
Ulf Leser

Datenbanksysteme II:
Query Execution

Ulf Leser: Implementation of Database Systems 2

Content of this Lecture

• Overview: Query optimization
• Relational operators
• Query execution models
• Implementing (some) relational operators

Ulf Leser: Implementation of Database Systems 3

5 Layer Architecture

We are here

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 4

Query Optimization

• We have
– Structured Query Language SQL
– Relational algebra
– How to access tuples in many ways (scan, index, …)

• Now
– Given a SQL query
– Find a fast way and order of accessing tuples from different tables

such that the answer to the query is computed
– Usually, we won’t find the best way, but avoid the worst
– Use knowledge about value distributions, access paths, query

operators, IO cost, …
– Compile a declarative query in an “optimal” executable program

Ulf Leser: Implementation of Database Systems 5

Steps (Sketch)

• Translate query in a logical query execution plan (QEP)
– Structured representation of a relational algebra expression

• Logical optimization: QEPs are rewritten in other,
semantically equivalent and hopefully faster QEPs
– E.g., selection is commutative: σA(σB(expr)) = σB(σA(expr))

• Physical optimization: For each (relational) operator in the
query, we have multiple possible implementations
– Table access: scan, indexes, sorted access through index, …
– Joins: Nested loop, sort-merge, hash, …

• Query execution: Execute the best query plan found

Ulf Leser: Implementation of Database Systems 6

parse

convert

estimate selectivities

Logical / physical
Rewriting

execute

SQL query

Parse tree

Logical QEP

Overview Optimization

Annotated QEP

Many equivalent QEPs

Best plan

Search space traversal

Result

Ulf Leser: Implementation of Database Systems 7

parse

convert

estimate selectivities

Logical / physical
Rewriting

execute

SQL query

Parse tree

Logical QEP

Update
statistics

Overview Optimization

Annotated QEP

Many equivalent QEPs

Best plan

Search space traversal

Result

Stat Store

Ulf Leser: Implementation of Database Systems 8

parse

convert

estimate selectivities

Logical / physical
Rewriting

execute

SQL query

Parse tree

Logical QEP

Adaptive Optimization

Annotated QEP

Many equivalent QEPs

Best plan

Search space traversal

Update selectivities

Plan adaptation

Annotated QEP

Result

Ulf Leser: Implementation of Database Systems 9

SELECT title
FROM starsIn i, movieStar m
WHERE i.starName = m.name AND

m.birthday<1970;

(Find all movies with stars born before 1970)

Example SQL query

Ulf Leser: Implementation of Database Systems 10

<Query>

<SFW>

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelNames> <Cond1> AND <Cond2>

Parse TreeSELECT title
FROM starsIn i, movieStar m
WHERE i.starName = m.name AND

m.birthday<1970

title startsIn, movieStar

=

<Arg1>

<Arg2>
<comp-op>

i.starName

m.name <

<Arg1>

<Arg2>
<comp-op>

m.birthday 1970

Ulf Leser: Implementation of Database Systems 11

Πtitle

σstarName=name

starsIn Πname

σbirthdate<1970

movieStar

×

Relational Algebra / Logical Query Plan

Πtitle (σstarName=name(
starsIn × Πname(σbirthdate<1970(movieStar))))

SELECT title
FROM starsIn i, movieStar m
WHERE i.starName = m.name AND

m.birthday<1970

Ulf Leser: Implementation of Database Systems 12

Πtitle

starName=name

StarsIn Πname

σbirthdate<1970

MovieStar

Question:
Push projection to

StarsIn?

Improved Logical Query Plan

σstarName=name

StarsIn Πname

σbirthdate<1970

MovieStar

×

Πtitle

Ulf Leser: Implementation of Database Systems 13

Hash join

sequential scan index scan
Parameters: Selectivity,
fragmentation of data file,
size of tuples, ,...

