– Commit
– Abort

• Recovery manager intercepts all commands and
performs something “secretly”

Transactions

Concurrency Control
Manager

Recovery-Mgr.

Buffer-Mgr.

Log

Cache

Log

DB

Ulf Leser: Implementation of Database Systems 21

Buffer Manager

• Buffer manager
– Upon read(X): If X not

in mem, load(X); give
access to block to TX

• Involves replacing
blocks in cache

– Upon write(X): Change
mem, usually nothing happens on disk

• Time between change in block and writing of changed
block is unpredictable for buffer manager
– Buffer manager cannot know when the current TX will commit
– On top, a commit does not write anything to disk per-se
– Aim of buffer manager: Maximize performance, minimize IO

Transactions

Concurrency Control
Manager

Recovery-Mgr.

Buffer-Mgr.

Log

Cache

Log

DB

Ulf Leser: Implementation of Database Systems 22

Recovery Manager

• Intercepts all TX
commands

• Performs logging to
ensure AC-D

• Decides when logs
are written to disk
– If possible in batches

• Decides when cached blocks are written to disk
– If possible in batches

• The trick is: How to synchronize logging / block writes
to ensure AC-D?
– We need a recovery protocol

Transactions

Concurrency Control
Manager

Recovery-Mgr.

Buffer-Mgr.

Log

Cache

Log

DB

Ulf Leser: Implementation of Database Systems 23

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing
• Recovery in Oracle

Ulf Leser: Implementation of Database Systems 24

Undo Logging - Idea

• Short: “Log before block, block before commit”
– Log – block – commit
– Old values (before update) are saved to log and written to disk

before any changed block is written
– Changed blocks may be written before commit
– Changed blocks must not be written after commit

• Thus: If a commit happens, new values are on disk
– Do not allow state “committed” before all blocks have been written

• Thus: If a crash happens, old values are in log or block is
not on disk

• Important: TX IDs

Ulf Leser: Implementation of Database Systems 25

Detailed Rules

• During transaction processing
– Buffer manager may write uncommitted changes to disk

• Gives lots of freedom to write in batches
– But: Old value must be in a log on disk before block is written
– Commits/aborts are also written to log
– Changed blocks must be on disk before commit is flushed to disk

• During recovery
– Identify all transactions without commit or abort in log
– Find all log entries (=old values) of these transactions
– Undo changes: Replay entries in reverse order

Ulf Leser: Implementation of Database Systems 26

Structure of the Log

• Real records: <tID, object (tupleId+attribute), old value>

Transaction Action Log entry
T1 Y0 → Y1 T1: Y0

T1 X0 → X1 T1: X0

T1 Z0 → Z1 T1: Z0

T1 Abort T1: abort

T2 Y0 → Y2 T2: Y0

T2 Commit T2: commit

T3 Y2 → Y3 T3: Y2

WT1(Y); WT1(X); WT1(Z); abortT1; WT2(Y); commitT2; WT3(Y)

Ulf Leser: Implementation of Database Systems 27

Undo Logging Rules

• Undo logging is based on three rules
– For every changed object generate undo log record with old value

• For on INSERT, log a DELETE; for a DELETE, log an INSERT
– Before a block is written to disk, undo log record must be on disk
– Before a commit in the log is flushed to disk, all blocks changed by

this transaction must have been written to disk
• Reason for third rule: All committed transactions can safely

be ignored during recovery
• Flushing log = writing all not-yet-written log records to disc

Ulf Leser: Implementation of Database Systems 28

Example

• Sequence of operations
– read (A); A := A*2
– write (A);
– read (B); B := B*2
– write (B);

A: 8
B: 8

A: 8
B: 8

16
16

<T, start>
<T, A, 8>
<T, B, 8>

Ulf Leser: Implementation of Database Systems 29

Example – Normal Commit

• Sequence of operations
– read (A); A := A*2
– write (A);
– read (B); B := B*2
– write (B);
– commit;

A: 8
B: 8

A: 8
B: 8

16
16

<T, start>
<T, A, 8>
<T, B, 8>

<T,commit>
Flush log
Flush blocks
Flush log

16
16

Ulf Leser: Implementation of Database Systems 30

Example – Failure 1

• Sequence of operations
– read (A); A := A*2
– write (A);
– read (B); B := B*2
– write (B);
– read (C); C:=C-A;
– write (C);
– commit;

A: 8
B: 8

failure!

