
Ulf Leser

Datenbanksysteme II:
Set Containment Join

Ulf Leser: Implementation of Database Systems 2

Set Containment Join

Job
ID

Required skills

r1 {Java,C++}
r2 {Java,C++,SQL,EJB}
r3 {Java,C++,EAI}
r4 {Java,SOA}
r5 {Cloud}

Applica
nt ID

Qualifications

s1 {Java}
s2 {Java,C++,SOA}
s3 {Java,C++,SQL,EAI}
s4 {C++,EJB}
s5 {Java,EAI,EJB}
s6 {C++,SQL,EJB}

Ulf Leser: Implementation of Database Systems 3

Set Containment Join

JID Required skills
r1 {Java,C++}
r2 {Java,C++,SQL,EJB}
r3 {Java,C++,EAI}
r4 {Java,SOA}
r5 {Cloud}

AID Qualifications
s1 {Java}
s2 {Java,C++,SOA}
s3 {Java,C++,SQL,EAI}
s4 {C++,EJB}
s5 {Java,EAI,EJB}
s6 {C++,SQL,EJB}

Job
ID

Ap
pID

Required skills

r1 s2 {Java,C++, SOA}
r1 s3 {Java,C++,SQL,EAI}
r3 s3 {Java,C++,SQL, EAI}
r4 s2 {Java, C++, SOA}

=

Ulf Leser: Implementation of Database Systems 4

SQL Formulation [BMGT15]

Requires
Skill Course
Systems RDBMS-1
Systems OS
Databases RDBMS-1
Databases RDBMS-2

Passes
Student Course
Ana RDBMS-1
Ana OS
Peter RDBMS-1

Ulf Leser: Implementation of Database Systems 5

NF2 Formulation

Requires
Skill Course*
Systems {RDBMS-1,OS}
Databases {RDBMS-1,

RDBMS-2}

Passes
Student Course*
Ana {RDBMS-1, OS}
Peter {RDBMS-1}

SELECT student, skill
FROM requires R, student S
WHERE S.course ⊆ R.course;

Ulf Leser: Implementation of Database Systems 6

Computing SCJ – The Early Years [HM03, MGM03]

• Build on normalized model
• Sort by ID and skills
• Sort-merge join, hash-join, partitioning etc.

– Followed by postprocessing or group-by \ having
• Problem: Much unnecessary work (no early pruning)

Job
ID

Required skills

r1 {Java,C++}
r2 {Java,C++,SQL,EJB}
r3 {Java,C++,EAI}
r4 {Java,SOA}
r5 {Cloud}

Job
ID

Req.

r1 C++
r1 Java
r2 C++
r2 EJB
r2 Java
r2 SQL
r3 C++
r3 EAI
r3 Java
… …

A-ID Qual.
s1 Java
s2 C++
s2 Java
s2 SOA
s3 C++
s3 EAI
s3 Java
s3 SQL
s4 C++
s4 EJB
… …

Ulf Leser: Implementation of Database Systems 7

PRETTI: Prefix Tree for R / Inverted Index for S [JP05]

• Traverse PT(R) and look up lists in II(S)
• Progressively compute list intersections from II(S)
• Output Cartesian products when matches are found
• Problem: Still redundant work regarding II(S)

– Many occurrence of E, F, …

∩
∩

Ulf Leser: Implementation of Database Systems 8

PIEJoin: Use Two Prefix Trees

• Fix an arbitrary order of elements (frequency, alphabetical)
• Traverse both trees simultaneously
• When finding a key in R, “extract” matching keys in S

Ulf Leser: Implementation of Database Systems 9

Traverse …

Ulf Leser: Implementation of Database Systems 10

Problem P1: When Match Found:
Quickly Find all Keys in Subtree

Ulf Leser: Implementation of Database Systems 11

Traverse …

Ulf Leser: Implementation of Database Systems 12

Problem P2: Find all „D“‘s in Subtree below {A,B}

Ulf Leser: Implementation of Database Systems 13

PIEJoin: Jump the Queue

Use preorder indexing of PT(S) to solve both problems
(with a few lookups)