StarsIn MovieStar

Physical Plan

Parameters: Join order,
selectivity, memory size,

size of attributes, …

Ulf Leser: Implementation of Database Systems 14

Overview

• Today: Implementation of one-table relational operators
– Projection, selection, scans, group-by

• Next topic: Physical join implementations
– Blocked nested loop, sort-based, hash-based

• Next: Query optimization
– Query rewriting, plan reordering

• Next: Cost estimation
– For cost-based query optimization

Ulf Leser: Implementation of Database Systems 15

Content of this Lecture

• Overview: Query optimization
• Relational operators
• Query execution models
• Implementing (some) relational operators

Ulf Leser: Implementation of Database Systems 16

Relational Operations: One Table

• In the following: Table means table or intermediate result
• Selection σ: WHERE clause

– Read table and filter tuples based on condition
– Selection never increases table length (selectivity)
– Conjunctions, disjunction, equality, negation, …
– [A join is a selection, but special treatment in order]
– Implementation: Scan or index (depending on selectivity)

• Projection π: SELECT clause
– Read tuples and manipulate columns
– With DISTINCT clause: Duplicates must be filtered
– Projection usually decreases breadth of table – smaller result size

• When not?
– Implementation: While computing results

Ulf Leser: Implementation of Database Systems 17

One Table cont’d

• Group-by: Grouping and aggregation
– Put all tuples with equal values in all grouping attributes into one

bag; output one tuple per bag by aggregating other values
– Reduces number of tuples (how much?)
– Implementation by sorting or hashing

• Distinct: Duplicate elimination
– Read table and remove all duplicate tuples
– Implementation by sorting or hashing

• Order-by: Sorting
– Always last clause in query, but injected often by optimizer
– Pipeline breaker
– Implementation: In-memory or external sorting

Ulf Leser: Implementation of Database Systems 18

Relational Operations: Two Tables

• Cartesian product x
– Read two tables and build all pairs of tuples
– Usually avoided – combine product and selection to join
– Products in a plan are hints to wrong queries
– Specified implicitly by FROM clause
– Implementation: No tricks (if really requested)

• Join ⋈
– All pairs of tuples matching the join condition
– Natural join, theta join, equi join, semi join, outer join
– Expensive, often very selective – favorite target of optimizers
– Possibility: Join-order and join implementation
– Specified implicitly or explicitly in WHERE clause
– Implementation: Sort-based, blocked-nested loop, hash, zigzag, …

Ulf Leser: Implementation of Database Systems 19

Relational Operations: Two Queries

• Union ∪
– Read two tables and build union (by identity) of all tuples
– Duplicates are removed (alternative: UNION-ALL)
– Requires tables to have same schema

• Intersection ∩
– Read two tables and build intersection (by identity) of tuples
– Requires tables to have same schema
– Same as join over all attributes

• Minus ⁄
– Subtract tuples of one table from tuples from the other
– Requires tables to have same schema

Ulf Leser: Implementation of Database Systems 20

Content of this Lecture

• Overview: Query optimization
• Relational operators
• Query execution models
• Implementing (some) relational operators

Ulf Leser: Implementation of Database Systems 21

Query Execution

• Typical model: Operator implementations call each other to
pass tuples up the tree
• Iterator concept: Open, next, close

– Each operator implementation needs these three methods
• Produces deep stacks and many push/pops
• Plan generation is simple: Nesting of operations

• Two modes: Blocked, Pipelined
– Blocked: Most work done in open
– Pipelined: Most work done in next
– Pipeline-breaker only allow blocked mode (e.g. sorts)

• Modern alternative: Compile into function-free program

Ulf Leser: Implementation of Database Systems 22

Example – Blocked (Sketch)
p = projection.open();
while p.next(t)

output t;
p.close();

class projection {
open() {
j = join.open();
while j.next(t)

tmp[i++]=t.title;
j.close();
cnt:=0;

}
next(t) {
if (cnt<tmp.max)

t = tmp[cnt++];
return true;

else return false;
}
close() {
discard(tmp);

}
}

πtitle

⋈starName=name

starsIn movieStar

class join {
open() {
l = table.open(starsIn);
while l.next(tl)

r = table.open(movieStar)
while r.next(tr)

if tl.starname=tr.name
tmp[i++]=tl⋈tr;

r.close();
end while;
l.close();
cnt:=0;

