
Ulf Leser

Datenbanksysteme II:
Query Optimization

Ulf Leser: Implementation of Database Systems 2

5 Layer Architecture

We are here
Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 3

Content of this Lecture

• Introduction
• Rewriting Subqueries
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example

Ulf Leser: Implementation of Database Systems 4

Is Optimization Worth It?

• Goal: Find fastest way to compute a query result
– Generate and assess different physical plans to answer the query
– All plans must be semantically equivalent – always the same result

• Optimization itself costs time
– Some steps have exponential complexity

• E.g. join order: 10 joins – potentially ~310 steps
– Finding the best plan might take more time than executing an

arbitrary plan
• And usually we don’t find the best plan anyway

• Why bother?

Ulf Leser: Implementation of Database Systems 5

Example

SELECT C.name, C.address
FROM customer C, order O
WHERE C.name = O.c_name AND

O.product = „coffee“

• Assumptions
– 1:n relationship between C and O
– |C|=100, 5 tuples per block, b(C)=20
– |O|=10.000, 10 tuples per block, b(O) = 1.000
– Result size: 50 tuples
– Intermediate results

• (C.name, C.address): 50 per block
• Join result (C,O) with full tuples: 3 per block

– Small main memory

order
o_id
c_name
product
...

customer
name
address
...

Ulf Leser: Implementation of Database Systems 6

First Attempt

• Translate in relational algebra
– πname,adr(σO.C_name=C.name ∧ O.product=‚coffee‘ (C x O))

• Interpret query „from inner to outer“
– No optimization yet

• Assume materialization of
intermediate results
– No caching, no pipelining

πname,adr

σO.C_name=C.name ∧ O.product=‚coffee‘

C x O

Customer Order

Ulf Leser: Implementation of Database Systems 7

Cost

• Compute cross-product (block-nested-loop)
– Reads: b(C)*b(O)=20.000
– Writes: 100*10.000/3 ~ 333.000

• Compute selections
– Reads: 333.000
– Writes: 50/3 ~ 17

• Compute projection
– Reads: 17
– Writes: 50/50 ~ 1

• Altogether: ~ 686.000 IO
– 333.000 blocks temp space

required on disk

πname,adr

σO.C_name=C.name ∧ O.product=‚coffee‘

C x O

Customer Order

Ulf Leser: Implementation of Database Systems 8

Query Rewriting

• Rewrite into: πname,adr(C ⋈O.C_name=C.name(σO.product=‚coffee‘(O)))

• Compute selection on O
– Reads: 1.000, writes: 50/10 = 5

• Compute join using BNL
– Reads: 5 + b(C)*5 = 105
– Writes: 50/3 ~ 17

• Compute projection
– Reads: 17, writes: 50/50 ~ 1

• Altogether: 1.145
– 17 blocks temp space

• Maybe there is an ever better way?

πname,adr

C ⋈O.C_name=C.name O

Customer

Order

σO.product=‚coffee‘

Ulf Leser: Implementation of Database Systems 9

Better Plan

• Push projection
– πname,adr(πname,adr(C)⋈O.C_name=C.name(σO.product=‚coffee‘(O)))

• Compute selection on O
– Reads: 1.000, writes: 50/10 = 5

• Compute projection on C
– Reads b(C)=20, writes 100 / 50 = 2

• Compute join using nested loop
– Less space needed due to projection: Assume 6 per block
– Reads: 2 + 2*5 = 12, writes: 50/6 ~ 9

• Compute projection
– Reads: 9, writes: 50/50 ~ 1

• Altogether: 1.064
– 9 blocks temp space

Ulf Leser: Implementation of Database Systems 10

Even Better – Use Indexes

• Assume indexes on (O.product, O.C_name) and on
(C.name, C.address)

• Compute selection on O using index
– Reads: Roughly between 5 and 10 blocks

• Height of index plus consecutive blocks for 50 TIDs with
product=‘coffee’

• Number of blocks depends on fill degree of B-tree
• Assume 10 pointer in an index node: height = 4

– Writes: 50/10 = 5
• Due to the index, result already sorted by c.name
• What about a SM-Join?

Ulf Leser: Implementation of Database Systems 11

Even Better – Use Indexes

• …
• Compute join with sort merge

– Read C.name in sorted order using index
– Read O.c_name in sorted order using index
– Reads: 20 + 5 = 25
– Writes: 50/3 ~ 17

• Compute projection
– Reads: 17, writes: 50/50 ~ 1

• Altogether: between 85 and 90
(requiring 17 blocks on disk)

Ulf Leser: Implementation of Database Systems 12

Comparison

• Reduction by a factor of ~8.000
• DB should invest time in optimization

Read/Write Temp
space

Naive 686.000 333.000
Optimized, no index 1.064 9
With index ~90 17

Ulf Leser: Implementation of Database Systems 13

Steps in Optimization

• Parsing, view expansion, subquery rewriting
• Query minimization (maybe)
• Plan optimization

– Algebraic query rewriting (logical optimization)
– Cost estimation (cost-based optimization)
– Plan instantiation (physical optimization)
– Plan enumeration and pruning
– Note: Steps are executed in an interleaved fashion

