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Content of this Lecture

• Introduction
• Rewriting Subqueries
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example
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Is Optimization Worth It?

• Goal: Find fastest way to compute a query result
– Generate and assess different physical plans to answer the query
– All plans must be semantically equivalent – always the same result

• Optimization itself costs time
– Some steps have exponential complexity

• E.g. join order: 10 joins – potentially ~310 steps
– Finding the best plan might take more time than executing an 

arbitrary plan
• And usually we don’t find the best plan anyway

• Why bother?
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Example

SELECT C.name, C.address
FROM customer C, order O
WHERE C.name = O.c_name AND

O.product = „coffee“

• Assumptions
– 1:n relationship between C and O
– |C|=100, 5 tuples per block, b(C)=20
– |O|=10.000, 10 tuples per block, b(O) = 1.000
– Result size: 50 tuples
– Intermediate results

• (C.name, C.address): 50 per block
• Join result (C,O) with full tuples: 3 per block

– Small main memory

order
o_id
c_name
product
...

customer
name
address
...
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First Attempt

• Translate in relational algebra
– πname,adr(σO.C_name=C.name ∧ O.product=‚coffee‘ (C x O))

• Interpret query „from inner to outer“
– No optimization yet

• Assume materialization of 
intermediate results 
– No caching, no pipelining

πname,adr

σO.C_name=C.name ∧ O.product=‚coffee‘

C x O

Customer Order
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Cost

• Compute cross-product (block-nested-loop)
– Reads: b(C)*b(O)=20.000
– Writes: 100*10.000/3 ~ 333.000

• Compute selections
– Reads: 333.000
– Writes: 50/3 ~ 17

• Compute projection
– Reads: 17
– Writes: 50/50 ~ 1

• Altogether: ~ 686.000 IO 
– 333.000 blocks temp space

required on disk

πname,adr

σO.C_name=C.name ∧ O.product=‚coffee‘

C x O

Customer Order
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Query Rewriting

• Rewrite into: πname,adr(C ⋈O.C_name=C.name(σO.product=‚coffee‘(O)))

• Compute selection on O
– Reads: 1.000, writes: 50/10 = 5

• Compute join using BNL
– Reads: 5 + b(C)*5 = 105
– Writes: 50/3 ~ 17

• Compute projection
– Reads: 17, writes: 50/50 ~ 1

• Altogether: 1.145
– 17 blocks temp space

• Maybe there is an ever better way?

πname,adr

C ⋈O.C_name=C.name O

Customer

Order

σO.product=‚coffee‘
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Better Plan

• Push projection
– πname,adr(πname,adr(C)⋈O.C_name=C.name(σO.product=‚coffee‘(O)))

• Compute selection on O
– Reads: 1.000, writes: 50/10 = 5

• Compute projection on C
– Reads b(C)=20, writes 100 / 50 = 2 

• Compute join using nested loop
– Less space needed due to projection: Assume 6 per block
– Reads: 2 + 2*5 = 12, writes: 50/6 ~ 9

• Compute projection
– Reads: 9, writes: 50/50 ~ 1

• Altogether: 1.064
– 9 blocks temp space
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Even Better – Use Indexes

• Assume indexes on (O.product, O.C_name) and on 
(C.name, C.address)

• Compute selection on O using index
– Reads: Roughly between 5 and 10 blocks

• Height of index plus consecutive blocks for 50 TIDs with 
product=‘coffee’

• Number of blocks depends on fill degree of B-tree
• Assume 10 pointer in an index node: height = 4

– Writes: 50/10 = 5
• Due to the index, result already sorted by c.name
• What about a SM-Join?
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Even Better – Use Indexes

• …
• Compute join with sort merge

– Read C.name in sorted order using index
– Read O.c_name in sorted order using index
– Reads: 20 + 5 = 25
– Writes: 50/3 ~ 17

• Compute projection
– Reads: 17, writes: 50/50 ~ 1

• Altogether: between 85 and 90
(requiring 17 blocks on disk)
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Comparison

• Reduction by a factor of ~8.000
• DB should invest time in optimization

Read/Write Temp 
space

Naive 686.000 333.000
Optimized, no index 1.064 9
With index ~90 17
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Steps in Optimization

• Parsing, view expansion, subquery rewriting
• Query minimization (maybe)
• Plan optimization

