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Set Containment  Join

Job 
ID

Required skills

r1 {Java,C++}
r2 {Java,C++,SQL,EJB}
r3 {Java,C++,EAI}
r4 {Java,SOA}
r5 {Cloud}

Applica
nt ID

Qualifications

s1 {Java}
s2 {Java,C++,SOA}
s3 {Java,C++,SQL,EAI}
s4 {C++,EJB}
s5 {Java,EAI,EJB}
s6 {C++,SQL,EJB}
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Set Containment  Join

JID Required skills
r1 {Java,C++}
r2 {Java,C++,SQL,EJB}
r3 {Java,C++,EAI}
r4 {Java,SOA}
r5 {Cloud}

AID Qualifications
s1 {Java}
s2 {Java,C++,SOA}
s3 {Java,C++,SQL,EAI}
s4 {C++,EJB}
s5 {Java,EAI,EJB}
s6 {C++,SQL,EJB}

Job 
ID

Ap
pID

Required skills

r1 s2 {Java,C++, SOA}
r1 s3 {Java,C++,SQL,EAI}
r3 s3 {Java,C++,SQL, EAI}
r4 s2 {Java, C++, SOA}

=
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SQL Formulation [BMGT15]

Requires
Skill Course
Systems RDBMS-1
Systems OS
Databases RDBMS-1
Databases RDBMS-2

Passes
Student Course
Ana RDBMS-1
Ana OS
Peter RDBMS-1
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NF2 Formulation

Requires
Skill Course*
Systems {RDBMS-1,OS}
Databases {RDBMS-1, 

RDBMS-2}

Passes
Student Course*
Ana {RDBMS-1, OS}
Peter {RDBMS-1}

SELECT  student, skill
FROM requires R, student S
WHERE  S.course ⊆ R.course;
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Computing SCJ – The Early Years [HM03, MGM03]

• Build on normalized model
• Sort by ID and skills
• Sort-merge join, hash-join, partitioning etc. 

– Followed by postprocessing or group-by \ having
• Problem: Much unnecessary work (no early pruning)

Job 
ID

Required skills

r1 {Java,C++}
r2 {Java,C++,SQL,EJB}
r3 {Java,C++,EAI}
r4 {Java,SOA}
r5 {Cloud}

Job 
ID

Req.

r1 C++
r1 Java
r2 C++
r2 EJB
r2 Java
r2 SQL
r3 C++
r3 EAI
r3 Java
… …

A-ID Qual.
s1 Java
s2 C++
s2 Java
s2 SOA
s3 C++
s3 EAI
s3 Java
s3 SQL
s4 C++
s4 EJB
… …
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PRETTI: Prefix Tree for R / Inverted Index for S [JP05]

• Traverse PT(R) and look up lists in II(S)
• Progressively compute list intersections from II(S)
• Output Cartesian products when matches are found
• Problem: Still redundant work regarding II(S)

– Many occurrence of E, F, …

∩
∩
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PIEJoin: Use Two Prefix Trees

• Fix an arbitrary order of elements (frequency, alphabetical)
• Traverse both trees simultaneously 
• When finding a key in R, “extract” matching keys in S
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Traverse …
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Problem P1: When Match Found: 
Quickly Find all Keys in Subtree
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Traverse …
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Problem P2: Find all „D“‘s in Subtree below {A,B}
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PIEJoin: Jump the Queue

Use preorder indexing of PT(S) to solve both problems 
(with a few lookups)

[5;

[1;

[2;

[3;

[4;

[0;
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PIEJoin: Jump the Queue

Use preorder indexing of PT(S) to solve both problems 
(with a few lookups)

[5;5]

[1;

[2;6

[3;5]

[4;5]

[0;

[6;6] • All nodes p below a node n:
p.pre>n.pre and p.post≤n.post
– Build two lists sorted by pre/post
– Finding all p: 2*log(|R|)+list intersection
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P1: Find all Keys in Subtree

Use Preorder indexing to solve both problems 
(with a few lookups)

• All keys with preorder index in [2,6]
– Requires index preorder -> keys
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P2: Find All Occurrence of Search Key

Use Preorder indexing to solve both problems 
(with a few lookups)