}
next(t) {
if (cnt<tmp.max)

t = tmp[cnt++];
return true;

else return false;
}
close() {
discard(tmp);

}}

Ulf Leser: Implementation of Database Systems 23

Blocked Execution

• Traditional model
• Advantages

– Does always work, for all operators
– Simple to understand and implement
– Highly extensible (common open-fetch-close API)
– Classical optimization goal: Minimize size of intermediate results

• Disadvantages
– Requires large buffers in memory
– Leads to “blocked” result arrival – difficult for downstream apps

• Think of web side display
– Difficult to parallelize (no operator parallelism)

Ulf Leser: Implementation of Database Systems 24

Example – Pipelined (Sketch)
p = projection.open();
while p.next(t)

output t;
p.close();

class projection {
open() {
j = join.open();

}
next(t) {
if j.next(t)
t = title;
return true;

else
return false;

}
close() {
j.close();

}
}

class join {
open() {
l = table.open(starsIn);
r = table.open(movieStar);
l.next(tl);

}
next(t) {
if r.next(tr)

if tl.starname=tr.name
t=tl⋈tr;
return true;

else
next (t);

else
if l.next(tl)

r.close();
r = table.open(movieStar);
return next(t);

else
return false;

}
close() {
l.close();
r.close();

}}

πtitle

⋈starName=name

StarsIn MovieStar

Ulf Leser: Implementation of Database Systems 25

Pipelined versus Blocked

• Pipelining much preferred
– Very little demand for buffer space

• When intermediate results are large, buffers need to be stored on disk
– Different ops within query can be assigned to different threads

• Overlapping execution
– Results come early and continuously

• Pipeline breaker cannot be pipelined
– next() can be executed only after entire input was read
– Examples

• Sorting
– Exception: When input is sorted

• Grouping and aggregation
– Depending on implementation

• Minus, intersection R S

...

...

...

T

...

...

...

Ulf Leser: Implementation of Database Systems 26

Non Binary: Pipelined versus Blocked

• Projection with duplicate elimination
– When implemented with sorting – pipeline breaker
– But: Recall implementation without sorting
– next() can return early
– But we need to keep track of all values already returned – requires

large buffer

Ulf Leser: Implementation of Database Systems 27

Example – Compiled (Sketch)

πtitle

⋈starName=name

StarsIn MovieStar

l = table.open(starsIn);
r = table.open(movieStar);
go = l.next(tl);
while go do
while r.next(tr)

if tl.starname=tr.name
t=tl⋈tr;
output t.title;

end while;
if l.next(tl)

r.close();
r = table.open(movieStar);

else
l.close();
r.close();
go = false;

end while;

Ulf Leser: Implementation of Database Systems 28

Content of this Lecture

• Overview: Query optimization
• Relational operators
• Query execution models
• Implementing (some) relational operators

Ulf Leser: Implementation of Database Systems 29

Select versus Update

• We do not discuss update, delete, insert
• Update and delete usually have embedded queries –

“normal” optimization
– But: data tuples must be loaded (and locked and changed and

persistently written if TX not rolled-back)
– Some tricks don’t work any more

• Insert may have query (INSERT …. AS SELECT …)

Ulf Leser: Implementation of Database Systems 30

Implementing Operators

• Most single table operations are straight-forward
– See book by Garcia-Molina, Ullmann, Widom for detailed discussion

• We sketch three single table operations
– Scanning a table
– Duplicate elimination
– Group By

• Joins are more complicated – later

Ulf Leser: Implementation of Database Systems 31

Scanning a Table

• At the bottom of each operator tree are relations
• Accessing them implies a table scan

• If table T has b blocks, this costs b IO
• Often better: Combine with next operation in plan

– SELECT t.A, t.B FROM t WHERE A=5

– Selection: If index on t.A available, perform index scan
• Assume |t|=n, |A|=a different values, z=n/a tuples

– Index has height ~logk(n)
– Scan B+ index and find all matching TIDs
– Accessing z tuples from t costs 1 to z IO (sequential or random)

• Especially effective if A is a key: Only one tuple selected, 1 IO on table
– Projection: Integrate into table scan

• Read complete tuples, but only pass-on attributes that are needed
– Why not read partial tuples?