[5;

[1;

[2;

[3;

[4;

[0;

Ulf Leser: Implementation of Database Systems 14

PIEJoin: Jump the Queue

Use preorder indexing of PT(S) to solve both problems
(with a few lookups)

[5;5]

[1;

[2;6

[3;5]

[4;5]

[0;

[6;6] • All nodes p below a node n:
p.pre>n.pre and p.post≤n.post
– Build two lists sorted by pre/post
– Finding all p: 2*log(|R|)+list intersection

Ulf Leser: Implementation of Database Systems 15

P1: Find all Keys in Subtree

Use Preorder indexing to solve both problems
(with a few lookups)

• All keys with preorder index in [2,6]
– Requires index preorder -> keys

Ulf Leser: Implementation of Database Systems 16

P2: Find All Occurrence of Search Key

Use Preorder indexing to solve both problems
(with a few lookups)

• All nodes with preorder index in
[2,6] and label “D”
– Requires index label -> preorder

Ulf Leser: Implementation of Database Systems 17

Trees can be very Space-Consuming

• Efficient implementation
– Open source

• All based on arrays and integers, no pointers or objects
• See paper

Ulf Leser: Implementation of Database Systems 18

Evaluation

• Comp.: PRETTI [JP05], PRETTI+ [FLH+15], LIMIT+ [BMGT16]
• On-the-fly indexing in main memory

• All included in measurements
• PRETTI+

• Use Patricia tree instead of prefix tree (more compact)
• LIMIT+

• Do not build prefix tree first, but progressively while traversing
• Large parts of the tree need not be build at all

• When intermediate lists become very small, stop traversing and
directly verify remaining candidates

• Partition data sets in a clever way to create independent problems
leading to shorter ID lists as intermediate results

Ulf Leser: Implementation of Database Systems 19

Evaluation

• Eight real-world data sets; non-self-joins in paper
• Some data sets properties

• Number of sets
• Number unique elements

• Fan-Out of prefix trees
• Average size of sets

• Depth of prefix trees
• Skewness of element frequencies

• Real-world data sets are skewed!

• Parameter: Sort-order (frequent first, infrequent first)
• Frequent first: Large intermediate sets, quickly shrinking

Ulf Leser: Implementation of Database Systems 20

Results

• PIEJoin outperforms PRETTI
/ PRETTI+ in 7/8 data sets

• LIMIT+ outperforms PIEJoin
in 11/16 data sets

• Contradicting [FLH+15], our
results indicate that PRETTI
is faster than PRETTI+

Ulf Leser: Implementation of Database Systems 21

Intermediate Result

• PRETTI / PRETTI+ very sensitive to sort order
– Because only one prefix tree is used

• LIMIT+ is the overall fastest method
– But no orders-of-magnitude differences to PIEJoin

• LIMIT+ also fastest in RxS: 5x PIEJoin, 50x PRETTI
• PIEJoin has lowest memory footprint (factors 2-20)

• Natural next step: Partitioning and parallelization

Ulf Leser: Implementation of Database Systems 22

Partitioning SCJ on Prefix Trees

R

R.A R.B R.C R.D

S

S.A S.B S.C S.D

R.A
R.B

R.C

S.A
R.B

S.A

S.B
R.C

R.C

S.A

S.B

S.C

R.D

…

Ulf Leser: Implementation of Database Systems 23

Mind the Data: Partitioning SCJ on Prefix Trees

R

R.A R.B R.C R.D

S

S.A S.B S.C S.D

Ulf Leser: Implementation of Database Systems 24

Parallelization Issues

• Different sub-trees have largely different sizes
– Different sub-tree-joins need largely different run times
– Stragglers – bad scalability

• Concrete behavior depends on frequencies of sub sets
– Fortunately, element frequency does roughly correlate to work load

Ulf Leser: Implementation of Database Systems 25

Best we Have so Far

• As always: More partitions create better load balancing yet
more overhead
– E.g. synchronization of result list
– Parameter rf: Create rf*DOP work groups