• Selection of best plan
– According to cost model

• Code generation (compilation or interpretation)

Ulf Leser: Implementation of Database Systems 14

Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example

Ulf Leser: Implementation of Database Systems 15

Subquery Rewriting

• No equivalent in relational algebra: IN, EXISTS, ALL, …
– Generate subtrees with non-relational root node
– For optimization, a fully relational tree is easier to handle
– Transformation not always possible / advantageous

• We look at four cases of IN
– A subquery p is called correlated if it refers to a variable declared in

the outer query
– Uncorrelated without aggregation
– Uncorrelated with aggregation
– Correlated without aggregation
– Correlated with aggregation

• See literature for other predicates

Ulf Leser: Implementation of Database Systems 16

Example

Order
O_id
C_name
P_Id
Date
Total_price
revenue
...

Customer
Name
Address
...

Product
Id
P_Name
Price
...

Delivery
Id
O_ID
Date
Price
Quantity

Ulf Leser: Implementation of Database Systems 17

Uncorrelated Subquery without Aggregation

SELECT o_id
FROM order
WHERE p_id IN (SELECT id

FROM product
WHERE price<1)

• Option 1: Compute subquery and materialize result
– Advantageous if subquery appears more than once

• Option 2: Rewrite into join
– Allows global optimization

(i.e. index join)
– Be careful with duplicates

• Assuming id is PK of P (hence order:product is 1:n), example is fine
• Otherwise, we need to introduce a DISTINCT

SELECT o.o_id
FROM order o, product p
WHERE o.p_id = p.id AND

p.price < 1

Ulf Leser: Implementation of Database Systems 18

Uncorrelated Subquery with Aggregation

SELECT o_id
FROM order
WHERE p_id IN (SELECT max(id)

FROM product)

• (Only) option: Compute subquery and materialize result
• Rewriting not possible
• Other way of expressing such functionality: User-defined

table functions
– This would allow formulation as join
– But even harder to optimize

• Third way: Use view (two queries)
– Will look like a join, but same optimization problem change after

view expansion

Ulf Leser: Implementation of Database Systems 19

Correlated Subquery without Aggregation

SELECT o.o_id
FROM order o
WHERE o.o_id IN (SELECT d.o_id

FROM delivery d
WHERE d.o_id = o.o_id AND

d.date-o.date<5)

• For correlated sqs, full materialization is impossible
• Naïve computation requires one

execution of subquery for each
tuple of outer query

• Solution: Rewrite into join
– Again: Caution with duplicates

(if o:d is not 1:n, DISTINCT required)

SELECT o.o_id
FROM order o, delivery d
WHERE o.o_id = d.o_id AND

d.date-o.date<5

Ulf Leser: Implementation of Database Systems 20

Correlated Subquery with Aggregation

SELECT o.o_id
FROM order o
WHERE o.total_price NOT IN (SELECT sum(price*quantity)

FROM delivery d
WHERE d.o_id = o.o_id)

• Materialization not possible (correlation)
• Rewrite into join not possible (aggregation)
• Naïve computation requires one execution of subquery for

each tuple of outer query
• Solution: Rewrite into two queries

– That are optimized in isolation

Ulf Leser: Implementation of Database Systems 21

SELECT o.o_id
FROM order o
WHERE o.total_price NOT IN (SELECT sum(price*quantity)

FROM delivery d
WHERE d.o_id = o.o_id)

• Query 1
– Computes inner

query result for all
tuples of o

– Can be materialized

• Query 2

Correlated Subquery with Aggregation

CREATE VIEW all_sums AS
SELECT o_id, sum(price*quant) as tp
FROM delivery
GROUP BY o_id

SELECT o.o_id
FROM order o, all_sums s
WHERE o.total_price != s.tp

AND o.o_id = s.o_id

Ulf Leser: Implementation of Database Systems 22

Always Better?

• Be careful
• This rewriting only pays off when many OID’s are required
• Counter example

– Materialization computes sums for many OIDs that are never used
• And need a lot of space for the materialization

– Nested execution probably better

SELECT o.o_id
FROM order o
WHERE o.total_price NOT IN (SELECT sum(price*quantity)

FROM delivery d
WHERE d.o_id = o.o_id)

AND o.total_price> SOME_VERY_LARGE_PRICE

Ulf Leser: Implementation of Database Systems 23

Subquery rewriting Wrap-Up

• Some subqueries with IN can be rewritten in single SPJ
queries, some not
– A syntactical rewrite is always possible using views
– This doesn’t help the optimizer, but the developer

• Same holds true for other “unusual” predicates
– Many detailed rules; see literature, such as

• Seshadri et al. (1996). Complex query decorrelation. ICDE
• Elhemali et al. (2007). Execution strategies for SQL subqueries. SIGMOD

• Special problems occur when subqueries appear multiple
times in a single query
– Syntax: Use “WITH” predicate
– Optimization: Detection of repeated query fragments