<T, start>
<T, A, 8>
<T, B, 8>

– Changes have not been written yet
– But some log data

– We undo all as commit not in log
– Unnecessary undo’s could be

omitted in principle if block-writes
were logged

8
8

Flush log

Ulf Leser: Implementation of Database Systems 31

Example – Failure 2

• Sequence of operations
– read (A); A := A*2
– write (A);
– read (B); B := B*2
– write (B);
– read (C); C:=A-C;
– write (C);
– commit;

A: 8
B: 8

failure!

<T, start>
<T, A, 8>
<T, B, 8>
<T,C,4>

– Some disk blocks have been written,
some not; commit has not been
written

– We must undo
– Change to C is neither on disk nor in

log – unnoticed by recovery

Flush log
Flush blocks

16
16

8
8

Ulf Leser: Implementation of Database Systems 32

Example – Failure 3

• Sequence of operations
– read (A); A := A*2
– write (A);
– read (B); B := B*2
– write (B);
– read (C); C:=A-C;
– write (C);
– commit;

A: 8
B: 8
C: 12

<T, start>
<T, A, 8>
<T, B, 8>
<T,C,4>

<T,commit>
Flush log
Flush blocks

16
16

failure!
– Commit has not been flushed to disk

yet
– We must undo all changes

4

8
8
12

Ulf Leser: Implementation of Database Systems 33

Aborts

• Any transaction may deliberately abort instead of commit
– User-triggered: Rare
– But: Triggered by sync manager due to synchronization issues

• Abort is treated similar to commit
– Perform rollback in memory, replacing old values and treating

these replacements as writes in the log
• Need not be done – later

– Before the “abort” is flushed, all un-done blocks must be on disk
• Usage of log data to undo changes during abort

– Problem: What if logs are already on disk – and only there?
• Quite possible for long-running TX on heavy-write databases

– Need to reload logs for performing the abort

Ulf Leser: Implementation of Database Systems 34

Recovery using Undo Logging

• When recovery manager is evoked during start-up
– Read log from back to front (latest first)
– When <T,commit> or <T,abort> is encountered, mark this TX and

ignore all further records regarding T
• Updated values are certainly on disk

– If record <T, X, Y> is encountered without T having been marked
later, change X to Y in block on disk

• That is, undo changes in reverse order
– If record <T, start> is encountered without T having been marked

before, write <T,abort> to end of log
• Marks this transaction as undone for future recoveries

• Doing all this efficiently is a considerable problem in itself
– We don’t want to read/write blocks for every change

Ulf Leser: Implementation of Database Systems 35

Two Issues

• We must read the entire log
– That may take a very long time
– Checkpointing – later

• What happens if system crashes during recovery?
– Nothing
– “Finished recovered” (marked) transactions are not undone again

(abort has been written)
– All others are undone
– Recovery is idempotent

Ulf Leser: Implementation of Database Systems 36

Drawbacks

• Buffer manager is forced to write blocks before flushing
commits to log
– Cannot choose freely when to write to maximize sequential writes
– Commits force block writes

• However, commits should be performed quickly to release
locks (see next lecture)
– Ideally, logs are flushed with every commit
– Thus, block manager must write blocks all the time
– Logs can be flushed often: sequential IO
– But blocks flushes are random access

• Trade-Off
– Batch writes (blocks and logs) are hindered – bad performance
– Commits are delayed – bad performance

Ulf Leser: Implementation of Database Systems 37

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing
• Recovery in Oracle

Ulf Leser: Implementation of Database Systems 38

Redo Logging

• We twist the idea the other way round
– Write new values, not old values, to log
– Do not write blocks before commit, instead ensure that blocks are

written only after commit
– Do not undo uncommitted transactions, but ignore them

• Blocks have not been written – old values still in place
– But redo all committed transactions

• Blocks might have not been written; no “all blocks written” signal

• This defers block writes
– Bad: Long running TX consume much memory

• DB might need to generate temporary areas on disk
– Good: For short running TX, buffer manager has high degree of

freedom when to flush blocks
• Can wait until many sequential blocks needs flushing

Ulf Leser: Implementation of Database Systems 39

Redo Logging Rules

• Two redo logging rules
– For every write, generate redo log record containing new value
– Before any changed block is written to disk, transaction must have

finished and all logs (including commit) must be flushed to disk
– Short: “Log before block, commit before block”

• Log – commit - block

• Consequence
– No changes that might have to be reset later are written to disk
– Good idea: Flush log with every commit to allow buffer manager

to evict blocks from memory
• Removes freedom from log manager

– Aborts are simple, since no changes have been written to disk
• Aborted TX may be ignored during recovery

• How does recovery work?

