Datenbanksysteme II:
MDIS on Mordern Hardware; BB Tree

UIf Leser

Content of this Lecture

e MDIS On Modern Hardware

— Competitor
— Evaluation

e BB-Tree

Ulf Leser: Implementation of Database Systems

Scan or Index?

e Selectivity of a query: % of points matching
e Selectivity of an index: % of blocks that must be touched

e Multi-dimensional range queries (MDRQ)
— Select regions of spatially near blocks

— To exploit access locality, MDIS try to map multi-dimensional
spatial closeness to one-dimensional physical closeness

— More dimensions — increasingly difficult

e Result: Scans outperformed only for selective queries
— Classical paper 1998, 10 based: 20%
— IO is expensive — pruning pays off quickly

e Question: Behavior on today's hardware?

UIf Leser: Implementation of Database Systems 3

MDIS on Modern

Hardware

e Main memory, multi-core, SIMD

— Or even GPU, NVRAM, RDMA, FPGA, ...
e Optimize disk block access -> Optimize mem. page access

— CPU cache-lines, L1/2/3 caches

e Much research on one-
dimensional main-memory IS

Single-Core CPU

- one thread
- scalar instructions

Multi-Core CPU

- many threads
- scalar/SIMD instructions

— ART, FAST, CSSL, ...

vl

+Tv1 41

e But no previous work

Main Memory

Main Memory
- MDIs |

for MDIS

vl

Hard Disk Drive

. MDIS

Ulf Leser: Implementation of Database Systems

Adaptation to Main-Memory

e Conservative adaptations
— Keep original architecture of MDIS
— Reuse existing implementations when possible

e Scans: None, data kept in in-memory arrays
— But different layouts for parallelization — next slide

e kd-trees: None (in-memory IS by design)
— But we store leaves in blocks

o VA-files: Approximations and data blocks in memory
— Very similar to partitioned hashing

e R*-trees: All kept in memory, block size = cache size
— R*: Frequent deletion and re-insertion for optimized partitioning

Ulf Leser: Implementation of Database Systems

Parallelization / Partitioning

e Horizontal (all MDIS)

— Partition into subsets of tuples

One thread per subset
Pro: Load balancing

Con: Scans inefficient in partial queries

Con: Less efficient SIMD
(heterogeneous values)

e Vertical (only scan)

— Each dimension one partition
One thread per dimension

SIMD: Compare k values of one
dimension per instruction

Pro: Pruning in partial queries

Con: Load balancing

data c:h]ect _dimension

T

tidd 1 2 3 5 6 7 8 9 10111213141516 17 1819

Dataset D
Horizontal Partitioning

il

01 2 35

i

8 9 10 11||12 1314 15)|16 17 18 19

4 5 6 7

partition 0 partition 1 partition 2 partition 3 partition &

Vertical Partitioning
EEEEEENEEE EEEEEEEEENR
01234567 8910111213141516171819

partition 0

partition 1

EEEEEEEE SN EEEEEEEEERN
0123456789

1011121314£1516171819

partition 2

EEEEEEEREEREEEEEEEEEEN
0123 456789

10111213141516171819

partition 3

EEEEEEEEEEEEEEEEEEEN
0123 4567849

10111213141516171819

partition 4

Ulf Leser: Implementation of Database Systems

Content of this Lecture

e MDIS On Modern Hardware
— MDIS Adaptions
— Evaluation

e BB-Tree

Ulf Leser: Implementation of Database Systems

Experimental setup

e Throughput measured using 1000 queries, warm cache

e Two different Intel CPUs
— 24/12 threads, different SIMD width

e MDIS construction: Insert tuple-by-tuple in random order
o kd-Tree, VA file, scans: Own implementation
e R* from libspatialindex (block size adapted)

Dataset Data Objects Dimensions Domain per Dimension (real numbers) Distinct Values per Dimension Raw Dataset Size (MB)

SYNT-UNI 10k 0.1] 9,950 (avg) 0.19 MB

(uniform distribution) 100k 5 [0.1] 95,175 (avg) 1.91 MB
1M 5-100 [0.1] 632,257 (avg) 19.07 MB - 381.47 MB
10M 5 [0.1] 599 956 (avg) 190.74 MB

SYNT-CLUST 1M 0.1] 632,047 (avg) 19.07 MB

(with clusters)