Ulf Leser: Implementation of Database Systems 24

Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example

Ulf Leser: Implementation of Database Systems 25

Query Minimization 1

• Especially important when views are involved or queries
are created programmatically

CREATE VIEW good_business
SELECT C.name, O.O_id, O.revenue
FROM customer C, order O
WHERE C.name = O.name AND O.revenue>1.000

– Find very good customers using view as first filter
SELECT name SELECT C.name
FROM good_business FROM customer C, order O
WHERE revenue>5.000 WHERE C.name = O.name AND

O.revenue>1.000 AND
O.revenue>5.000

• Optimization: Remove redundant condition

Ulf Leser: Implementation of Database Systems 26

Query Minimization 2

• Especially important when views are involved or queries
are created programmatically

CREATE VIEW good_business
SELECT C.name, O.O_id, O.revenue
FROM customer C, order O
WHERE C.name = O.name AND O.revenue>1.000

– Find goods from good businesses
SELECT G.name, O.good SELECT C.name, o2.good
FROM good_busi G,order O FROM custom C,ord O1,ord O2
WHERE G.o_id = O.o_id WHERE C.name=O1.name AND

O1.revenue>1000 AND
O1.o_id=O2.o_id

• Optimization: Remove redundant joins

Ulf Leser: Implementation of Database Systems 27

Techniques (sketch)

• Group conjunctive conditions with constants per attribute
and compute minimal intervals (or find contradictions)
– Different techniques for OR, XOR, NOT

• Equi-Joins: Build join graph, compute transitive closure,
and find minimal spanning tree
– Be careful with join attributes – must all be the same
– “Minimal” already assumes a cost estimate (later)
– Different MST’s – different plans – different runtimes

• Theta-Joins: Translate into propositional logical formula
and test for soundness

• …

Ulf Leser: Implementation of Database Systems 28

Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example

Ulf Leser: Implementation of Database Systems 29

• Definition
Let E1 und E2 be two relational algebra expressions over
a schema S. E1 and E2 are called equivalent iff
– E1 and E2 contain the same relations R1 . . . Rn
– For any instances of S, E1 and E2 compute the same result

• Optimizers generate equivalent expressions by applying
provably correct rewrite rules
– Testing if two query are equivalent is a different topic

• We look at a few such rules
– There exist more (see literature)

Equivalence of Relational Algebra Expressions

Ulf Leser: Implementation of Database Systems 30

Rules for Joins and Products

• Assume
– E1 , E2 , E3 are relational expressions (queries)
– Cond, Cond1, Cond2 are (equi-)join conditions

• Rule 1: Joins and Cartesian-products are commutative
E1 ⋈Cond E2 ≡ E2 ⋈Cond E1

E1 × E2 ≡ E2 × E1

• Rule 2: Joins and Cartesian-products are associative
(E1 ⋈Cond1 E2) ⋈Cond2 E3 ≡ E1 ⋈Cond1 (E2 ⋈Cond2 E3)

Requirement: E3 joins with E2 (and not with E1)

(E1 × E2) × E3 ≡ E1 × (E2 × E3)

Ulf Leser: Implementation of Database Systems 31

Projections and Selections

• Assume
– A1, . . ., An and B1 , . . . , Bm are attributes of E
– Cond1 und Cond2 are conditions on E

• Rule 3: Cascading projections
If A1, . . ., An ⊇ B1 , . . . , Bm, then
Π { B1 , . . . , Bm} (Π { A1 , . . . , An} (E)) ≡ Π { B1 , . . . , Bm} (E)

• Rule 4: Cascading selections
σCond1 (σCond2 (E)) ≡ σCond2 (σCond1 (E))

≡ σCond1 and Cond2 (E)

Ulf Leser: Implementation of Database Systems 32

Projections and Selections Part 2

• Assume
– A1, . . ., An and B1 , . . . , Bm are attributes of E
– Cond1 und Cond2 are conditions on E

• Rule 5a. Exchange of projection and selection

π{ A1 ,..., An} (σCond (E)) ≡ σCond (π{ A1 ,..., An} (E))

Requirement: Cond contains only attributes A1, . . ., An

• Rule 5b. Injection of projection

π{A1…An} (σCond (E)) ≡ π{A1…An}(σCond (π{ A1… An, B1... Bm} (E))

Requirement: Cond contains only attributes A1…An and B1…Bm

Ulf Leser: Implementation of Database Systems 33

Joins and Projection/Selection

• Rule 6. Exchange of selection and join
σCond (E1 ⋈Cond1 E2) ≡ σCond (E1) ⋈Cond1 E2

Requirement: Cond contains only attributes of E1

• Rule 7. Exchange of selection and union/difference
σCond (E1 ∪ E2) ≡ σCond (E1) ∪ σCond (E2)

σCond (E1 − E2) ≡ σCond (E1) − σCond (E2)

Ulf Leser: Implementation of Database Systems 34

Joins and Projection/Selection

• Rule 9. Exchange of projection and join:

Π { A1 , . . . , An, B1 , . . . , Bm} (E1 ⋈Cond E2) ≡
Π { A1 , . . . , An} (E1) ⋈Cond Π { B1 , . . . , Bm} (E2)