Ulf Leser: Implementation of Database Systems 40

Recovery with Redo Logging

• When recovery manager is evoked during start-up
– Generate list L of all committed transactions (one scan)
– Read log from front to back (earliest first)
– If record <T, X, Y> is encountered with T∈L, set X to Y

• That is, redo all change in original order
– Ignore all other records - uncommitted transactions

• Problem
– Procedure is idempotent, but we always need to redo all ever

committed transactions
• Undo logging also needs to read the entire log, but not to undo

transactions again and again at every crash
– That is very, very slow

Ulf Leser: Implementation of Database Systems 41

Wrap-Up

• Undo logging forces too frequent block writes
• Redo logging forces contention in buffer manager and

extremely slow recovery
• Solution: Undo/redo logging

Ulf Leser: Implementation of Database Systems 42

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing
• Recovery in Oracle

Ulf Leser: Implementation of Database Systems 43

Best of Both Worlds

• We need only two rules
– Upon change, write old and new value into log
– Before writing a block, always flush respective logs

• “Respective” – all logs affecting objects of this block
• WAL: Write ahead logging

– Short: “Log before block”
• Having old and new values suffices to undo uncommitted

transactions (undo logging) and redo committed
transactions (redo logging)

Ulf Leser: Implementation of Database Systems 44

Situations

• If block is on disk and commit was flushed, then crash
– Recovery finds committed TX and redoes changes

• Rec manager cannot be sure that blocks have been written
• Introduces unnecessary redoing

• If block is on disk but commit not, then crash
– Recovery finds missing commit and undoes changes

• If block is not on disk and commit was flushed, then crash
– Recovery finds commit and redoes changes

• If neither block nor commit is on disk, then crash
– Recovery finds missing commit and undoes changes
– Introduces unnecessary undoing

Ulf Leser: Implementation of Database Systems 45

Benefits

• Reduced dependencies between log writes and block
writes

• Flushing commits is independent of flushing blocks
– Lock/log manager can finish transactions and release locks by

flushing commits without waiting for the block manager
– Block manager may write blocks without waiting for transactions to

commit (which may take a long time – user interactions, waits, …)
• But make sure block-specific logs are written first

– Log manager and buffer manager have more degrees of freedom
to organize larger sequential writes

Ulf Leser: Implementation of Database Systems 46

Recovery with Undo/Redo Logging

• When recovery manager is evoked during start-up
– Collect list L of finished transactions and list U of unfinished

transactions
– Backward pass – read from latest to earliest and undo all changes

of transactions in U
– Forward pass – read from earliest to latest and redo all changes of

transactions in L
• This performs all changes of all transactions since DB start

again, but …
• … combined with checkpointing (later), it is very efficient

Ulf Leser: Implementation of Database Systems 47

Example

• Potentially on disk at crash: A=2, B=5, C=7
• We should have A=16, B=4, C=7
• Recovery

– L = {T1, T3}, U = {T2}
– Backward read

• Find records with t∈U: entries 5 and 6
• Undo: write(A,16), write(B,4); log(t2,abort)

– Forward read
• Find entries with t∈L: 2, 8, 9
• Redo: write(A,16), write(C,3), write(C,7)

• Will this always work?

1. <T1,start>
2. <T1,A,8,16>
3. <T1,commit>
4. <T2,start>
5. <T2,B,4,5>
6. <T2,A,16,2>
7. <T3,start>
8. <T3,C,2,3>
9. <T3,C,3,7>
10. <T3,commit>
11. CRASH

Ulf Leser: Implementation of Database Systems 48

Slightly Different Example

• What happens?
– T1 changes A and commits

• Change will be redone
– T2 changes B and A and does not commit

• Changes will be undone
– T3 reads uncommitted change of A from T2,

changes, and commits
• Change will be redone

• Problem
– T3 acts under false premises
– Something is wrong
– But: Synchronization not our business here

1. <T1,start>
2. <T1,A,8,16>
3. <T1,commit>
4. <T2,start>
5. <T2,B,4,5>
6. <T2,A,16,2>
7. <T3,start>
8. <T3,A,2,3>
9. <T3,C,3,7>
10. <T3,commit>
11. CRASH

