
Ulf Leser

Datenbanksysteme II:
MDIS on Mordern Hardware; BB Tree



Ulf Leser: Implementation of Database Systems 2

Content of this Lecture

• MDIS On Modern Hardware
– Competitor
– Evaluation

• BB-Tree



Ulf Leser: Implementation of Database Systems 3

Scan or Index?

• Selectivity of a query: % of points matching
• Selectivity of an index: % of blocks that must be touched
• Multi-dimensional range queries (MDRQ)

– Select regions of spatially near blocks
– To exploit access locality, MDIS try to map multi-dimensional 

spatial closeness to one-dimensional physical closeness
– More dimensions – increasingly difficult

• Result: Scans outperformed only for selective queries
– Classical paper 1998, IO based: 20%
– IO is expensive – pruning pays off quickly

• Question: Behavior on today‘s hardware?



Ulf Leser: Implementation of Database Systems 4

MDIS on Modern Hardware

• Main memory, multi-core, SIMD
– Or even GPU, NVRAM, RDMA, FPGA, …

• Optimize disk block access -> Optimize mem. page access
– CPU cache-lines, L1/2/3 caches

• Much research on one-
dimensional main-memory IS
– ART, FAST, CSSL, …

• But no previous work 
for MDIS



Ulf Leser: Implementation of Database Systems 5

Adaptation to Main-Memory

• Conservative adaptations
– Keep original architecture of MDIS
– Reuse existing implementations when possible

• Scans: None, data kept in in-memory arrays
– But different layouts for parallelization – next slide

• kd-trees: None (in-memory IS by design)
– But we store leaves in blocks

• VA-files: Approximations and data blocks in memory
– Very similar to partitioned hashing

• R*-trees: All kept in memory, block size = cache size
– R*: Frequent deletion and re-insertion for optimized partitioning



Ulf Leser: Implementation of Database Systems 6

Parallelization / Partitioning

• Horizontal (all MDIS)
– Partition into subsets of tuples 
– One thread per subset
– Pro: Load balancing
– Con: Scans inefficient in partial queries
– Con: Less efficient SIMD 

(heterogeneous values)
• Vertical (only scan)

– Each dimension one partition
– One thread per dimension
– SIMD: Compare k values of one 

dimension per instruction
– Pro: Pruning in partial queries
– Con: Load balancing



Ulf Leser: Implementation of Database Systems 7

Content of this Lecture

• MDIS On Modern Hardware
– MDIS Adaptions
– Evaluation

• BB-Tree



Ulf Leser: Implementation of Database Systems 8

Experimental setup

• Throughput measured using 1000 queries, warm cache
• Two different Intel CPUs 

– 24/12 threads, different SIMD width
• MDIS construction: Insert tuple-by-tuple in random order
• kd-Tree, VA file, scans: Own implementation
• R* from libspatialindex (block size adapted)



Ulf Leser: Implementation of Database Systems 9

Genomic Multidimensional Range Query Benchmark

• Data from 1000 genomes project (2504 genomes)
• App. 10 Million variants, 19 dimensions
• 8 typical parameterized query templates 
• Parameters set to randomly selected gene locations
• 7 our of 8 templates are partial queries



Ulf Leser: Implementation of Database Systems 10

Synthetic data, d=20, n=1E6, uniform, sel=0,1%

Result: SIMD only Worth for (Vertical) Scans



Ulf Leser: Implementation of Database Systems 11

Result: Scans Hard to Beat – even at 1% Selectivity

Synthetic data, d=5, n=1E6, uniform



Ulf Leser: Implementation of Database Systems 12

Vertical scans affected by dimensionality
(large intermediate results)



Ulf Leser: Implementation of Database Systems 13

Scans excel in real life data even at 1% sel. and 
even with PM queries



Ulf Leser: Implementation of Database Systems 14

Summary

• kd-Tree > R* > scans > VA-File for highly selective queries
• Scans > VA-File > kd-Tree > R* for less selective queries

– VA almost never better than scan – yet more complex
– kd-Tree outperforms R* trees 
– For box queries, horizontal partitioning is beneficial
– For partial queries, vertical partitioning is superior