– Algebraic query rewriting (logical optimization)
– Cost estimation (cost-based optimization)
– Plan instantiation (physical optimization)
– Plan enumeration and pruning 
– Note: Steps are executed in an interleaved fashion

• Selection of best plan 
– According to cost model

• Code generation (compilation or interpretation)
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Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example
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Subquery Rewriting

• No equivalent in relational algebra: IN, EXISTS, ALL, …
– Generate subtrees with non-relational root node
– For optimization, a fully relational tree is easier to handle
– Transformation not always possible / advantageous

• We look at four cases of IN 
– A subquery p is called correlated if it refers to a variable declared in 

the outer query
– Uncorrelated without aggregation
– Uncorrelated with aggregation
– Correlated without aggregation
– Correlated with aggregation

• See literature for other predicates 
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Example

Order
O_id
C_name
P_Id
Date
Total_price
revenue
...

Customer
Name
Address
...

Product
Id
P_Name
Price
...

Delivery
Id
O_ID
Date
Price
Quantity
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Uncorrelated Subquery without Aggregation

SELECT o_id
FROM order
WHERE p_id IN (SELECT id

FROM product
WHERE price<1)

• Option 1: Compute subquery and materialize result
– Advantageous if subquery appears more than once

• Option 2: Rewrite into join 
– Allows global optimization

(i.e. index join)
– Be careful with duplicates

• Assuming id is PK of P (hence order:product is 1:n), example is fine
• Otherwise, we need to introduce a DISTINCT

SELECT o.o_id
FROM order o, product p
WHERE o.p_id = p.id AND

p.price < 1
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Uncorrelated Subquery with Aggregation

SELECT o_id
FROM order
WHERE p_id IN (SELECT max(id)

FROM product)

• (Only) option: Compute subquery and materialize result
• Rewriting not possible
• Other way of expressing such functionality: User-defined 

table functions
– This would allow formulation as join
– But even harder to optimize

• Third way: Use view (two queries)
– Will look like a join, but same optimization problem change after 

view expansion 
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Correlated Subquery without Aggregation

SELECT o.o_id
FROM order o
WHERE o.o_id IN (SELECT d.o_id

FROM   delivery d
WHERE  d.o_id = o.o_id AND

d.date-o.date<5)

• For correlated sqs, full materialization is impossible 
• Naïve computation requires one 

execution of subquery for each 
tuple of outer query

• Solution: Rewrite into join
– Again: Caution with duplicates 

(if o:d is not 1:n, DISTINCT required)

SELECT o.o_id
FROM order o, delivery d
WHERE o.o_id = d.o_id AND

d.date-o.date<5



Ulf Leser: Implementation of Database Systems 20

Correlated Subquery with Aggregation

SELECT o.o_id
FROM order o
WHERE o.total_price NOT IN (SELECT sum(price*quantity)

FROM   delivery d
WHERE  d.o_id = o.o_id)

• Materialization not possible (correlation)
• Rewrite into join not possible (aggregation)
• Naïve computation requires one execution of subquery for 

each tuple of outer query
• Solution: Rewrite into two queries

– That are optimized in isolation
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SELECT o.o_id
FROM   order o
WHERE  o.total_price NOT IN (SELECT sum(price*quantity)

FROM   delivery d
WHERE  d.o_id = o.o_id)

• Query 1
– Computes inner 

query result for all 
tuples of o

– Can be materialized

• Query 2 

Correlated Subquery with Aggregation

CREATE VIEW all_sums AS
SELECT o_id, sum(price*quant) as tp
FROM delivery
GROUP BY o_id

SELECT o.o_id
FROM order o, all_sums s
WHERE o.total_price != s.tp

AND o.o_id = s.o_id
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Always Better?

• Be careful
• This rewriting only pays off when many OID’s are required
• Counter example

– Materialization computes sums for many OIDs that are never used
• And need a lot of space for the materialization

– Nested execution probably better

SELECT o.o_id
FROM   order o
WHERE  o.total_price NOT IN (SELECT sum(price*quantity)

FROM   delivery d
WHERE  d.o_id = o.o_id)

AND o.total_price> SOME_VERY_LARGE_PRICE
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Subquery rewriting Wrap-Up

• Some subqueries with IN can be rewritten in single SPJ 
queries, some not
– A syntactical rewrite is always possible using views
– This doesn’t help the optimizer, but the developer