Ulf Leser: Implementation of Database Systems 49

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing
• Recovery in Oracle

Ulf Leser: Implementation of Database Systems 50

Checkpointing

• Recovery may take very long
– Undo logging: Find all uncommitted transactions and undo
– Redo logging: Find all committed transactions and redo
– Undo/redo logging: Do both

• But: When a transaction is committed, and all changes are
written to disc and log is flushed – no need to touch this
transaction any more in any future recovery

• Checkpointing: Define points in time (and in log) such that
recovery only needs to go back until “roughly” there

• Notation
A transaction is called active if it has neither committed nor
aborted yet

Ulf Leser: Implementation of Database Systems 51

Blocking (Quiescent) Checkpointing

• Simple way to achieve checkpointing
– Recovery manager announces checkpoint and flushes “start ckpt”

to log
– No new transactions are allowed
– System runs until all active transactions finish (with commit or

abort) and all dirty blocks have been written
– Recovery manager flushes “end ckpt” to log
– DBMS resumes normal operations

Ulf Leser: Implementation of Database Systems 52

Quiescent Checkpointing and Undo Logging

• At recovery time …
• Read from back to front and undo uncommitted

transactions
• When the first “end ckpt” is found, recovery is finished

– All prior transaction have committed or were aborted
– By the undo logging rules, changes must have been written to disk

before commit/abort was flushed to log
• Any “start ckpt” found before the first “end ckpt” is ignored

– “Before” – logged later in time
– Some transactions that were active at the “start ckpt” time might

have finished before the crash – but not all of them
– Needs undo-redo recovery

Ulf Leser: Implementation of Database Systems 53

Quiescent Checkpointing and Redo Logging

• At recovery time …
• Scheme doesn’t work as such – why not?

– (… non-quiescent checkpointing is better anyway)
• We would need to ensure that all blocks are written to disk

before the “end ckpt” is flushed to log
• More dependencies – “end ckpt” is almost like a database

shutdown

Ulf Leser: Implementation of Database Systems 54

Non-Quiescent Checkpointing

• Quiescent checkpointing essentially shuts-down DB
• Non-quiescent checkpointing

– With start of checkpoint, write list of active TXs to log
• DB always generates new transaction-ID during TX.start

– When “start ckpt(17,22,23,25)” is found in log during recovery
• All TX “older than L” had finished before

– “Older than L”: All TX with ID<17 plus TX with ID≤25 that are not in L
• Four transactions were active at this point in time
• Further TX might have become active during the checkpoint (ID>25)

Ulf Leser: Implementation of Database Systems 55

Non-Quiescent Ckpt for Undo/Redo Logging

• Recovery manager flushes “start ckpt(L)” to log
• DB operations continue normally
• All dirty blocks of TX older then L are flushed to disk

– Need not be performed immediately
– Advantage: More freedom when to write blocks
– Disadvantage: Crash before “end chkp” makes checkpoint unusable

• When finished, recovery manager flushes “end ckpt” to log
– All blocks of TX ”older than L” are certainly on disk
– These TX can be ignored during all future recovery

• Database operations are (almost) unaffected
– Needs some bookkeeping of affected blocks

Ulf Leser: Implementation of Database Systems 56

Recovery

• Read back in log
• If a “end ckpt” is found first

– Locate the corresponding “start ckpt(L)”
– TX older than L can be ignored
– Perform undo/redo only for TX in L and later
– Note: This requires reading also prior to “start ckpt(L)”

• Log entries for TX in L have started before checkpoint
• These need to be inspected
• Idea: Chain log record per TX with backward pointers to avoid scans

• If a “start ckpt(L)” is found first
– Doesn’t help
– We don’t know if all blocks have been written already
– Read further back to next “end ckpt”

Ulf Leser: Implementation of Database Systems 57

Example

• Recovery
– Transactions older than (2,3) can be ignored (T1)
– Transactions 2 is undone (no commit)
– Transaction 3 is redone (commit but unclear if blocks are on disk)
– Transaction 4 is redone (considered as newer (greater) than L)

• This can be saved
• Store with L the highest current transaction ID
• Change definition of “older than L”

T1.s T2.s T3.s

T1.c

T4.s

T4.c

Start ckpt(2,3)

output(...) T3.c

end ckpt()

