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— Competitor
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Scan or Index?

e Selectivity of a query: % of points matching
e Selectivity of an index: % of blocks that must be touched

e Multi-dimensional range queries (MDRQ)
— Select regions of spatially near blocks

— To exploit access locality, MDIS try to map multi-dimensional
spatial closeness to one-dimensional physical closeness

— More dimensions — increasingly difficult

e Result: Scans outperformed only for selective queries
— Classical paper 1998, 10 based: 20%
— IO is expensive — pruning pays off quickly

e Question: Behavior on today's hardware?
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MDIS on Modern

Hardware

e Main memory, multi-core, SIMD

— Or even GPU, NVRAM, RDMA, FPGA, ...
e Optimize disk block access -> Optimize mem. page access

— CPU cache-lines, L1/2/3 caches

e Much research on one-
dimensional main-memory IS

Single-Core CPU

- one thread
- scalar instructions

Multi-Core CPU

- many threads
- scalar/SIMD instructions

— ART, FAST, CSSL, ...

vl

+Tv1 41

e But no previous work

Main Memory

Main Memory
- MDIs |

for MDIS

vl

Hard Disk Drive

. MDIS
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Adaptation to Main-Memory

e Conservative adaptations
— Keep original architecture of MDIS
— Reuse existing implementations when possible

e Scans: None, data kept in in-memory arrays
— But different layouts for parallelization — next slide

e kd-trees: None (in-memory IS by design)
— But we store leaves in blocks

o VA-files: Approximations and data blocks in memory
— Very similar to partitioned hashing

e R*-trees: All kept in memory, block size = cache size
— R*: Frequent deletion and re-insertion for optimized partitioning
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Parallelization / Partitioning

e Horizontal (all MDIS)

— Partition into subsets of tuples

One thread per subset
Pro: Load balancing

Con: Scans inefficient in partial queries

Con: Less efficient SIMD
(heterogeneous values)

e Vertical (only scan)

— Each dimension one partition
One thread per dimension

SIMD: Compare k values of one
dimension per instruction

Pro: Pruning in partial queries

Con: Load balancing
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Content of this Lecture

e MDIS On Modern Hardware
— MDIS Adaptions
— Evaluation

e BB-Tree
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Experimental setup

e Throughput measured using 1000 queries, warm cache

e Two different Intel CPUs
— 24/12 threads, different SIMD width

e MDIS construction: Insert tuple-by-tuple in random order
o kd-Tree, VA file, scans: Own implementation
e R* from libspatialindex (block size adapted)

Dataset Data Objects Dimensions Domain per Dimension (real numbers) Distinct Values per Dimension Raw Dataset Size (MB)

SYNT-UNI 10k 0.1] 9,950 (avg) 0.19 MB

(uniform distribution) 100k 5 [0.1] 95,175 (avg) 1.91 MB
1M 5-100 [0.1] 632,257 (avg) 19.07 MB - 381.47 MB
10M 5 [0.1] 599 956 (avg) 190.74 MB

SYNT-CLUST 1M 0.1] 632,047 (avg) 19.07 MB

(with clusters)

POWER 10k 3 [2556001,2566000]; [12857, 17281]; [14142,19278] 10,000; 627; 498 0.11 MB
100k 3 [2556001,2656002]; [12466,18247]; [13698,20395] 1060, 000; 2,089; 2,290 1.14 MB
1M 3 [2556001,3556003]; [12466,18770]; [13698,20704] 1,000,000; 4325; 4670 11.44 MB
10M 3 [2.9875683]; [12282 24623]; [13281.26879] 9.875.681; 6.840; 7,634 114.44 MB

GMROB 10M 1% Owur website provides a detailed description of all properties of the data of GMRDEB. 724.79 MB
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Genomic Multidimensional Range Query Benchmark

e Data from 1000 genomes project (2504 genomes)
e App. 10 Million variants, 19 dimensions

e 8 typical parameterized query templates

e Parameters set to randomly selected gene locations
e 7 our of 8 templates are partial queries

{}'p"-'lﬂl:!- Ql.-r_n' .:l'_'l'ﬂzl_'lll.' lﬁu‘u' IEIJH_L' .‘2;|!|L".'|..l'\|'i|.:\|' lhu'l'L'ru'.E_':" L g :::- 'Q'JC'I'iL‘ZI ”irn-r_-r.::iur.:: 5 E L E C T * F R D M v a r i a t i U n S

Query Template 1 10.76% {7 = T.24%) i = 0.0} WHERE chromosome = 5

(uery Template 2 219% {7 = 2.27%) (o = 0.0} .

Query Template 3 536% (o = 3.61%) 3 = 0.0} AND location BETWEEN 100000 AND 1000000
(uery Templats 4 0:22% (o = 0.15%) 4 (o = 0.0} .