• Traditional MDIS faster in main memory for highly selective 
queries – but gains are small, admin costs are high, more 
difficult to parallelize, …
– Same observations for single dimension IS (e.g. [9])



Ulf Leser: Implementation of Database Systems 15

Content of this Lecture

• MDIS On Modern Hardware
– Competitors
– Evaluation

• BB-Tree
– Motivation
– BB-Tree Structure
– Evaluation



Ulf Leser: Implementation of Database Systems 16

• Almost-balanced k-ary search tree 
• Optimized for cache hierarchies of modern CPUs
• Elastic leaf nodes (bubble buckets)
• Updatable
• Efficient handling of low-cardinality dimensions
• Multi-threaded variant

• No free lunch: 
Optimized memory layout costs (infrequent) rebuilds

BB-Trees from 10.000 Feet 



Ulf Leser: Implementation of Database Systems 17

Data Layout: k-ary Search Tree

1st dim

2nd dim



Ulf Leser: Implementation of Database Systems 18

Growing and Shrinking



Ulf Leser: Implementation of Database Systems 19

Growing and Shrinking



Ulf Leser: Implementation of Database Systems 20

Growing and Shrinking



Ulf Leser: Implementation of Database Systems 21

Growing and Shrinking

8 12

Many buckets



Ulf Leser: Implementation of Database Systems 22

Growing and Shrinking

8 12



Ulf Leser: Implementation of Database Systems 23

Growing and Shrinking

8 12

High fan-out
Many buckets

Buffers many INS
But …



Ulf Leser: Implementation of Database Systems 24

Growing and Shrinking

8 12



Ulf Leser: Implementation of Database Systems 25

Rebuild
… …

… …… …… …

… …… …… …

… …… …… …

… …… …… …

…

Extended IST
Additional layer



Ulf Leser: Implementation of Database Systems 26

Searching the BB-Tree

• Phase I: Search IST
– Range queries lead to 

multiple search paths
– Partial match queries must 

scan entire levels
• Phase II: Scan buckets

– Serial or parallel

• Max-size of buckets: 
Trade-Off search / scan
– Low selectivity queries: More scan
– High selectivity queries: More search



Ulf Leser: Implementation of Database Systems 27

Inner Search Tree (IST)

• Linearized storage
– IST mapped into static dense array (no growth/shrinkage)
– No pointer chasing during traversal

• Fan-out (k) aligned to size of cache lines
– Typically k=16 for INT values
– High fan-out: Low tree, fast IST traversal
– No cache-misses within IST node



Ulf Leser: Implementation of Database Systems 28

Superbuckets

• Bubble buckets morph between different representations
– Overflowing ordinary buckets turn into superbuckets
– Underflowing superbuckets turn into ordinary buckets
– Overflowing superbuckets trigger index rebuild
– Underflowing ordinary buckets trigger index rebuild

• Superbuckets
– Increase height by only 1 – virtually same search performance
– High capacity (dep on k): Drastically reduce frequency of rebuilds

• Simple idea – quite some impact

8 12



Ulf Leser: Implementation of Database Systems 29

Rebuilding the BB-Tree

• Four steps (bucket capacity fixed)
– Determine required number of buckets – IST height

• Leave some free space
• Bubble buckets are dynamic arrays – still good space utilization

– Sample at random (~10% of data) and compute dim. cardinalities
• Most costly operation

– Sort dimensions by cardinality (high – low)
• Assumption: High cardinality dimensions have more selective queries
• Low card-dimensions have little pruning power

– Recursively determine delimiter values (in sample) 
• Such that k equal-size groups emerge (what if <k unique values?)