Ulf Leser: Implementation of Database Systems 58

Again: Transactions that Abort

• Assume
– Transaction T starts at time X
– Later, “start ckpt(T,…)” starts
– All blocks are flushed
– “end ckpt” is flushed, T is still active
– T aborts regularly
– System crashes

• On recovery
– T was active at start of last checkpoint, so treatment necessary
– Some changes might have been written already (before the end of

checkpoint), some not (those after the checkpoint)
– Recovery treats this transaction as not properly finished

• All changes are undone

Ulf Leser: Implementation of Database Systems 59

TX, Values, and Blocks

• Blocks in buffer usually contain tuples changed by different
transactions

• Undo log: Before commit, all changes must be on disk
– Will include uncommitted changes – more undoing later

• Redo log: Before commit, no changes may be on disk
– New problems for buffer manager – always waiting for last active

transaction in a block
• Undo/redo logging: No dependency between commit and

writing of blocks

Ulf Leser: Implementation of Database Systems 60

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing
• Recovery in Oracle

Ulf Leser: Implementation of Database Systems 61

Recovery in Oracle

• Undo/redo logging with non-quiescent checkpointing
– LGWR server process writes log in batches
– Logs are maintained in “online redo log groups”

• Each log is written in each group (redundancy)
• Protect log from media failure - spread groups over different disks

• Each log group consists of a list of files of fixed max size
– When last file is full, logging starts filling the first file again
– In “archive-log” mode, log files are archived before being

overwritten
– When is it save to overwrite logs?

• With “start ckpt(L)”, keep l = “log# of oldest log of any t∈L”
• When “end ckpt” is reached, all log records older than l can be

dumped without harming recovery
– But maybe legal restrictions

Ulf Leser: Implementation of Database Systems 62

Recall

Ulf Leser: Implementation of Database Systems 63

Traveling in Time (Flashback)

• In “archive-log” mode, any point in time is reachable
– Even committed changes can be undone in principle

• Oracle flashback queries
– SELECT X

FROM Y AS OF TIMESTAMP '2007-07-13 02:19:00’
WHERE …;

• Semantics: Return data as of all TX that committed prior to
timestamp
– Implementation: Use undo logs to undo all changes on Y of TX that

had not committed prior to t
– Can rollback some DDL
– Useful in legal issues (audit: proof what was changed when)

Ulf Leser: Implementation of Database Systems 64

Total Recall

• Normal logs cannot be accessed from within database
– No SQL query for “Give me a list of all changes applied to this table

since …”
• Versioning: Track changes and make every version easily

accessible
– Linear versioning: At every point in time, there exists one version
– Hierarchical versioning: Allow different “truths” at same time

• “whatif analysis”

• Total recall option
– Tracks all changes per table in immutable “history” tablespaces
– “Retention” parameter – for how long?
– Internal implementation: Asynchronous analysis of redo/undo logs

• No triggers, normal operations not affected

	Foliennummer 1
	Content of this Lecture
	Transactions
	Consistent States
	Consistent States
	Formally
	ACID Properties
	ACID Properties
	Transactional Operations
	Content of this Lecture
	Recovery
	Hardware Model
	Types of Failures
	Recovery
	Limits
	First Approach
	Example
	Failure
	Architecture of a Recovery Manager
	Transactions
	Buffer Manager
	Recovery Manager
	Content of this Lecture
	Undo Logging - Idea
	Detailed Rules
	Structure of the Log
	Undo Logging Rules
	Example
	Example – Normal Commit
	Example – Failure 1
	Example – Failure 2
	Example – Failure 3
	Aborts
	Recovery using Undo Logging
	Two Issues
	Drawbacks
	Content of this Lecture
	Redo Logging
	Redo Logging Rules
	Recovery with Redo Logging
	Wrap-Up
	Content of this Lecture
	Best of Both Worlds
	Situations
	Benefits
	Recovery with Undo/Redo Logging
	Example
	Slightly Different Example
	Content of this Lecture
	Checkpointing
	Blocking (Quiescent) Checkpointing
	Quiescent Checkpointing and Undo Logging
	Quiescent Checkpointing and Redo Logging
	Non-Quiescent Checkpointing
	Non-Quiescent Ckpt for Undo/Redo Logging
	Recovery
	Example
	Again: Transactions that Abort
	TX, Values, and Blocks
	Content of this Lecture
	Recovery in Oracle
	Recall
	Traveling in Time (Flashback)
	Total Recall