Requirement: Cond contains only attributes A1…An , B1…Bm and A1…An
appear in E1 and B1…Bm appear in E2

• Rule 10. Exchange of projection and union:
Π { A1 ,... , An} (E1 ∪ E2) ≡

Π { A1 ,..., An}(E1) ∪Π { A1 .., An} (E2)

Ulf Leser: Implementation of Database Systems 35

Cartesian Product and Joins

• Rule 11: Turn Cartesian Products and cond into join

σCond (E1 × E2) ≡ E1 ⋈Cond E2

Requirement: Cond is a join condition between E1 and E2

Ulf Leser: Implementation of Database Systems 36

Example

• Query on a CUSTOMER database

SELECT Name, Account#, Savings
FROM customer C, account A, journal J
WHERE “Bond” ≤ Name ≤ “Carter” and

Address = “Chicago” and
Transaction = “Withdraw” and
Amount > 1,000,000 and
C.Account# = A.Account# and
C.Account# = J.Account#

Ulf Leser: Implementation of Database Systems 37

customer

σ

Π

×

“Bond” ≤ Name
Name ≤ “Carter”
Address = “Chicago”
Transaction = “Withdraw”
Amount > $1,000,000
C.Account# = A.Account#
C.Account# = J.Account#

×

account

journal

Name, Account#,
Savings

Initial Operator Tree

Ulf Leser: Implementation of Database Systems 38

×

σ C.Account#=J.Account#

×

Π
Name,Account#,

Savings

“Bond”≤Name
Name≤“Carter”

Address=“Chicago” Transac=“Withdraw”
Amount>1000000

σ

σ

σ

C.Account#=A.Account#

Breaking and Pushing Selections

CUSTOMER

ACCOUNT Journal

Ulf Leser: Implementation of Database Systems 39

Π

σ

σ

⋈

⋈

Introduce Joins

CUSTOMER ACCOUNT Journal

“Bond”≤Name
Name≤“Carter”

Address=“World”

C.Account#=A.Account#

Name,Account#,
Savings

C.Account#=J.Account#

Transac=“Withdraw”
Amount>1000000

Ulf Leser: Implementation of Database Systems 40

Π

σ

⋈

⋈

Pushing Projections

CUSTOMER
ACCOUNT

Journal

Name,Account#,
Savings

σ

Π

Π

Π Π

Π

Name,Account#,
Address

Name,Account#
…

…

…

X

Ulf Leser: Implementation of Database Systems 41

Caution

• Sometimes, pushing up selections also is beneficial
– Especially for conditions on join attributes

• Example (assume both actsin and movie have a year attribute)
CREATE VIEW movies99 AS
SELECT title, year, studio
FROM movie WHERE year=1999

⋈

movie

Actsinσyear=99

⋈

movie Actsin

σyear=99 ⋈

movie Actsin

σyear=99 σyear=99

SELECT m.title, a.name
FROM movies99 m, actsin a
WHERE m.title=a.title AND

m.year=a.year

If this tree is
generated in
first place …

Ulf Leser: Implementation of Database Systems 42

Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting

– Rule based rewriting
– Cost based rewriting

• Optimizing Join Order
• Plan Enumeration
• A counter-example

Ulf Leser: Implementation of Database Systems 43

• Usually there are infinitely many rewrite steps
– But not infinitely many different plans
– Rewritings may go back and forth

• Give it a goal: What is a beneficial rewriting?
• General heuristic: Minimize size of intermediate results

– Less IO if materialization is necessary
– Less work for operations that are higher in the plan

• Option 1: Rule-based
– Old school, simple

• Option 2: Cost-Based
– State-of-the-art, more complex

Term Rewriting: Algebraic Optimization

Ulf Leser: Implementation of Database Systems 44

• Goal: Find a fixed order in which rewrite steps are
applied such that the final plan is faster than the
original plan

• Rule-based optimization
– Rules typically disregard the concrete database instance

• That’s why RBO fails to achieve SOTA results
– Use heuristics for prioritizing rewrite rule
– Based on experience – rules that are beneficial in most cases
– Simple to implement, fast optimization
– But: Most real instances lead to non-optimal plans

• Though hopefully still better than the original plan

Rule Based Query Optimization (RBO)

Ulf Leser: Implementation of Database Systems 45

A Simple Rule-Based Optimizer

• First down: Break and push down conditions/projections
– Break conjunctive selections into sets of atomic selections
– Break combined projections into atomic projections
– Push selects/projects as deep down the tree as possible

• Then up: Merge operations
– Replace selection and Cartesian product with join
– Merge neighboring atomic selections into combined selections
– Merge neighboring atomic projections into combined projections

• Avoid Cartesian Products (if possible)
– Choose other join order, start optimization again

• Finally physical: Choose concrete implementations
– If there is a condition on an indexed attribute – use the index
– For a join over PK-FK relationships: Use sort-merge
– Other joins: Use hash join

Ulf Leser: Implementation of Database Systems 46

SELECT s.Semester
FROM student s, hoeren h

vorlesung v, professor p
WHERE p.name = “Sokrates” and

v.gelesenvon = p.persnr and
v.vorlnr = h.vorlnr and
h.matrnr = s.matrnr

student hoeren

vorlesung

professor

×

×

×

σp.name = ´Sokrates´ and ...