• Same holds true for other “unusual” predicates
– Many detailed rules; see literature, such as 

• Seshadri et al. (1996). Complex query decorrelation. ICDE 
• Elhemali et al. (2007). Execution strategies for SQL subqueries. SIGMOD

• Special problems occur when subqueries appear multiple 
times in a single query
– Syntax: Use “WITH” predicate
– Optimization: Detection of repeated query fragments
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Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example
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Query Minimization 1

• Especially important when views are involved or queries 
are created programmatically

CREATE VIEW good_business
SELECT C.name, O.O_id, O.revenue
FROM customer C, order O
WHERE C.name = O.name AND O.revenue>1.000

– Find very good customers using view as first filter
SELECT name SELECT C.name
FROM good_business FROM customer C, order O 
WHERE revenue>5.000 WHERE C.name = O.name AND

O.revenue>1.000 AND
O.revenue>5.000

• Optimization: Remove redundant condition
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Query Minimization 2

• Especially important when views are involved or queries 
are created programmatically

CREATE VIEW good_business
SELECT C.name, O.O_id, O.revenue
FROM customer C, order O
WHERE C.name = O.name AND O.revenue>1.000

– Find goods from good businesses
SELECT G.name, O.good SELECT C.name, o2.good
FROM good_busi G,order O FROM custom C,ord O1,ord O2
WHERE G.o_id = O.o_id WHERE C.name=O1.name AND

O1.revenue>1000 AND
O1.o_id=O2.o_id

• Optimization: Remove redundant joins
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Techniques (sketch)

• Group conjunctive conditions with constants per attribute 
and compute minimal intervals (or find contradictions)
– Different techniques for OR, XOR, NOT

• Equi-Joins: Build join graph, compute transitive closure, 
and find minimal spanning tree
– Be careful with join attributes – must all be the same
– “Minimal” already assumes a cost estimate (later)
– Different MST’s – different plans – different runtimes

• Theta-Joins: Translate into propositional logical formula 
and test for soundness

• …
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Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example
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• Definition
Let E1 und E2 be two relational algebra expressions over 
a schema S. E1 and E2 are called equivalent iff
– E1 and E2 contain the same relations R1 . . . Rn
– For any instances of S, E1 and E2 compute the same result

• Optimizers generate equivalent expressions by applying 
provably correct rewrite rules
– Testing if two query are equivalent is a different topic

• We look at a few such rules 
– There exist more (see literature)

Equivalence of Relational Algebra Expressions
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Rules for Joins and Products 

• Assume
– E1 , E2 , E3 are relational expressions (queries)
– Cond, Cond1, Cond2  are (equi-)join conditions

• Rule 1: Joins and Cartesian-products are commutative
E1 ⋈Cond E2 ≡ E2 ⋈Cond E1

E1 × E2 ≡ E2 × E1

• Rule 2: Joins and Cartesian-products are associative
( E1 ⋈Cond1 E2 ) ⋈Cond2 E3 ≡ E1 ⋈Cond1 (E2 ⋈Cond2 E3 )

Requirement: E3 joins with E2 (and not with E1)

( E1 × E2 )  × E3                        ≡ E1 × ( E2 × E3 )
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Projections and Selections

• Assume
– A1, . . ., An and B1 , . . . , Bm are attributes of E
– Cond1 und Cond2 are conditions on E

• Rule 3: Cascading projections
If A1, . . ., An ⊇ B1 , . . . , Bm, then
Π { B1 , . . . , Bm}  (Π { A1 , . . . , An}  ( E ))  ≡ Π { B1 , . . . , Bm}    ( E )

• Rule 4: Cascading selections
σCond1 (σCond2 ( E ))  ≡ σCond2 (σCond1 ( E ))  

≡ σCond1 and Cond2 ( E )
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Projections and Selections Part 2

• Assume
– A1, . . ., An and B1 , . . . , Bm are attributes of E
– Cond1 und Cond2 are conditions on E

• Rule 5a. Exchange of projection and selection

π{ A1 ,..., An}  ( σCond (E)) ≡ σCond (π{ A1 ,..., An} ( E)) 

Requirement: Cond contains only attributes A1, . . ., An

• Rule 5b. Injection of projection

π{A1…An} (σCond (E)) ≡ π{A1…An}( σCond (π{ A1… An, B1...  Bm} (E)) 

Requirement: Cond contains only attributes A1…An and  B1…Bm
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Joins and Projection/Selection