POWER 10k 3 [2556001,2566000]; [12857, 17281]; [14142,19278] 10,000; 627; 498 0.11 MB
100k 3 [2556001,2656002]; [12466,18247]; [13698,20395] 1060, 000; 2,089; 2,290 1.14 MB
1M 3 [2556001,3556003]; [12466,18770]; [13698,20704] 1,000,000; 4325; 4670 11.44 MB
10M 3 [2.9875683]; [12282 24623]; [13281.26879] 9.875.681; 6.840; 7,634 114.44 MB

GMROB 10M 1% Owur website provides a detailed description of all properties of the data of GMRDEB. 724.79 MB

UIf Leser: Implementation of Database Systems 8

Genomic Multidimensional Range Query Benchmark

e Data from 1000 genomes project (2504 genomes)
e App. 10 Million variants, 19 dimensions

e 8 typical parameterized query templates

e Parameters set to randomly selected gene locations
e 7 our of 8 templates are partial queries

{}'p"-'lﬂl:!- Ql.-r_n' .:l'_'l'ﬂzl_'lll.' lﬁu‘u' IEIJH_L' .‘2;|!|L".'|..l'\|'i|.:\|' lhu'l'L'ru'.E_':" L g :::- 'Q'JC'I'iL‘ZI ”irn-r_-r.::iur.:: 5 E L E C T * F R D M v a r i a t i U n S

Query Template 1 10.76% {7 = T.24%) i = 0.0} WHERE chromosome = 5

(uery Template 2 219% {7 = 2.27%) (o = 0.0} .

Query Template 3 536% (o = 3.61%) 3 = 0.0} AND location BETWEEN 100000 AND 1000000
(uery Templats 4 0:22% (o = 0.15%) 4 (o = 0.0} .

R - 020 (2 = 0.15%) (o = 0.0 AND quality BETWEEN 1@ AND 100

Query Template & olR (o = 0.11%) b (o = 0.0}

Query Template 7 0.05% (& = 0.065%) 7(a = 0.0) AND depth BETWEEN 1@ AND 1000

Query Template & Do00oLE (o = 0.00002%) 19 (e = 0.0}

Mixed Workload s (o = 3.58%) 581 (o = 4.11) AND allele_freq BETWEEN ©.5 AND 1;

Table 1: GMROB query templates.

UIf Leser: Implementation of Database Systems 9

Result: SIMD only Worth for (Vertical) Scans

E Single-Threaded without SIMD @E Single-Threaded with S5IMD
lll Multi-Threadedwlithnut smp BB lMuIti—Threadedwith|SlMD

%) 2 |-]
1)].D: —
LN - T
t - -
w - _
= — N _
Y

o i ’
"\---_---":‘II,.:I 1

——

= b

Z g 10

LI_I

=T}

=

-

—_—

=

—

R*-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Synthetic data, d=20, n=1E6, uniform, sel=0,1%

UIf Leser: Implementation of Database Systems 10

Result: Scans Hard to Beat — even at 1% Selectivity

R*-tree wefffe= kd-tree mellpm= VA-file =efpue= Scan(Hor. Part.) wefgle= Scan (Vert. Part.)

Throughput (queries/sec)
[log scale]
EM

[a—

=
=
I

0 1 2 3 4 5 6 7 8 9 10
Query Selectivity (%)

Synthetic data, d=5, n=1E6, uniform

20

60

100

Ulf Leser: Implementation of Database Systems

11

Vertical scans affected by dimensionality
(large intermediate results)

R*-tree weffffe= kd-tree seglgems VA-file =efpue= Scan (Hor. Part.) == Scan (Vert. Part.)
| | | | | | | | | | | | | | | | | | | |

—

=
[}
I

[log scale]

Throughput (queries/sec)

Dimensions

Figure 5: Throughput when executing range queries with an
average selectivity of 0.4% (five dimensions) to 0.0002% (> ten
dimensions) on 1 Million uniformly distributed data objects
using 24 software threads depending on dimensionality.

Ulf Leser: Implementation of Database Systems 12

Scans excel in real life data even at 1% sel. and
even with PM queries

BIE R*-trea ﬁ B kd-llree EE VA-file III Scan (Horizontal F"a'rirli-:-ni'lg:l Il Scaq-j‘\r"erlri-:al Partitioning)

Al il

1 T

Query Query Query Mixed Query Query Query Query Query
Template 1 Template 3 Template 2 Workload Template 4 Template 3 Template 6 Template 7 Template &

(sel =10.76%) (sel = 5.36%) (sel =2.19%) (sel = 1.58%) (sel = 0.22%) (sel = 0.20%) (sel=0.11%) (sel = 0.05%) (sel = 0.00001%)

[
=
[

[log scale]
-
N

[y
=
=]

Throughput (queries/sec)

]

N

Figure 10: Throughput of contestants when executing the GMROB with varying selectivities on 10 Million 19-dimensional
data objects from the 1000 Genomes Project dataset using 24 software threads (query templates are ordered by selectivity).