πs.semester

Example

Ulf Leser: Implementation of Database Systems 47

Break Up Selections

s h

v

p

×

×

×

σp.Name = ´Sokrates´ and ...

πs.Semester

s h v
p×

×
×

σp.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

σs.MatrNr=h.MatrNr

σv.VorlNr=h.VorlNr

Ulf Leser: Implementation of Database Systems 48

Push Selections

s h

v
p×

×

×

σp.PersNr=v.gelesenVon

πs.Semester

σp.Name = `Sokrates`
σs.MatrNr=h.MatrNr

σv.VorlNr=h.VorlNr

s h v

p×
×

×

σp.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

σs.MatrNr=h.MatrNr

σv.VorlNr=h.VorlNr

Ulf Leser: Implementation of Database Systems 49

Rewrite Product+Selection into Joins

s h

v
p

×

×

×

σp.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

σs.MatrNr=h.MatrNr

σv.VorlNr=h.VorlNr

s h
v

p
⋈s.MatrNr=h.MatrNr

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

Ulf Leser: Implementation of Database Systems 50

Break and Push Projections

s h

v

p

⋈s.MatrNr=h.MatrNr

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

s h

v

p

⋈s.MatrNr=h.MatrNr

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

πMatrNr,vorlNrπMatrNr,semester

… …

… …

Ulf Leser: Implementation of Database Systems 51

Order of Joins: Indistinguishable

s

h

v
p

⋈s.MatrNr=h.MatrNr

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

s h

v
p

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

⋈s.MatrNr=h.MatrNr

Ulf Leser: Implementation of Database Systems 52

Limitations

• RBO is data-independent
• Optimal selection of operators impossible without estimates

about size of results (cardinality, width)
– Best index, best join method, best join order – all depend on the

concrete input and output of an operation
• No rules for order of joins
• Rules are partly contradictory

– E.g. Conjunctive selections and composite indexes

Ulf Leser: Implementation of Database Systems 53

Join Order – Does it Matter?

• Assume uniform distributions
– There are 1.000 students, 20 professors, 80 courses
– Each professor gives 4 courses
– Each student listens to 4 courses
– Each course is followed by 50 students (4000 “hören” tuples)

Ulf Leser: Implementation of Database Systems 54

Join Order – Does it Matter?

• Compute σSokrates(P)⋈(V⋈(S⋈H))
– Inner join: 1000*4 = 4000 tuples
– Next join: Again 4000 tuples
– Last join selects only 1/20 of

intermediate results = 200
– Intermediate result sizes:

4000 + 4000 + 200 = 8200
• Compute S⋈(H⋈(σSokrates(P)⋈V))

– Inner join selects 4 tuples
– Next join generates 50*4= 200 tuples
– Last join: No change
– Intermediate result sizes:

4 + 200 + 200 = 404

s h

v p

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

⋈s.MatrNr=h.MatrNr

s

h

v
p

⋈s.MatrNr=h.MatrNr

⋈p.PersNr=v.gelesenVon

πs.Semester

σp.Name = ´Sokrates´

⋈v.VorlNr=h.VorlNr

Ulf Leser: Implementation of Database Systems 55

Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting

– Rule based rewriting
– Cost based rewriting

• Optimizing Join Order
• Plan Enumeration
• A counter-example

Ulf Leser: Implementation of Database Systems 56

Cost-Based Query Optimization (CBO)

• Goal: Find the plan that is cheapest among all possible
plans given a cost model

– “Possible” – Created by a finite sequence of rewrite rules
• Cost-based optimization

– Use a clever algorithm to enumerate possible plans
– Estimate effect of all individual rewritings regarding a cost model
– Use this to compute a cost per (sub-)plan
– Prune parts of the search space wherever possible

• When it is clear that they will not find better plans
– Choose cheapest

• Variations in optimization goal
– Global: Chose plan with smallest sum of intermediate results
– Bound: Chose plan with smallest maximal intermediate result

Ulf Leser: Implementation of Database Systems 57

Enumerating Query Plans

• Assume a plan P of size p=|P| with j joins
– Size: Number of predicates in the plan (~nodes in the tree)

• Rewritings may …
– Merge / break selections/projections (into atomic form)

• Creates up to c different plans, when c is length of longest predicate
– Move a selection/projection up/down the tree

• Creates up to p different plans per predicate
– Change order of joins (or Cartesian products)

• Need to consider concrete join predicates
• Creates in worst case more than j! different plans (see later)

• Typical plan enumeration strategy
– Push predicates as deep as possible
– Find best join order

Ulf Leser: Implementation of Database Systems 58

Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example

Ulf Leser: Implementation of Database Systems 59

Optimizing Join Order

• Possible / reasonable join orders
– Depending on join conditions, many orders involve intermediate

cross-products
• (R(A)⋈AS(A,B))⋈BT(B) = R(A)⋈A(S(A,B)⋈BT(B)) =

(R(A) x T(B)) ⋈AS(A,B)⋈BS(A,B)