• Rule 6. Exchange of selection and join
σCond ( E1 ⋈Cond1 E2 )  ≡ σCond ( E1 ) ⋈Cond1 E2

Requirement: Cond  contains only attributes of E1

• Rule 7. Exchange of selection and union/difference
σCond ( E1 ∪ E2 )  ≡ σCond ( E1 )  ∪ σCond ( E2 )  

σCond ( E1 − E2 )  ≡ σCond ( E1 )  − σCond ( E2 ) 
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Joins and Projection/Selection

• Rule 9. Exchange of projection and join:

Π { A1 , . . . , An, B1 , . . . , Bm} ( E1 ⋈Cond E2 )  ≡
Π { A1 , . . . , An} ( E1) ⋈Cond Π { B1 , . . . , Bm}  ( E2 ) 

Requirement: Cond contains only attributes A1…An , B1…Bm and A1…An
appear in E1 and B1…Bm appear in E2

• Rule 10. Exchange of projection and union:
Π { A1 ,... , An} ( E1 ∪ E2 )  ≡

Π { A1 ,..., An}(  E1) ∪Π { A1 .., An} ( E2)
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Cartesian Product and Joins

• Rule 11: Turn Cartesian Products and cond into join

σCond (E1 × E2 )     ≡ E1 ⋈Cond E2

Requirement: Cond is a join condition between E1 and E2
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Example

• Query on a CUSTOMER database

SELECT Name, Account#, Savings
FROM customer C, account A, journal J
WHERE “Bond” ≤ Name ≤ “Carter”  and

Address = “Chicago” and
Transaction = “Withdraw” and
Amount > 1,000,000 and
C.Account# = A.Account# and
C.Account# = J.Account#
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customer

σ

Π

×

“Bond” ≤ Name 
Name ≤ “Carter”
Address = “Chicago”
Transaction = “Withdraw”
Amount > $1,000,000
C.Account#  = A.Account#
C.Account#  = J.Account#

×

account

journal

Name, Account#, 
Savings

Initial Operator Tree
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×

σ C.Account#=J.Account#

×

Π
Name,Account#,

Savings

“Bond”≤Name
Name≤“Carter”

Address=“Chicago” Transac=“Withdraw”
Amount>1000000

σ

σ

σ

C.Account#=A.Account#

Breaking and Pushing Selections

CUSTOMER

ACCOUNT Journal
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Π

σ

σ

⋈

⋈

Introduce Joins

CUSTOMER ACCOUNT Journal

“Bond”≤Name
Name≤“Carter” 

Address=“World” 

C.Account#=A.Account#

Name,Account#,
Savings

C.Account#=J.Account#

Transac=“Withdraw”
Amount>1000000
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Π

σ

⋈

⋈

Pushing Projections

CUSTOMER
ACCOUNT

Journal

Name,Account#,
Savings

σ

Π

Π

Π Π

Π

Name,Account#,
Address

Name,Account#
…

…

…

X
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Caution

• Sometimes, pushing up selections also is beneficial
– Especially for conditions on join attributes

• Example (assume both actsin and movie have a year attribute)
CREATE VIEW movies99 AS
SELECT title, year, studio
FROM movie WHERE year=1999

⋈

movie

Actsinσyear=99

⋈

movie Actsin

σyear=99 ⋈

movie Actsin

σyear=99 σyear=99

SELECT m.title, a.name
FROM movies99 m, actsin a
WHERE m.title=a.title AND

m.year=a.year

If this tree is 
generated in 
first place …
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Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting

– Rule based rewriting
– Cost based rewriting

• Optimizing Join Order
• Plan Enumeration
• A counter-example
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• Usually there are infinitely many rewrite steps
– But not infinitely many different plans
– Rewritings may go back and forth

• Give it a goal: What is a beneficial rewriting?
• General heuristic: Minimize size of intermediate results

– Less IO if materialization is necessary
– Less work for operations that are higher in the plan

• Option 1: Rule-based
– Old school, simple

• Option 2: Cost-Based
– State-of-the-art, more complex

Term Rewriting: Algebraic Optimization
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• Goal: Find a fixed order in which rewrite steps are 
applied such that the final plan is faster than the 
original plan

• Rule-based optimization
– Rules typically disregard the concrete database instance