• DOP: Number of available (hardware) threads

• Observation: For large alphabets (>1000), partitioning at
level 1 already creates dozens of millions of tasks
– Too much overhead

• Solution: Sub-tree-joins are adaptively range-partitioned
into work groups at level 1 or level 2
– Most work is done at upper levels – very large list intersections
– Greedy partitioning – find range with ~1/rf*DOP fraction of work

Ulf Leser: Implementation of Database Systems 26

Evaluation

• Sometimes wonderful

• Often ugly

Ulf Leser: Implementation of Database Systems 27

Reasons

• Often ugly

• Greedy is not optimal
• Element frequency is not a

perfect predictor of work
• Work loads are very

heterogeneous
• …

Ulf Leser: Implementation of Database Systems 28

Conclusions

• Set containment join: Operation with many applications
• Parallel PIEJoin: By far the fastest SCJ algorithm so far

– Efficient basic design + parallelization
– With 64 threads: Speedup of 30% to 550% compared to LIMIT+

• Further ideas
– Adaptive, scalable parallelization strategies

• No fixed “level 2”
• Better estimation of work
• Partition the sets, not the items?

– Given data set characteristics – determine optimal combination of
sort-order and algorithm

• Related problem: Set join, Set similarity join

Ulf Leser: Implementation of Database Systems 29

Since 2016

• Tt-Join (2017)
– Strong set filtering followed by tree-based verification
– Parallelization based on Map-Reduce paradigm

• LC-Join (2019)
– Different method to intersect ID lists

• FreshJoin (2019): Hash-based indexing and filtering

Ulf Leser: Implementation of Database Systems 30

References

• Bouros, P., Mamoulis, N., Ge, S. and Terrovitis, M. (2015). "Set containment join
revisited." Knowledge and Information Systems.

• Deng, D., Yang, C., Shang, S., Zhu, F., Liu, L., & Shao, L. (2019). LCJoin: set
containment join via list crosscutting. ICDE

• Jampani, R., & Pudi, V. (2005). „Using prefix-trees for efficiently computing set joins“.
International Conference on Database Systems for Advanced Applications. Springer,
Berlin, Heidelberg.

• Kunkel, A., Rheinländer, A., Schiefer, C., Helmer, S., Bouros, P. and Leser, U. (2016).
"PIEJoin: Towards Parallel Set Containment Joins". Int. Conf. on Scientific and Statistical
Database Management, Budapest, Hungary.

• Luo, Y., Fletcher, G. H., Hidders, J., & De Bra, P. (2015). „Efficient and scalable trie-
based algorithms for computing set containment relations“. International Conference on
Data Engineering

• Luo, J., Zhang, W., Shi, S., Gao, H., Li, J., Wu, W., & Jiang, S. (2019). Freshjoin: An
efficient and adaptive algorithm for set containment join. Data Science and Engineering,
4(4), 293-308.

• Yang, J., Zhang, W., Yang, S., Zhang, Y., & Lin, X. (2017). “Tt-join: Efficient set
containment join”. ICDE

	Foliennummer 1
	Set Containment Join
	Set Containment Join
	SQL Formulation [BMGT15]
	NF2 Formulation
	Computing SCJ – The Early Years [HM03, MGM03]
	PRETTI: Prefix Tree for R / Inverted Index for S [JP05]
	PIEJoin: Use Two Prefix Trees
	Traverse …
	Problem P1: When Match Found: �Quickly Find all Keys in Subtree
	Traverse …
	Problem P2: Find all „D“‘s in Subtree below {A,B}
	PIEJoin: Jump the Queue
	PIEJoin: Jump the Queue
	P1: Find all Keys in Subtree
	P2: Find All Occurrence of Search Key
	Trees can be very Space-Consuming
	Evaluation
	Evaluation
	Results
	Intermediate Result
	Partitioning SCJ on Prefix Trees
	Mind the Data: Partitioning SCJ on Prefix Trees
	Parallelization Issues
	Best we Have so Far
	Evaluation
	Reasons
	Conclusions
	Since 2016
	References