UIf Leser: Implementation of Database Systems 13

Summary

e kd-Tree > R* > scans > VA-File for highly selective queries

e Scans > VA-File > kd-Tree > R* for less selective queries
— VA almost never better than scan — yet more complex
— kd-Tree outperforms R* trees
— For box queries, horizontal partitioning is beneficial
— For partial queries, vertical partitioning is superior

e Traditional MDIS faster in main memory for highly selective
queries — but gains are small, admin costs are high, more
difficult to parallelize, ...
— Same observations for single dimension IS (e.g. [9])

Ulf Leser: Implementation of Database Systems 14

Content of this Lecture

e MDIS On Modern Hardware

— Competitors
— Evaluation

e BB-Tree

— Motivation
— BB-Tree Structure
— Evaluation

Ulf Leser: Implementation of Database Systems

15

BB-Trees from 10.000 Feet

e Almost-balanced k-ary search tree

e Optimized for cache hierarchies of modern CPUs
e Elastic leaf nodes (bubble buckets)

o Updatable

e Efficient handling of low-cardinality dimensions
e Multi-threaded variant

e No free lunch:
Optimized memory layout costs (infrequent) rebuilds

UIf Leser: Implementation of Database Systems 16

Data Layout: k-ary Search Tree

1st dim 13171
2nd dim [76] 515 I5E
!
1132 8]8]9[9
2(2]1[2 .|8]616]7
2[1]3]8 1]/3]8]2
0O 1 2 3 0 1 2 3
bucket 0 bucketl1l bucket2 bucket 7 bucket
48]25 asm‘ ‘uln 12 13‘ ‘23|?5|5?|51‘,,, ‘|ﬁﬁ| 5[72]56] [63[01[17[38
01 2 3 01 2 3 012 3 012 3 0 _1 2 3
tids O tids 1 tids 2 tids 7 tids 8

Ulf Leser: Implementation of Database Systems

17

Growing and Shrinking

3171

Ulf Leser: Implementation of Database Systems

Growing and Shrinking

3171

Ulf Leser: Implementation of Database Systems

Growing and Shrinking

3171

Ulf Leser: Implementation of Database Systems

Growing and Shrinking

S

\

)

|
Many buckets

Ulf Leser: Implementation of Database Systems

21

Growing and Shrinking

s

12

A

Ulf Leser: Implementation of Database Systems

22

Growing and Shrinking

3171

2[5] 5 8]

e B W 4 rL

High fan-out
Many buckets -
Buffers many INS
But ...

S—

Ulf Leser: Implementation of Database Systems

Growing and Shrinking

e B W 4 rL

[ale]
O O .n

Ulf Leser: Implementation of Database Systems

Rebuild

000000

Extended IST
Additional layer

UIf Leser: Implementation of Database Systems

25

Searching the BB-Tree

e Phase I: Search IST

— Range queries lead to
multiple search paths

— Partial match queries must
scan entire levels

) Phase. IT: Scan buckets A
— Serial or parallel

o Max-size of buckets:
Trade-Off search / scan
— Low selectivity queries: More scan
— High selectivity queries: More search

OOOOOOOOO

UIf Leser: Implementation of Database Systems 26

Inner Search Tree (IST)

e Linearized storage
— IST mapped into static dense array (no growth/shrinkage)
— No pointer chasing during traversal

e Fan-out (k) aligned to size of cache lines
— Typically k=16 for INT values
— High fan-out: Low tree, fast IST traversal
— No cache-misses within IST node

27 Linearization
416| |2]5]| |5]8

¥ ¥ .'l"|' ¥ ¥¥ _'!' ¥
Logical representation

tree level

O N O

0 1 111
714 5[5|8
12 567

L O =
N -

array index

Physical representation

Ulf Leser: Implementation of Database Systems

27

Superbuckets

37

it
A -

e Bubble buckets morph between different representations
— Overflowing ordinary buckets turn into superbuckets
— Underflowing superbuckets turn into ordinary buckets
— Overflowing superbuckets trigger index rebuild
— Underflowing ordinary buckets trigger index rebuild

e Superbuckets
— Increase height by only 1 — virtually same search performance
— High capacity (dep on k): Drastically reduce frequency of rebuilds

e Simple idea — quite some impact

Rebuilding the BB-Tree

e Four steps (bucket capacity fixed)