• That’s why RBO fails to achieve SOTA results
– Use heuristics for prioritizing rewrite rule
– Based on experience – rules that are beneficial in most cases
– Simple to implement, fast optimization
– But: Most real instances lead to non-optimal plans

• Though hopefully still better than the original plan

Rule Based Query Optimization (RBO)
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A Simple Rule-Based Optimizer

• First down: Break and push down conditions/projections
– Break conjunctive selections into sets of atomic selections
– Break combined projections into atomic projections
– Push selects/projects as deep down the tree as possible

• Then up: Merge operations
– Replace selection and Cartesian product with join
– Merge neighboring atomic selections into combined selections
– Merge neighboring atomic projections into combined projections

• Avoid Cartesian Products (if possible)
– Choose other join order, start optimization again

• Finally physical: Choose concrete implementations
– If there is a condition on an indexed attribute – use the index
– For a join over PK-FK relationships: Use sort-merge
– Other joins: Use hash join
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SELECT s.Semester
FROM  student s, hoeren h

vorlesung v, professor p
WHERE p.name = “Sokrates” and 

v.gelesenvon = p.persnr and
v.vorlnr = h.vorlnr and
h.matrnr = s.matrnr

student hoeren

vorlesung

professor

×

×

×

σp.name = ´Sokrates´ and ...

πs.semester

Example
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Break Up Selections

s h

v

p

×

×

×

σp.Name = ´Sokrates´ and ...

πs.Semester

s h v
p×

×
×

σp.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

σs.MatrNr=h.MatrNr

σv.VorlNr=h.VorlNr
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Push Selections

s h

v
p×

×

×

σp.PersNr=v.gelesenVon

πs.Semester

σp.Name = `Sokrates`
σs.MatrNr=h.MatrNr

σv.VorlNr=h.VorlNr

s h v

p×
×

×

σp.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

σs.MatrNr=h.MatrNr

σv.VorlNr=h.VorlNr
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Rewrite Product+Selection into Joins

s h

v
p

×

×

×

σp.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

σs.MatrNr=h.MatrNr

σv.VorlNr=h.VorlNr

s h
v

p
⋈s.MatrNr=h.MatrNr

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr
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Break and Push Projections

s h

v

p

⋈s.MatrNr=h.MatrNr

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

s h

v

p

⋈s.MatrNr=h.MatrNr

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

πMatrNr,vorlNrπMatrNr,semester

… …

… …
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Order of Joins: Indistinguishable

s

h

v
p

⋈s.MatrNr=h.MatrNr

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

s h

v
p

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

⋈s.MatrNr=h.MatrNr
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Limitations

• RBO is data-independent
• Optimal selection of operators impossible without estimates 

about size of results (cardinality, width)
– Best index, best join method, best join order – all depend on the 

concrete input and output of an operation
• No rules for order of joins
• Rules are partly contradictory

– E.g. Conjunctive selections and composite indexes
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Join Order – Does it Matter?

• Assume uniform distributions
– There are 1.000 students, 20 professors, 80 courses
– Each professor gives 4 courses
– Each student listens to 4 courses
– Each course is followed by 50 students (4000 “hören” tuples)
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Join Order – Does it Matter? 

• Compute σSokrates(P)⋈(V⋈(S⋈H))
– Inner join: 1000*4 = 4000 tuples
– Next join: Again 4000 tuples
– Last join selects only 1/20 of 

intermediate results = 200
– Intermediate result sizes: 

4000 + 4000 + 200 = 8200
• Compute S⋈(H⋈(σSokrates(P)⋈V))

– Inner join selects 4 tuples
– Next join generates 50*4= 200 tuples
– Last join: No change
– Intermediate result sizes: 

4 + 200 + 200  = 404

s h

v p

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

⋈s.MatrNr=h.MatrNr

s

h

v
p

⋈s.MatrNr=h.MatrNr

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr
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Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting

– Rule based rewriting
– Cost based rewriting

• Optimizing Join Order
• Plan Enumeration
• A counter-example
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Cost-Based Query Optimization (CBO)

• Goal: Find the plan that is cheapest among all possible 
plans given a cost model

– “Possible” – Created by a finite sequence of rewrite rules
• Cost-based optimization

– Use a clever algorithm to enumerate possible plans 
– Estimate effect of all individual rewritings regarding a cost model
– Use this to compute a cost per (sub-)plan
– Prune parts of the search space wherever possible