R - 020 (2 = 0.15%) (o = 0.0 AND quality BETWEEN 1@ AND 100

Query Template & olR (o = 0.11%) b (o = 0.0}

Query Template 7 0.05% (& = 0.065%) 7(a = 0.0) AND depth BETWEEN 1@ AND 1000

Query Template & Do00oLE (o = 0.00002%) 19 (e = 0.0}

Mixed Workload s (o = 3.58%) 581 (o = 4.11) AND allele_freq BETWEEN ©.5 AND 1;

Table 1: GMROB query templates.
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Result: SIMD only Worth for (Vertical) Scans
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Result: Scans Hard to Beat — even at 1% Selectivity

R*-tree wefffe= kd-tree mellpm= VA-file =efpue= Scan(Hor. Part.) wefgle= Scan (Vert. Part.)

Throughput (queries/sec)
[log scale]
EM

[a—

=
=
I

0 1 2 3 4 5 6 7 8 9 10
Query Selectivity (%)

Synthetic data, d=5, n=1E6, uniform

20

60

100

Ulf Leser: Implementation of Database Systems

11



Vertical scans affected by dimensionality
(large intermediate results)

R*-tree weffffe=  kd-tree seglgems VA-file =efpue= Scan (Hor. Part.) == Scan (Vert. Part.)
| | | | | | | | | | | | | | | | | | | |

—

=
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I

[log scale]

Throughput (queries/sec)

Dimensions

Figure 5: Throughput when executing range queries with an
average selectivity of 0.4% (five dimensions) to 0.0002% (> ten
dimensions) on 1 Million uniformly distributed data objects
using 24 software threads depending on dimensionality.
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Scans excel in real life data even at 1% sel. and
even with PM queries

BIE R*-trea ﬁ B kd-llree EE VA-file III Scan (Horizontal F"a'rirli-:-ni'lg:l Il Scaq-j‘\r"erlri-:al Partitioning)
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Figure 10: Throughput of contestants when executing the GMROB with varying selectivities on 10 Million 19-dimensional
data objects from the 1000 Genomes Project dataset using 24 software threads (query templates are ordered by selectivity).
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Summary

e kd-Tree > R* > scans > VA-File for highly selective queries

e Scans > VA-File > kd-Tree > R* for less selective queries
— VA almost never better than scan — yet more complex
— kd-Tree outperforms R* trees
— For box queries, horizontal partitioning is beneficial
— For partial queries, vertical partitioning is superior

e Traditional MDIS faster in main memory for highly selective
queries — but gains are small, admin costs are high, more
difficult to parallelize, ...
— Same observations for single dimension IS (e.g. [9])
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Content of this Lecture

e MDIS On Modern Hardware

— Competitors
— Evaluation

e BB-Tree

— Motivation
— BB-Tree Structure
— Evaluation
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BB-Trees from 10.000 Feet

e Almost-balanced k-ary search tree

e Optimized for cache hierarchies of modern CPUs
e Elastic leaf nodes (bubble buckets)

o Updatable

e Efficient handling of low-cardinality dimensions
e Multi-threaded variant

e No free lunch:
Optimized memory layout costs (infrequent) rebuilds
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Data Layout: k-ary Search Tree
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Growing and Shrinking

3171
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Growing and Shrinking

3171
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Growing and Shrinking

3171
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Growing and Shrinking
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Growing and Shrinking
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Growing and Shrinking
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Growing and Shrinking
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Rebuild

000000

Extended IST
Additional layer
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Searching the BB-Tree

e Phase I: Search IST

— Range queries lead to
multiple search paths

— Partial match queries must
scan entire levels

) Phase. IT: Scan buckets A
— Serial or parallel

o Max-size of buckets:
Trade-Off search / scan
— Low selectivity queries: More scan
— High selectivity queries: More search

OOOOOOOOO
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Inner Search Tree (IST)

e Linearized storage
— IST mapped into static dense array (no growth/shrinkage)
— No pointer chasing during traversal

e Fan-out (k) aligned to size of cache lines
— Typically k=16 for INT values
— High fan-out: Low tree, fast IST traversal
— No cache-misses within IST node

27 Linearization
416| |2]5]| |5]8
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Superbuckets

37

it
A -

e Bubble buckets morph between different representations
— Overflowing ordinary buckets turn into superbuckets
— Underflowing superbuckets turn into ordinary buckets
— Overflowing superbuckets trigger index rebuild
— Underflowing ordinary buckets trigger index rebuild

e Superbuckets
— Increase height by only 1 — virtually same search performance
— High capacity (dep on k): Drastically reduce frequency of rebuilds

e Simple idea — quite some impact



Rebuilding the BB-Tree

e Four steps (bucket capacity fixed)

— Determine required number of buckets — IST height
e Leave some free space
e Bubble buckets are dynamic arrays — still good space utilization

— Sample at random (~10% of data) and compute dim. cardinalities
e Most costly operation

— Sort dimensions by cardinality (high — low)
e Assumption: High cardinality dimensions have more selective queries
e Low card-dimensions have little pruning power

— Recursively determine delimiter values (in sample)
e Such that k equal-size groups emerge (what if <k unique values?)