– Build IST
– Re-distribute objects into buckets



Ulf Leser: Implementation of Database Systems 30

Content of this Lecture

• MDIS On Modern Hardware
– MDIS Adaptions
– Evaluation

• BB-Tree
– Motivation
– BB-Tree Structure
– Evaluation



Ulf Leser: Implementation of Database Systems 31

Evaluation

• Four data sets
– UNIFORM (synthetic data, 5 to 100 dimensions)
– CLUSTERED (synthetic data, 5 dimensions)
– POWER (real-world data, 3 dimensions)
– GENOMIC (real-world data, 19 dimensions)

• Synthetic and realistic workloads, read-only and R/W 
• Five competitors

– kd-tree, PH-tree, VA-file, R*-tree, scans



Ulf Leser: Implementation of Database Systems 32

Random Range Queries
kd-Tree extremely slow for low selectivities 

and never faster than BB-Tree



Ulf Leser: Implementation of Database Systems 33

Genomic Multidimensional Range Query Benchmark 

Essentially a 
point query

Ph-Tree crashed on GMRQB

• Eight real-life query templates from genomics
– Mostly partial-match

• Data from 1000genomes project, 10M points, 19 dim
• Sorted by average selectivity 



Ulf Leser: Implementation of Database Systems 34

Modern Hardware



Ulf Leser: Implementation of Database Systems 35

Parallel BB-Tree

• Scan scales better (10x vs 5x) 
– Scan: Very few serial components
– BB-Tree: Single-threaded IST search

• Hyper-threading offers little to BB-Tree



Ulf Leser: Implementation of Database Systems 36

Insert / Delete / Mixed



Ulf Leser: Implementation of Database Systems 37

Conclusions

• BB-Tree: Fastest main-memory MDIS to-date (2018) for 
analytical workloads
– Read mostly, (partial-)range queries, high to moderate selectivity

• Careful tuning to properties of modern hardware
– SIMD didn’t pay off

• Bubble-buckets allow for static IST while buffering many 
(but not infinitely many) inserts



Ulf Leser: Implementation of Database Systems 38

Limitations

• Superbuckets currently are not balanced
– May create “super ordinary bucket” – large local scan
– Solution: Keep superbuckets balanced (with depth 1)

• Order of delimiter dimensions is global
– Limited fit to data clustering in subspaces
– Solution: Recursive re-partitioning; expensive

• Rebuilds are costly (index stalls)
– Solution: Rebuild in background; reservoir sampling

• Analytical workloads versus write-heavy workloads
– Solution: Do not use BB-Trees for write-heavy skewed workloads

• Rebuild capacity calls for workload adaptation
• No concurrent writes / transaction management



Ulf Leser: Implementation of Database Systems 39

Since 2018

• Learned indexes – learn function to map keys on blocks
– E.g. regression: O(d) for computing location, O(1) for access

• If location is predicted perfectly, otherwise some neighborhood search
– Difficult (impossible) to update

• Adaptive indexing: Start with empty index and build tree 
sequentially based on delimiters of real queries
– Automatically adapts index to workload (if stable)
– No updates ever implemented – rebuild regularly 

• ELF: Prefix tree over compressed dictionary
– Replace all values with index of a sorted dictionary per dimension 

• Less space necessary for keys, uniform length
– Impossible to update



Ulf Leser: Implementation of Database Systems 40

Many Experiments, Summary


	Foliennummer 1
	Content of this Lecture
	Scan or Index?
	MDIS on Modern Hardware
	Adaptation to Main-Memory
	Parallelization / Partitioning
	Content of this Lecture
	Experimental setup
	Genomic Multidimensional Range Query Benchmark
	Result: SIMD only Worth for (Vertical) Scans
	Result: Scans Hard to Beat – even at 1% Selectivity
	Vertical scans affected by dimensionality�(large intermediate results)
	Scans excel in real life data even at 1% sel. and even with PM queries
	Summary
	Content of this Lecture
	BB-Trees from 10.000 Feet 
	Data Layout: k-ary Search Tree
	Growing and Shrinking
	Growing and Shrinking
	Growing and Shrinking
	Growing and Shrinking
	Growing and Shrinking
	Growing and Shrinking
	Growing and Shrinking
	Rebuild
	Searching the BB-Tree
	Inner Search Tree (IST)
	Superbuckets
	Rebuilding the BB-Tree
	Content of this Lecture
	Evaluation
	Random Range Queries
	Genomic Multidimensional Range Query Benchmark 
	Modern Hardware
	Parallel BB-Tree
	Insert / Delete / Mixed
	Conclusions
	Limitations
	Since 2018
	Many Experiments, Summary