• All nodes with preorder index in 
[2,6] and label “D”
– Requires index label -> preorder
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Trees can be very Space-Consuming

• Efficient implementation 
– Open source

• All based on arrays and integers, no pointers or objects
• See paper
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Evaluation

• Comp.: PRETTI [JP05], PRETTI+ [FLH+15], LIMIT+ [BMGT16]
• On-the-fly indexing in main memory 

• All included in measurements
• PRETTI+

• Use Patricia tree instead of prefix tree (more compact)
• LIMIT+

• Do not build prefix tree first, but progressively while traversing
• Large parts of the tree need not be build at all

• When intermediate lists become very small, stop traversing and 
directly verify remaining candidates

• Partition data sets in a clever way to create independent problems 
leading to shorter ID lists as intermediate results
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Evaluation

• Eight real-world data sets; non-self-joins in paper
• Some data sets properties

• Number of sets
• Number unique elements

• Fan-Out of prefix trees
• Average size of sets

• Depth of prefix trees
• Skewness of element frequencies

• Real-world data sets are skewed!

• Parameter: Sort-order (frequent first, infrequent first)
• Frequent first: Large intermediate sets, quickly shrinking
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Results

• PIEJoin outperforms PRETTI 
/ PRETTI+ in 7/8 data sets

• LIMIT+ outperforms PIEJoin
in 11/16 data sets

• Contradicting [FLH+15], our 
results indicate that PRETTI 
is faster than PRETTI+
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Intermediate Result

• PRETTI / PRETTI+ very sensitive to sort order
– Because only one prefix tree is used

• LIMIT+ is the overall fastest method
– But no orders-of-magnitude differences to PIEJoin

• LIMIT+ also fastest in RxS: 5x PIEJoin, 50x PRETTI
• PIEJoin has lowest memory footprint (factors 2-20)

• Natural next step: Partitioning and parallelization
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Partitioning SCJ on Prefix Trees

R

R.A R.B R.C R.D

S

S.A S.B S.C S.D

R.A
R.B

R.C

S.A
R.B

S.A

S.B
R.C

R.C

S.A

S.B

S.C

R.D

…



Ulf Leser: Implementation of Database Systems 23

Mind the Data: Partitioning SCJ on Prefix Trees

R

R.A R.B R.C R.D

S

S.A S.B S.C S.D
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Parallelization Issues

• Different sub-trees have largely different sizes
– Different sub-tree-joins need largely different run times
– Stragglers – bad scalability

• Concrete behavior depends on frequencies of sub sets
– Fortunately, element frequency does roughly correlate to work load



Ulf Leser: Implementation of Database Systems 25

Best we Have so Far

• As always: More partitions create better load balancing yet 
more overhead
– E.g. synchronization of result list
– Parameter rf: Create rf*DOP work groups

• DOP: Number of available (hardware) threads

• Observation: For large alphabets (>1000), partitioning at 
level 1 already creates dozens of millions of tasks 
– Too much overhead

• Solution: Sub-tree-joins are adaptively range-partitioned 
into work groups at level 1 or level 2
– Most work is done at upper levels – very large list intersections
– Greedy partitioning – find range with ~1/rf*DOP fraction of work
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Evaluation

• Sometimes wonderful

• Often ugly
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Reasons

• Often ugly

• Greedy is not optimal
• Element frequency is not a 

perfect predictor of work
• Work loads are very 

heterogeneous
• …



Ulf Leser: Implementation of Database Systems 28

Conclusions

• Set containment join: Operation with many applications
• Parallel PIEJoin: By far the fastest SCJ algorithm so far

– Efficient basic design + parallelization
– With 64 threads: Speedup of 30% to 550% compared to LIMIT+

• Further ideas
– Adaptive, scalable parallelization strategies

• No fixed “level 2”
• Better estimation of work
• Partition the sets, not the items?

– Given data set characteristics – determine optimal combination of 
sort-order and algorithm

• Related problem: Set join, Set similarity join
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Since 2016 

• Tt-Join (2017)
– Strong set filtering followed by tree-based verification
– Parallelization based on Map-Reduce paradigm

• LC-Join (2019)
– Different method to intersect ID lists

• FreshJoin (2019): Hash-based indexing and filtering
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