— Determine required number of buckets — IST height
e Leave some free space
e Bubble buckets are dynamic arrays — still good space utilization

— Sample at random (~10% of data) and compute dim. cardinalities
e Most costly operation

— Sort dimensions by cardinality (high — low)
e Assumption: High cardinality dimensions have more selective queries
e Low card-dimensions have little pruning power

— Recursively determine delimiter values (in sample)
e Such that k equal-size groups emerge (what if <k unique values?)

— Build IST

— Re-distribute objects into buckets

UIf Leser: Implementation of Database Systems 29

Content of this Lecture

e MDIS On Modern Hardware
— MDIS Adaptions
— Evaluation

e BB-Tree

— Motivation
— BB-Tree Structure
— Evaluation

Ulf Leser: Implementation of Database Systems

30

Evaluation

e Four data sets
— UNIFORM (synthetic data, 5 to 100 dimensions)
— CLUSTERED (synthetic data, 5 dimensions)
— POWER (real-world data, 3 dimensions)
— GENOMIC (real-world data, 19 dimensions)

e Synthetic and realistic workloads, read-only and R/W

e Five competitors
— kd-tree, PH-tree, VA-file, R*-tree, scans

Ulf Leser: Implementation of Database Systems

31

Random Range Queries

kd-Tree extremely slow for low selectivities
and never faster than BB-Tree

BB-Tree PH-tree ==fe= R*-tree === VA-file == Sequential Scan

£ e e e e S

fg - i i
=3 10% | -
L 3 =]
£ o - .
=g 5 1
SE 3l |
35 100 E
28 | E
< = - Scanbecomes |
102 |- slightly faster

- | I R B R R 1]

| | I R I N
12 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

Query Selectivity (%)
Synthetic range queries on 10 Million 5-dimensional data objects from UNIFORM.

UIf Leser: Implementation of Database Systems 32

Genomic Multidimensional Range Query Benchmark

Ph-Tree crashed on GMRQB

E‘ BB-Tree EE kd—tlree R*-tree IIl VA-file Il Slequential Scan

108 - = - i
B — M [_ -
£ X m u u i
e 3 |] {1 0
L — - {1 H
£ J 1w+ " u 1 I]
= E u u 1 I
J = A H H H
o = e H H i
35 S 02l ///: Z: Z: 77 i
o X m w i i
= = 6: ﬁ: % H 1
| o o o
107~ Za 7 A in B
T T 1 T T \ 1 T T
Query Template 1 Query Template 3 Query Template 2 Mixed Workload Query Template 4 Query Template |5 Query Template 6 Query Template 7 Query Template 8
avg. selectivity = avg. selectivity = avg. selectivity = avg. selectivity = avg. selectivity = avg. selectivity = avg. selectivity = avg. selectivity = avg. sejfctivity =
10.76% 5.36% 2.19% 1.58% 0.22% 0.20% 0.11% 0.05% 0.001%

Essentially a
e Eight real-life query templates from genomics PoInt query
— Mostly partial-match

e Data from 1000genomes project, 10M points, 19 dim
e Sorted by average selectivity

UIf Leser: Implementation of Database Systems 33

Modern Hardware

BB-Tree kd-tree PH-tree R*-tree VA-file Scan
CPU Cycles 164M 8,306M 1,908M 252M 2,934M 1,582M
LLC Accesses 1.0M 824M 1.2M 2.5M 1.8M 0.5M
LLC Misses 0.7M 0.9M 0.8M 0.5M 1.eM 0.3M
TLB Misses 0.3M 1.0M 0.3M 0.3M 0.2M 0.1M
Branch Mispr. 0.1M 0.7M 3M 0.2M 10M ™

Table 3: Performance counters per range query (1% selec-

tivity;n=10M, m=5, UNIFORM).