– Most join-order algorithms disregard any plan containing a cross-
product – which heavily reduces the search space

– In the following, we assume that no order involves a Cartesian
Product (e.g., all tables join on the same attribute)

R S

T⋈
⋈

R

S T

⋈
⋈

R

S

T

⋈
x

⋈

Ulf Leser: Implementation of Database Systems 60

Left/Right-deep versus Bushy Join Trees

• There is one left-deep tree topology, but still O(n!) orders
• There are (2n-3)!/(2n-2*(n-2)!) unordered binary trees with

n leaves, and for each O(n!) orders
– Some are equivalent

R S T U

⋈ ⋈

⋈

R S T U
⋈

⋈
⋈

Left-deep join tree Bushy join tree

Ulf Leser: Implementation of Database Systems 61

Choosing a Join Order

• Typical first heuristic: Consider only left-deep trees
– Used, for instance, in Oracle
– Can be pipelined efficiently
– Usually generates among the best plans
– But suboptimal if parallel execution is possible

• But there are still O(n!) possible orders
• Second Heuristic: Use dynamic programming with pruning

– Generate plans bottom up: Plans for pairs, triples, …
– For each join group, keep only best plan
– Use these to enumerate possibilities for larger join groups
– Prune all subplans containing a Cartesian Product
– Still is a heuristic - later

Ulf Leser: Implementation of Database Systems 62

Join Groups
{}

{R} {S} {T} {U}

{R S} {R T} {R U} {S T} {S U} {T U}

{R S T} {R S U} {S T U} {R T U}

{R S T U}

• There are (n over i) join groups with i elements
• Within each join group, there are many different orderings

Ulf Leser: Implementation of Database Systems 63

Details

• Create a table containing for each join group

• Prune if this would involve a Cartesian product
• Estimated size of result (how: next lecture)

– Cost of this operator
• Minimal cost for computing the inputs to this group

– Minimal cost of “getting there”
– We use sum of intermediate result sizes in the subtree of this group

• Optimal plan for computing this group
– Executable plan of “getting there” with minimal cost

Ulf Leser: Implementation of Database Systems 64

Induction

• Induction over sizes of join groups
– i=1: Consider every relation in isolation

• Size = Size of relation
• Cost = 0 (access costs of leaf nodes are identical for all plans)
• Plan: Table access

– i=2: Consider each pair of joined relations
• Size: Estimated size of join result
• Cost = 0 (sum of all inputs is identical - ignore)
• Plan: Physical join method

– E.g.: BNL with smaller relation as inner relation)
– This method will never change again

Ulf Leser: Implementation of Database Systems 65

Induction

• Induction over sizes of join groups
– i=1: Consider every relation in isolation

• Size = Size of relation
• Cost = 0 (access costs of leaf nodes are identical for all plans)
• Plan: Table access

– i=2: Consider each pair of joined relations
• Size: Estimated size of join result
• Cost = 0 (sum of all inputs is identical - ignore)
• Plan: Physical join method

– E.g.: BNL with smaller relation as inner relation)
– This method will never change again

– i=3: Consider each pair in each triple and join with third relation
• …

Ulf Leser: Implementation of Database Systems 66

Induction

• Induction over sizes of join groups
– …
– i=3: Consider each pair in each triple and join with third relation

• Loop-up minimal cost for all involved pairs (from table)
• For each pair, add its cost and cost of joining with the third relation
• Choose plan with lowest cost
• …

R,S S,T R,T

Size 500 1300 200

Cost 0 0 0

Plan HJ HJ HJ

(R⋈S)⋈T): 500+0

(S⋈T)⋈R): 1300+0

(R⋈T)⋈S): 200+0

Ulf Leser: Implementation of Database Systems 67

Example 1

{R} {S} {T} {U}

Kardinalität 1000 1000 1000 1000

Kosten 0 0 0 0

Optimaler Plan scan(R) scan(S) scan(T) scan(U)

R

S T

U

• We join four relations R, S, T, U
• Four join conditions

Sheet1

				{R}		{S}		{T}		{U}

		Kardinalität		1000		1000		1000		1000

		Kosten		0		0		0		0

		Optimaler Plan		scan(R)		scan(S)		scan(T)		scan(U)