• When it is clear that they will not find better plans
– Choose cheapest

• Variations in optimization goal
– Global: Chose plan with smallest sum of intermediate results
– Bound: Chose plan with smallest maximal intermediate result
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Enumerating Query Plans

• Assume a plan P of size p=|P| with j joins
– Size: Number of predicates in the plan (~nodes in the tree)

• Rewritings may …
– Merge / break selections/projections (into atomic form)

• Creates up to c different plans, when c is length of longest predicate
– Move a selection/projection up/down the tree

• Creates up to p different plans per predicate
– Change order of joins (or Cartesian products)

• Need to consider concrete join predicates 
• Creates in worst case more than j! different plans (see later)

• Typical plan enumeration strategy
– Push predicates as deep as possible
– Find best join order
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Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example
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Optimizing Join Order

• Possible / reasonable join orders
– Depending on join conditions, many orders involve intermediate 

cross-products
• (R(A)⋈AS(A,B))⋈BT(B) = R(A)⋈A(S(A,B)⋈BT(B)) = 

(R(A) x T(B)) ⋈AS(A,B)⋈BS(A,B)

– Most join-order algorithms disregard any plan containing a cross-
product – which heavily reduces the search space

– In the following, we assume that no order involves a Cartesian 
Product (e.g., all tables join on the same attribute)

R S

T⋈
⋈

R

S T

⋈
⋈

R

S

T

⋈
x

⋈
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Left/Right-deep versus Bushy Join Trees

• There is one left-deep tree topology, but still O(n!) orders
• There are (2n-3)!/(2n-2*(n-2)!) unordered binary trees with 

n leaves, and for each O(n!) orders
– Some are equivalent

R S T U

⋈ ⋈

⋈

R S T U
⋈

⋈
⋈

Left-deep join tree Bushy join tree
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Choosing a Join Order 

• Typical first heuristic: Consider only left-deep trees 
– Used, for instance, in Oracle
– Can be pipelined efficiently
– Usually generates among the best plans
– But suboptimal if parallel execution is possible

• But there are still O(n!) possible orders
• Second Heuristic: Use dynamic programming with pruning

– Generate plans bottom up: Plans for pairs, triples, …
– For each join group, keep only best plan
– Use these to enumerate possibilities for larger join groups
– Prune all subplans containing a Cartesian Product
– Still is a heuristic - later
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Join Groups
{}

{R}                  {S}                {T}               {U}

{R S}       {R  T}      {R   U}      {S  T}        {S  U}      {T   U}

{R  S  T}         {R   S   U}      {S   T   U}           {R   T  U}

{R   S   T    U}

• There are (n over i) join groups with i elements
• Within each join group, there are many different orderings
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Details

• Create a table containing for each join group

• Prune if this would involve a Cartesian product
• Estimated size of result (how: next lecture)

– Cost of this operator
• Minimal cost for computing the inputs to this group

– Minimal cost of “getting there” 
– We use sum of intermediate result sizes in the subtree of this group

• Optimal plan for computing this group
– Executable plan of “getting there” with minimal cost
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Induction

• Induction over sizes of join groups
– i=1: Consider every relation in isolation

• Size = Size of relation
• Cost = 0 (access costs of leaf nodes are identical for all plans)
• Plan: Table access

– i=2: Consider each pair of joined relations
• Size: Estimated size of join result
• Cost = 0 (sum of all inputs is identical - ignore)
• Plan: Physical join method

– E.g.: BNL with smaller relation as inner relation)
– This method will never change again
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Induction

• Induction over sizes of join groups
– i=1: Consider every relation in isolation

• Size = Size of relation
• Cost = 0 (access costs of leaf nodes are identical for all plans)
• Plan: Table access

– i=2: Consider each pair of joined relations
• Size: Estimated size of join result
• Cost = 0 (sum of all inputs is identical - ignore)
• Plan: Physical join method

– E.g.: BNL with smaller relation as inner relation)
– This method will never change again

– i=3: Consider each pair in each triple and join with third relation
• …
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Induction

• Induction over sizes of join groups
– …
– i=3: Consider each pair in each triple and join with third relation

• Loop-up minimal cost for all involved pairs (from table)
• For each pair, add its cost and cost of joining with the third relation
• Choose plan with lowest cost
• …