Ulf Leser: Implementation of Database Systems

34

Parallel BB-Tree

BB-Tree Parallel BB-Tree ==fp== Scan == Parallel Scan
I I

—_
o
w

Speedup Scan

[N
—
)

Hyderthreading Oversubscription

compute- vs. memory-bound |

Speedup BB-Tree |

Avg. Exec. time (ms)
[logarithmic scale]

—
(=]
[S%]

Software Threads

Realistic range queries (Mixed Workload from GMRQB, avg. sel.= 1.6%) on 10
Million 19-dimensional data objects from GENOMIC with varying # threads.

e Scan scales better (10x vs 5x)
— Scan: Very few serial components
— BB-Tree: Single-threaded IST search

e Hyper-threading offers little to BB-Tree

Parallelization Speedup

Ulf Leser: Implementation of Database Systems

Insert / Delete / Mixed

107 |- —

107 |- |
B (——]
2240 pere =3

5 I median

10% |- -
25'th perc. I
5'th perc. I
10" [| | | | | .
BB-Tree kd-tree R*-tree VA-file Seq. Scan

Execution time (us)
[logarithmic scale]
2

Figure 16: Execution times of single queries (inserts,
deletes, exact-match and range queries) from a mixed
workload in random order; bulk insert is not included; PH-
tree ran out of memory (n=10M, m=19, GENOMIC).

Ulf Leser: Implementation of Database Systems

36

Conclusions

e BB-Tree: Fastest main-memory MDIS to-date (2018) for
analytical workloads
— Read mostly, (partial-)range queries, high to moderate selectivity
e (Careful tuning to properties of modern hardware
— SIMD didn't pay off
e Bubble-buckets allow for static IST while buffering many
(but not infinitely many) inserts

UIf Leser: Implementation of Database Systems 37

Limitations

Superbuckets currently are not balanced
— May create “super ordinary bucket” — large local scan
— Solution: Keep superbuckets balanced (with depth 1)

Order of delimiter dimensions is global
— Limited fit to data clustering in subspaces
— Solution: Recursive re-partitioning; expensive

Rebuilds are costly (index stalls)
— Solution: Rebuild in background; reservoir sampling

Analytical workloads versus write-heavy workloads
— Solution: Do not use BB-Trees for write-heavy skewed workloads

Rebuild capacity calls for workload adaptation
No concurrent writes / transaction management

UIf Leser: Implementation of Database Systems 38

Since 2018

e |earned indexes — learn function to map keys on blocks

— E.g. regression: O(d) for computing location, O(1) for access
o If location is predicted perfectly, otherwise some neighborhood search

— Difficult (impossible) to update

e Adaptive indexing: Start with empty index and build tree
sequentially based on delimiters of real queries
— Automatically adapts index to workload (if stable)
— No updates ever implemented — rebuild regularly

o ELF: Prefix tree over compressed dictionary

— Replace all values with index of a sorted dictionary per dimension
e Less space necessary for keys, uniform length

— Impossible to update

UIf Leser: Implementation of Database Systems 39

Many Experiments, Summary

70

60
50
£
c 40
=
& 30
20
’ .
0
@ & o A B
S ‘Q. 4 2 &
) <) & & $
i 4 < h [e7
< @ & ¥
K v
g &
&
@
Indexstruktur

Abbildung 30: Experiment 2: GMRQB, Bereichsabfragen (gemischte Templates), durch-
schnittliche Laufzeit (in ms), 1.000.000 Datenpunkte, 10.000 Abfragen
inklusive BB-Tree Multithreading

UIf Leser: Implementation of Database Systems 40

	Foliennummer 1
	Content of this Lecture
	Scan or Index?
	MDIS on Modern Hardware
	Adaptation to Main-Memory
	Parallelization / Partitioning
	Content of this Lecture
	Experimental setup
	Genomic Multidimensional Range Query Benchmark
	Result: SIMD only Worth for (Vertical) Scans
	Result: Scans Hard to Beat – even at 1% Selectivity
	Vertical scans affected by dimensionality�(large intermediate results)
	Scans excel in real life data even at 1% sel. and even with PM queries
	Summary
	Content of this Lecture
	BB-Trees from 10.000 Feet
	Data Layout: k-ary Search Tree
	Growing and Shrinking
	Growing and Shrinking
	Growing and Shrinking
	Growing and Shrinking
	Growing and Shrinking
	Growing and Shrinking
	Growing and Shrinking
	Rebuild
	Searching the BB-Tree
	Inner Search Tree (IST)
	Superbuckets
	Rebuilding the BB-Tree
	Content of this Lecture
	Evaluation
	Random Range Queries
	Genomic Multidimensional Range Query Benchmark
	Modern Hardware
	Parallel BB-Tree
	Insert / Delete / Mixed
	Conclusions
	Limitations
	Since 2018
	Many Experiments, Summary