Ulf Leser: Implementation of Database Systems 68

Example 2

{R,S} {R,T} {R,U} {S,T} {S,U} {T,U}

Kardinalität 5000 1M 10000 2000 1M 1000

Kosten 0 0 0 0 0 0

opt. Plan R S R T R U S T S U T U

{R,S,T} {R,S,U} {R,T,U} {S,T,U}

Kardinalität 10000 50000 10000 2000

Kosten 2000 5000 1000 1000

opt. Plan (S T) R (R S) U (T U) R (T U) S

XX
R

S T

U

… Prune CPs
Estimate
somehow

Better than
S⋈(RxT) and (R⋈S)⋈T

Sheet1

				{R,S}		{R,T}		{R,U}		{S,T}		{S,U}		{T,U}

		Kardinalität		5000		1M		10000		2000		1M		1000

		Kosten		0		0		0		0		0		0

		opt. Plan		R S		R T		R U		S T		S U		T U

Sheet1

				{R,S,T}		{R,S,U}		{R,T,U}		{S,T,U}

		Kardinalität		10000		50000		10000		2000

		Kosten		2000		5000		1000		1000

		opt. Plan		(S T) R		(R S) U		(T U) R		(T U) S

Ulf Leser: Implementation of Database Systems 69

Example 3

{R,S,T} {R,S,U} {R,T,U} {S,T,U}

Kardinalität 10000 50000 10000 2000

Kosten 2000 5000 1000 1000

opt. Plan (S T) R (R S) U (T U) R (T U) S

Plan Kosten

((S T) R) U 12k

((R S) U) T 55k

((T U) R) S 11k
((T U) S) R 3k

R

S T

U

Best plan

Sheet1

				{R,S,T}		{R,S,U}		{R,T,U}		{S,T,U}

		Kardinalität		10000		50000		10000		2000

		Kosten		2000		5000		1000		1000

		opt. Plan		(S T) R		(R S) U		(T U) R		(T U) S

Sheet1

		Plan		Kosten

		((S T) R) U		12k

		((R S) U) T		55k

		((T U) R) S		11k

		((T U) S) R		3k

Ulf Leser: Implementation of Database Systems 70

Algorithm

Enumerate physical
plans for accessing Ri

Prune all except one

Prune all except one

such that S ∪ X = O
X)

Ulf Leser: Implementation of Database Systems 71

Dynamic Programming

• DP is a heuristic for join order optimization
• Issue 1: Main DP assumption broken

– Assumption: Any subplan of an optimal plan is optimal
– Not true: Optimal plan might involve Cartesian Products

• Example later

• Issue 2: Inaccuracies of the cost model
– Optimizers can only work as good as their inputs – cardinality

estimates
– These often are not very accurate (next lecture)

Ulf Leser: Implementation of Database Systems 72

Dynamic Programming

• DP is a heuristic for join order optimization
• Issue 3: Effect of sorting on choice of join methods

– Decisions on join method are taken early and are never revised
– But it might pay off to perform a more costly sort-merge-join early

because the order can also be exploited in all future joins
– Requires choice of a suboptimal plan for small join groups
– Solution: Keep different “optimal” plans for each join group
– System R: One plan per “interesting” sort order

• Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A. and Price, T. G. (1979).
"Access Path Selection in a Relational Database Management System". SIGMOD 1979

Ulf Leser: Implementation of Database Systems 73

Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example

Ulf Leser: Implementation of Database Systems 74

Ingredients

• We can evaluate different access paths for a single relation
• We can generate various equivalent relational algebra

terms for computing a query
• We can optimize join order

– Given selectivity estimates
• Query optimization =

Search space (space of all possible plans) +
Search strategy (algorithm to enumerate plans) +
Cost functions for pruning plans (still missing)

Ulf Leser: Implementation of Database Systems 75

Search Strategies

• Searching a huge search space for a good (optimal)
solution is a common computer science problem
– Exhaustive search

• Guarantees optimal result, but often too expensive
– Heuristic method

• Greedy/Hill-Climbing: only use one alternative for further search
– Genetic optimization

• Generate some good plans
• Build combinations

– Simulated annealing
– …

• Many join-order algorithms: Steinbrunn, Moerkotte, Kemper (1997).
"Heuristic and randomized optimization for the join ordering problem." VLDB
Journal: 191-208.

Ulf Leser: Implementation of Database Systems 76

Content of this Lecture

• Introduction
• Rewriting Subqueries
• Query Minimization
• Algebraic Term Rewriting
• Optimizing Join Order
• Plan Enumeration
• A counter-example

Ulf Leser: Implementation of Database Systems 77

Star Join

Sales
Product_id
Day_id
Shop_id
amount
price

Time
day_id
day
month_id
month
year_id
year Localization

shop_id
shop_name
region_id
region_name

Product
product_id
product_name
pg_id
pg_name

• Typische Anfrage gegen Star Schema
– Aggregation und Gruppierung
– Bedingungen auf den Werten der Dimensionstabellen
– Joins zwischen Dimensions- und Faktentabelle

Ulf Leser: Implementation of Database Systems 78

Beispielquery

• Alle Verkäufe von Produkten der Produktgruppe ‚Wasser‘
in Berlin im Januar der Jahre 1997, 1998, 1999,
gruppiert nach Jahr

SELECT T.year, sum(amount*price)
FROM Sales S, Product P, Time T, Localization L
WHERE P.pg_name=‚Wasser‘ AND

P.product_id = S.product_id AND
T.day_id = S.day_id AND
T.year in (1997, 1998, 1999) AND
T.month = ‚1‘ AND
L.shop_id = S.shop_id AND
L.region_name=‚Berlin‘