R,S S,T R,T

Size 500 1300 200

Cost 0 0 0

Plan HJ HJ HJ

(R⋈S)⋈T):  500+0

(S⋈T)⋈R):  1300+0

(R⋈T)⋈S):  200+0
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Example 1

{R} {S} {T} {U}

Kardinalität 1000 1000 1000 1000

Kosten 0 0 0 0

Optimaler Plan scan(R) scan(S) scan(T) scan(U)

R

S T

U

• We join four relations R, S, T, U
• Four join conditions


Sheet1

				{R}		{S}		{T}		{U}

		Kardinalität		1000		1000		1000		1000

		Kosten		0		0		0		0

		Optimaler Plan		scan(R)		scan(S)		scan(T)		scan(U)
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Example 2

{R,S} {R,T} {R,U} {S,T} {S,U} {T,U}

Kardinalität 5000 1M 10000 2000 1M 1000

Kosten 0 0 0 0 0 0

opt. Plan R       S R       T R       U S       T S       U T       U

{R,S,T} {R,S,U} {R,T,U} {S,T,U}

Kardinalität 10000 50000 10000 2000

Kosten 2000 5000 1000 1000

opt. Plan (S    T)    R (R    S)    U (T    U)    R (T    U)    S

XX
R

S T

U

… Prune CPs
Estimate 
somehow

Better than 
S⋈(RxT) and (R⋈S)⋈T


Sheet1

				{R,S}		{R,T}		{R,U}		{S,T}		{S,U}		{T,U}

		Kardinalität		5000		1M		10000		2000		1M		1000

		Kosten		0		0		0		0		0		0

		opt. Plan		R       S		R       T		R       U		S       T		S       U		T       U






Sheet1

				{R,S,T}		{R,S,U}		{R,T,U}		{S,T,U}

		Kardinalität		10000		50000		10000		2000

		Kosten		2000		5000		1000		1000

		opt. Plan		(S    T)    R		(R    S)    U		(T    U)    R		(T    U)    S
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Example 3

{R,S,T} {R,S,U} {R,T,U} {S,T,U}

Kardinalität 10000 50000 10000 2000

Kosten 2000 5000 1000 1000

opt. Plan (S    T)    R (R    S)    U (T    U)    R (T    U)    S

Plan Kosten

((S    T)    R)    U 12k

((R    S)    U)    T 55k

((T    U)    R)    S 11k
((T    U)    S)    R 3k

R

S T

U

Best plan


Sheet1

				{R,S,T}		{R,S,U}		{R,T,U}		{S,T,U}

		Kardinalität		10000		50000		10000		2000

		Kosten		2000		5000		1000		1000

		opt. Plan		(S    T)    R		(R    S)    U		(T    U)    R		(T    U)    S






Sheet1

		Plan		Kosten

		((S    T)    R)    U		12k

		((R    S)    U)    T		55k

		((T    U)    R)    S		11k

		((T    U)    S)    R		3k







Ulf Leser: Implementation of Database Systems 70

Algorithm

Enumerate physical 
plans for accessing Ri

Prune all except one

Prune all except one

such that S ∪ X = O
X)                 
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Dynamic Programming

• DP is a heuristic for join order optimization
• Issue 1: Main DP assumption broken

– Assumption: Any subplan of an optimal plan is optimal
– Not true: Optimal plan might involve Cartesian Products 

• Example later

• Issue 2: Inaccuracies of the cost model
– Optimizers can only work as good as their inputs – cardinality 

estimates
– These often are not very accurate (next lecture)
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Dynamic Programming

• DP is a heuristic for join order optimization
• Issue 3: Effect of sorting on choice of join methods

– Decisions on join method are taken early and are never revised
– But it might pay off to perform a more costly sort-merge-join early 

because the order can also be exploited in all future joins
– Requires choice of a suboptimal plan for small join groups
– Solution: Keep different “optimal” plans for each join group
– System R: One plan per “interesting” sort order 

• Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A. and Price, T. G. (1979). 
"Access Path Selection in a Relational Database Management System". SIGMOD 1979
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Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example
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Ingredients

• We can evaluate different access paths for a single relation
• We can generate various equivalent relational algebra 

terms for computing a query
• We can optimize join order

– Given selectivity estimates
• Query optimization = 

Search space (space of all possible plans) +
Search strategy (algorithm to enumerate plans) +
Cost functions for pruning plans (still missing)
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Search Strategies