— Build IST

— Re-distribute objects into buckets
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Content of this Lecture

e MDIS On Modern Hardware
— MDIS Adaptions
— Evaluation

e BB-Tree

— Motivation
— BB-Tree Structure
— Evaluation
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Evaluation

e Four data sets
— UNIFORM (synthetic data, 5 to 100 dimensions)
— CLUSTERED (synthetic data, 5 dimensions)
— POWER (real-world data, 3 dimensions)
— GENOMIC (real-world data, 19 dimensions)

e Synthetic and realistic workloads, read-only and R/W

e Five competitors
— kd-tree, PH-tree, VA-file, R*-tree, scans

Ulf Leser: Implementation of Database Systems
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Random Range Queries

kd-Tree extremely slow for low selectivities
and never faster than BB-Tree

BB-Tree PH-tree ==fe= R*-tree === VA-file == Sequential Scan

£ e e e e S

fg - i i
=3 10% | -
L 3 = ]
£ o - .
=g 5 1
SE 3l |
35 100 E
28 | E
< = - Scanbecomes |
102 |- slightly faster

- | I R B R R 1]

| | I R I N
12 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

Query Selectivity (%)
Synthetic range queries on 10 Million 5-dimensional data objects from UNIFORM.
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Genomic Multidimensional Range Query Benchmark

Ph-Tree crashed on GMRQB

E‘ BB-Tree EE kd—tlree R*-tree IIl VA-file Il Slequential Scan
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Query Template 1  Query Template 3 Query Template 2 Mixed Workload  Query Template 4 Query Template |5 Query Template 6 Query Template 7 Query Template 8
avg. selectivity = avg. selectivity = avg. selectivity = avg. selectivity = avg. selectivity = avg. selectivity = avg. selectivity = avg. selectivity = avg. sejfctivity =
10.76% 5.36% 2.19% 1.58% 0.22% 0.20% 0.11% 0.05% 0.001%

Essentially a
e Eight real-life query templates from genomics  PoInt query
— Mostly partial-match

e Data from 1000genomes project, 10M points, 19 dim
e Sorted by average selectivity
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Modern Hardware

BB-Tree  kd-tree PH-tree R*-tree  VA-file Scan
CPU Cycles 164M 8,306M 1,908M 252M  2,934M 1,582M
LLC Accesses 1.0M 824M 1.2M 2.5M 1.8M 0.5M
LLC Misses 0.7M 0.9M 0.8M 0.5M 1.eM 0.3M
TLB Misses 0.3M 1.0M 0.3M 0.3M 0.2M 0.1M
Branch Mispr. 0.1M 0.7M 3M 0.2M 10M ™

Table 3: Performance counters per range query (1% selec-

tivity;n=10M, m=5, UNIFORM).
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Parallel BB-Tree

BB-Tree Parallel BB-Tree ==fp== Scan == Parallel Scan
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Software Threads

Realistic range queries (Mixed Workload from GMRQB, avg. sel.= 1.6%) on 10
Million 19-dimensional data objects from GENOMIC with varying # threads.

e Scan scales better (10x vs 5x)
— Scan: Very few serial components
— BB-Tree: Single-threaded IST search

e Hyper-threading offers little to BB-Tree

Parallelization Speedup
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Insert / Delete / Mixed
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Figure 16: Execution times of single queries (inserts,
deletes, exact-match and range queries) from a mixed
workload in random order; bulk insert is not included; PH-
tree ran out of memory (n=10M, m=19, GENOMIC).
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Conclusions

e BB-Tree: Fastest main-memory MDIS to-date (2018) for
analytical workloads
— Read mostly, (partial-)range queries, high to moderate selectivity
e (Careful tuning to properties of modern hardware
— SIMD didn't pay off
e Bubble-buckets allow for static IST while buffering many
(but not infinitely many) inserts
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Limitations

Superbuckets currently are not balanced
— May create “super ordinary bucket” — large local scan
— Solution: Keep superbuckets balanced (with depth 1)

Order of delimiter dimensions is global
— Limited fit to data clustering in subspaces
— Solution: Recursive re-partitioning; expensive

Rebuilds are costly (index stalls)
— Solution: Rebuild in background; reservoir sampling

Analytical workloads versus write-heavy workloads
— Solution: Do not use BB-Trees for write-heavy skewed workloads

Rebuild capacity calls for workload adaptation
No concurrent writes / transaction management
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Since 2018

e |earned indexes — learn function to map keys on blocks

— E.g. regression: O(d) for computing location, O(1) for access
o If location is predicted perfectly, otherwise some neighborhood search

— Difficult (impossible) to update

e Adaptive indexing: Start with empty index and build tree
sequentially based on delimiters of real queries
— Automatically adapts index to workload (if stable)
— No updates ever implemented — rebuild regularly

o ELF: Prefix tree over compressed dictionary

— Replace all values with index of a sorted dictionary per dimension
e Less space necessary for keys, uniform length

— Impossible to update
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Many Experiments, Summary
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Abbildung 30: Experiment 2: GMRQB, Bereichsabfragen (gemischte Templates), durch-
schnittliche Laufzeit (in ms), 1.000.000 Datenpunkte, 10.000 Abfragen
inklusive BB-Tree Multithreading
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