GROUP BY T.year

Ulf Leser: Implementation of Database Systems 79

Anfrageplanung

• Anfrage enthält 3 Joins über 4 Tabellen
• Zunächst 4! left-deep join trees

– Aber: Nicht alle Tabellen sind mit allen gejoined
• Star-Join: Nur 3! beinhalten kein Kreuzprodukt

Sales

Location
Time

Productσregion_name=‚Berlin'

σyear in (1997,1998, 1999)

σpg_name=‚Wasser'

σmonth=1

Ulf Leser: Implementation of Database Systems 80

Heuristiken

• Typisches Vorgehen
– Auswahl des Planes nach Größe der Zwischenergebnisse
– Keine Beachtung von Plänen, die kartesisches Produkt enthalten

Sales

LocationProduct

σregion_name=‚Berlin'σpg_name=‚Wasser'

Kartesisches Produkt

Time

σyear in (1997,1998, 1999)

σmonth=1

Ulf Leser: Implementation of Database Systems 81

Abschätzung von Zwischenergebnissen

Annahmen
• M= |S| = 100.000.000
• 20 Verkaufstage pro Monat
• Daten von 10 Jahren
• 50 Produktgruppen a 20

Produkten
• 15 Regionen a 100 Shops
• Gleichverteilung aller Verkäufe

Größte des Ergebnis
• Selektivität Zeit

• 60 Tage:
(M / (20*12*10)) * 3*20

• Selektivität ‚Wasser‘
• 20 Produkte

(M / (20*50)) * 20
• Selektivität ‚Berlin‘

• 100 Shops
(M / (15*100)) * 100

• Gesamt
• 3.333 Tupel

• Selektivität: 0,00003%

SELECT T.year, sum(amount*price)
FROM Sales S, Product P, Time T, Localization L
WHERE P.pg_name=‚Wasser‘ AND

P.product_id = S.product_id AND
T.day_id = S.day_id AND
T.year in (1997, 1998, 1999) AND
T.month = ‚1‘ AND
L.shop_id = S.shop_id AND
L.region_name=‚Berlin‘

GROUP BY T.year

Ulf Leser: Implementation of Database Systems 82

Left-deep Pläne

Zwischen-
ergebnis

1. Join
(M / 15)

6.666.666

2. Join
(|J1|*3/120)

166.666

3. Join
(|J2|/50)

3.333

Zwischen-
ergebnis

1. Join
(M / 50)

2.000.000

2. Join
(|J1|*3/120)

50.000

3. Join
(|J2|/ 15)

3.333

Sales Location

Time

Product

Time

Location

ProductSales

Ulf Leser: Implementation of Database Systems 83

Plan mit kartesischen Produkten

Zwischenergebnis

1. Time x Location
(3*20 * 100)

6.000

2. ... x Product
(|P1 |*20)

120.000

3. ... ⋈ Sales 3.333

Time Location

Product

Sales

• Wie optimiert man Star-Joins?
• Siehe Modul „Data Warehousing“

	Foliennummer 1
	5 Layer Architecture
	Content of this Lecture
	Is Optimization Worth It?
	Example
	First Attempt
	Cost
	Query Rewriting
	Better Plan
	Even Better – Use Indexes
	Even Better – Use Indexes
	Comparison
	Steps in Optimization
	Content of this Lecture
	Subquery Rewriting
	Example
	Uncorrelated Subquery without Aggregation
	Uncorrelated Subquery with Aggregation
	Correlated Subquery without Aggregation
	Correlated Subquery with Aggregation
	Correlated Subquery with Aggregation
	Always Better?
	Subquery rewriting Wrap-Up
	Content of this Lecture
	Query Minimization 1
	Query Minimization 2
	Techniques (sketch)
	Content of this Lecture
	Equivalence of Relational Algebra Expressions
	Rules for Joins and Products
	Projections and Selections
	Projections and Selections Part 2
	Joins and Projection/Selection
	Joins and Projection/Selection
	Cartesian Product and Joins
	Example
	Initial Operator Tree
	Breaking and Pushing Selections
	Introduce Joins
	Pushing Projections
	Caution
	Content of this Lecture
	Term Rewriting: Algebraic Optimization
	Rule Based Query Optimization (RBO)
	A Simple Rule-Based Optimizer
	Example
	Break Up Selections
	Push Selections
	Rewrite Product+Selection into Joins
	Break and Push Projections
	Order of Joins: Indistinguishable
	Limitations
	Join Order – Does it Matter?
	Join Order – Does it Matter?
	Content of this Lecture
	Cost-Based Query Optimization (CBO)
	Enumerating Query Plans
	Content of this Lecture
	Optimizing Join Order
	Left/Right-deep versus Bushy Join Trees
	Choosing a Join Order
	Join Groups
	Details
	Induction
	Induction
	Induction
	Example 1
	Example 2
	Example 3
	Algorithm
	Dynamic Programming
	Dynamic Programming
	Content of this Lecture
	Ingredients
	Search Strategies
	Content of this Lecture
	Star Join
	Beispielquery
	Anfrageplanung
	Heuristiken
	Abschätzung von Zwischenergebnissen
	Left-deep Pläne
	Plan mit kartesischen Produkten