• Searching a huge search space for a good (optimal) 
solution is a common computer science problem
– Exhaustive search

• Guarantees optimal result, but often too expensive
– Heuristic method

• Greedy/Hill-Climbing: only use one alternative for further search
– Genetic optimization 

• Generate some good plans
• Build combinations

– Simulated annealing
– …

• Many join-order algorithms: Steinbrunn, Moerkotte, Kemper (1997). 
"Heuristic and randomized optimization for the join ordering problem." VLDB 
Journal: 191-208.
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Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example
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Star Join

Sales
Product_id
Day_id
Shop_id
amount
price

Time
day_id
day
month_id
month
year_id
year Localization

shop_id
shop_name
region_id
region_name

Product
product_id
product_name
pg_id
pg_name

• Typische Anfrage gegen Star Schema
– Aggregation und Gruppierung
– Bedingungen auf den Werten der Dimensionstabellen
– Joins zwischen Dimensions- und Faktentabelle
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Beispielquery

• Alle Verkäufe von Produkten der Produktgruppe ‚Wasser‘ 
in Berlin im Januar der Jahre 1997, 1998, 1999, 
gruppiert nach Jahr

SELECT T.year, sum(amount*price)
FROM Sales S, Product P, Time T, Localization L
WHERE P.pg_name=‚Wasser‘ AND

P.product_id = S.product_id AND
T.day_id = S.day_id AND
T.year in (1997, 1998, 1999) AND
T.month = ‚1‘ AND
L.shop_id = S.shop_id AND
L.region_name=‚Berlin‘ 

GROUP BY T.year
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Anfrageplanung

• Anfrage enthält 3 Joins über 4 Tabellen
• Zunächst 4! left-deep join trees

– Aber: Nicht alle Tabellen sind mit allen gejoined
• Star-Join: Nur 3! beinhalten kein Kreuzprodukt

Sales

Location
Time

Productσregion_name=‚Berlin'

σyear in (1997,1998, 1999)

σpg_name=‚Wasser'

σmonth=1
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Heuristiken 

• Typisches Vorgehen
– Auswahl des Planes nach Größe der Zwischenergebnisse
– Keine Beachtung von Plänen, die kartesisches Produkt enthalten

Sales

LocationProduct

σregion_name=‚Berlin'σpg_name=‚Wasser'

Kartesisches Produkt

Time

σyear in (1997,1998, 1999)

σmonth=1
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Abschätzung von Zwischenergebnissen

Annahmen
• M= |S| = 100.000.000
• 20 Verkaufstage pro Monat
• Daten von 10 Jahren
• 50 Produktgruppen a 20 

Produkten
• 15 Regionen a 100 Shops
• Gleichverteilung aller Verkäufe

Größte des Ergebnis
• Selektivität Zeit

• 60 Tage:
(M / (20*12*10)) * 3*20

• Selektivität ‚Wasser‘
• 20 Produkte 

(M / (20*50)) * 20
• Selektivität ‚Berlin‘

• 100 Shops 
(M / (15*100)) * 100

• Gesamt
• 3.333 Tupel

• Selektivität: 0,00003%

SELECT T.year, sum(amount*price)
FROM Sales S, Product P, Time T, Localization L
WHERE P.pg_name=‚Wasser‘ AND

P.product_id = S.product_id AND
T.day_id = S.day_id AND
T.year in (1997, 1998, 1999) AND
T.month = ‚1‘ AND
L.shop_id = S.shop_id AND
L.region_name=‚Berlin‘ 

GROUP BY T.year
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Left-deep Pläne

Zwischen-
ergebnis

1. Join
(M / 15)

6.666.666

2. Join 
(|J1|*3/120)

166.666

3. Join
(|J2|/50)

3.333

Zwischen-
ergebnis

1. Join
(M / 50)

2.000.000

2. Join
(|J1|*3/120)

50.000

3. Join
(|J2|/ 15)

3.333

Sales Location

Time

Product

Time

Location

ProductSales



Ulf Leser: Implementation of Database Systems 83

Plan mit kartesischen Produkten

Zwischenergebnis

1. Time x Location
(3*20 * 100)

6.000

2. ... x Product 
(|P1 |*20)

120.000

3. ... ⋈ Sales 3.333

Time Location

Product

Sales

• Wie optimiert man Star-Joins? 
• Siehe Modul „Data Warehousing“
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