Ulf Leser: Implementation of Database Systems 32

Scanning a Table 2

• Conditions can be complex
SELECT t.A, t.B FROM t
WHERE A=5 AND (B<4 OR B>9) AND C=‘müller’ …

• Approach
– Compute conjunctive normal form
– Independent indexes: Find TID lists for each conjunct, then intersect
– With MDIS: Directly find matching TIDs
– Without indexes: Scan table and evaluate condition for each tuple

• For complex conditions and small tables, linear scanning
usually is faster
– Depends on expected result size
– Cost-based optimization required

Ulf Leser: Implementation of Database Systems 33

Duplicate Elimination

• Option 1: Sorting
• Sort table on DISTINCT columns

– Can be skipped if table is already sorted
• Scan sorted table and output only unique tuples
• Generates output in sorted order (for later reuse)
• Pipeline breaker (see later)

Ulf Leser: Implementation of Database Systems 34

Duplicate Elimination

• Option 2: Use hashing
• Scan table and build hash table H on all unique values

– Needs good hash function, avoid conflicts
• When reading a tuple, check if it has already been seen

– If not: insert tuple and copy it to the output; else: skip tuple
– No pipeline breaker
– Does not sort result (but existing sorting would remain)

• No pipeline breaker
• Memory: Problem; assumes H to fit in memory

Ulf Leser: Implementation of Database Systems 35

Grouping and Aggregation

• Recall: SELECT may contain only GROUP BY attributes
and aggregate functions

• Partition result of “inner query” by GROUP BY attributes
• For each partition, compute one result tuple: GROUP BY

attributes and aggregate function applied on values of
other attributes in this partition
– Note: Depending on the aggregate function, we might need to

buffer more than one value per partition – examples?

SELECT day_id, sum(amount*price)
FROM sales S
GROUP BY day_id

Inner query Partition Aggregate HAVING clause

Ulf Leser: Implementation of Database Systems 36

Implementing GROUP BY

• Proceed like duplicate elimination
• Also keep to-be-aggregated attributes

– Raw (e.g. median), intermediate (e.g. sum/count), aggregated
(count, sum)

• Eventually, compute the aggregated columns
– Simple: SUM, COUNT, MIN, MAX, ANY
– More memory required: AVG, Top-5, median

• Pipelining? Same properties as for duplicate elimination

Ulf Leser: Implementation of Database Systems 37

Computing Median

• Option 1: Partition table into k partitions
– Scan table
– Build (hash) table for first k different GROUP BY values
– When reading one of first k, add value to (sorted) list
– When reading other GROUP value, discard
– When scan finished, output median of k groups
– Iterate – next k groups
– Can adapt (k) to number of groups, assumes groups of similar sizes

• Option 2: Sort table on GROUP BY and Median attribute
– Then scan sorted data
– Buffer all values per group
– When next group is reached, output middle value

• What if we cannot buffer all values of a group?

	Foliennummer 1
	Content of this Lecture
	5 Layer Architecture
	Query Optimization
	Steps (Sketch)
	Overview Optimization
	Overview Optimization
	Adaptive Optimization
	Example SQL query
	Parse Tree
	Relational Algebra / Logical Query Plan
	Improved Logical Query Plan
	Physical Plan
	Overview
	Content of this Lecture
	Relational Operations: One Table
	One Table cont’d
	Relational Operations: Two Tables
	Relational Operations: Two Queries
	Content of this Lecture
	Query Execution
	Example – Blocked (Sketch)
	Blocked Execution
	Example – Pipelined (Sketch)
	Pipelined versus Blocked
	Non Binary: Pipelined versus Blocked
	Example – Compiled (Sketch)
	Content of this Lecture
	Select versus Update
	Implementing Operators
	Scanning a Table
	Scanning a Table 2
	Duplicate Elimination
	Duplicate Elimination
	Grouping and Aggregation
	Implementing GROUP BY
	Computing Median

