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Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees

– kd Tree
– kdb Tree

• R Trees
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kd Tree

• Grid file disadvantages
– All hyperregions of the d-dimensional space are eventually split at 

the same scales (dimension/position)
– First cell that overflows determines split
– This choice is global and never undone

• kd Trees
– Bentley: Multidimensional Binary Search Trees Used for Associative 

Searching. CACM, 1975. 
– Multidimensional variation of binary search trees
– Hierarchical splitting of space into regions
– Regions in different subtrees may use different split positions
– Better adaptation to local clustering of data
– Note: kd Tree originally is a main memory data structure
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General Idea

• Binary, rooted tree
• Inner nodes define splits 

(dimension / value)
• Dimensions may be 

mixed in same level
• Leaves: Values + TIDs
• Each leaf (at depth m) 

represents a d-dimen-
sional convex hypercube 
– With m≤2d border planes

• Not balanced
– Bad WC search
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Main Memory or Secondary Storage?

• Keep everything in memory
– Leaves are singular points

• Tree in mem and blocks on disk
– Splits are delayed until block 

overflows
• Store everything on disk

– kdb tree: Later
• On modern hardware

– Random mem access in inner tree
– Larger leaves create smaller trees
– Parallel search? SIMD? 
– BB-Tree: Later

(4,6)
(3,3)

(5,6)
(6,4)

x≥3

x<5 x ≥ 5

y ≥ 2

y<7

y≥3
y < 2

(4,9)

y ≥ 7

… …



Ulf Leser: Implementation of Database Systems 6

The Brick Wall
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• Every split can be 
chosen freely within 
borders defined by 
parents

• Splits are local
… …
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Local Adaptation
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Search Operations

• Exact point search
– ?

• Partial match query
– ?

• Range query
– ?

• Nearest Neighborhood
– ?
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Search Operations

• Exact point search (result size 1)
– In each inner node, decide upon direction based on split condition
– Search inside leaf
– Complexity = height of tree = O(n) in worst case

• Partial query
– If dimension of condition in inner node is part of the query –

proceed as for exact match
– Otherwise, follow all children (multiple search paths)
– Worst case (nothing to exclude) searches entire tree

• Range query
– Follow all children matching the range conditions (multiple paths)
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Nearest Neighbor

• Search point
• Upon descending, build a priority queue of all directions 

not taken
– Compute minimal distance between point and hyper-region not 

followed
– Keep sorted by this minimal distance

• Once at a leaf, visit hyperregions in order of distance to 
query point
– Jump to split point and follow closest path
– Regions not visited are put into priority queue
– Iterate until point found such that provably no closer point exists
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Example
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Query: (5.1, 2.2)
… …
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kd-Tree Insertion

• Search leaf block; if space available – done
– The original kd-Tree has no blocks – we always split

• Otherwise, chose split (dimension + position) for this block
– This is a local decision, valid for subtree of this node
– Option 1: Use each dimension in turn and split region into two 

equally sized subspaces (expects uniform distribution)
– Option 2: Consider current points in leaf and split in two sets of 

approximately equal size (expects temporally constant distribution)
• But which dimension?
• Considering all is expensive – use heuristics

– Usual problem: We don’t know the future
– Wrong decisions in early splits may lead to tree degradation

• As for Grid-Files, there is no guarantee on fill degree
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Deletion

• Search leaf block and delete point
• If block becomes (almost) empty

– If empty: Remove; else: Do nothing – bad fill degree
– Merge with neighbor leaf (if existing)

• Two leaves and one parent node are replaces by one leaf
• Not very clever if neighbor almost full

– Balance with neighbor leaf  (if existing)
• Change split condition in parent such that children have equal size
• Not very clever if neighbor almost empty

– Consider larger neighborhood: Grant parents, grant-grant-par …
• kd trees have no guaranteed balance (~ depth)
• There is no guaranteed fill degree
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Static kd Trees

• Assume the set of points to be indexed is static and known
• We can build worst-case optimal kd Trees

– Rotate through dimensions
• Typically in order of variance – wide-spread dimensions first

– Sort remaining points and choose median as split point
– Guarantees tree depth of O(log(n)) for point queries
– But clustering of points not considered – bad similarity queries

• Nearby points are not nearby in the tree

• Variant (for sim-search): K-means trees
– Iterative k-means clustering of points
– K: Tree width (fanout)
– Faster similarity queries, tree depth not guaranteed
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Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees

– kd Tree
– kdb Tree

• R Trees
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kd Trees on Secondary Storage – Naive Solution

• Each leaf is one block
• Store each inner node in 

one block
– Inner blocks are essentially 

empty
– Since tree is not balanced, 

worst case requires O(n) IO (4,6)
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kdb trees

• Map many inner nodes to a single blocks
– Robinson: The kdb-Tree: A Search Structure for Large 

Multidimensional Dynamic Indexes. SIGMOD 1981. 
– Inner nodes have two children (mostly in the same block)
– Each block holds many inner nodes
– Inner blocks have many children

• Roots of kd trees in other blocks
– Block tree has balanced height
– No guaranteed fill degree

• Operations
– Searching: As with kd trees, but

has balanced depth
– Insertion/Deletion: Keep block tree balance
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Sketch
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Example – Composite Index

• d=3, n=1E9, block size 4096, |point|=9, |b-ptr|=10
– App 450 points per leaf block ~ we need ~2.2M leaf blocks
– Uniform distribution 

• Composite B+ index
– Inner blocks store 108-215 pointers; assume optimal density
– We need 3 levels 

• 2nd level has 215 blocks and 46.000 pointers
• 3rd level has 46K blocks and 10M pointers, 2.2M are needed

• Box query, 5% selectivity in each dimension
– We read 5% of 2nd level blocks ~ 10 IO
– For each, we read 5% of 3rd level blocks ~ 10*215*0,05~100 IO
– For each, we read 5% of data blocks = 1150 IO
– Altogether: ~1250 IO
– Optimal: Selectivity is 0.053 ~ 125K points ~ 270 IO



Ulf Leser: Implementation of Database Systems 20

Visualization

x-Dim

y-Dim ... 215 ptr ... 

... 215 ptr ... 
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Example: Partial Box Query

• Partial query on 2nd and 3rd dimensions only, asking for a 
5% range in both dimensions
– We need to scan all 215 2nd level blocks

• Each 2nd level block contains the 5% range of 1st dimension
– For each, we read 5% of 3rd level blocks = 2300 blocks
– For each, we read 5% of data blocks = ~25K data blocks
– Altogether:  27.000 IO
– Optimal* 1E9*0,05*0,05/455 ~ 5.500 blocks



Ulf Leser: Implementation of Database Systems 22

With Balanced kdb Tree

• Balanced kdb tree will have ~23 levels
– We need to address 1E9/455 ~221 blocks

• Consider 128=27 inner nodes in one kdb-block
– Rough estimate; we need to store 1 dim indicator, 1 split value, 

and 2 ptr for each inner node, but most ptr are just offsets into the 
same block

• kdb tree structure
– 1st level block holds 128 inner nodes = levels 1-7 of kd-tree

• Last (7th) level has 64 nodes
– There are 64 2nd level blocks holding levels 8-14 of kd-tree

• Together, 64*64 = 4096 nodes at 14th level
– There are ~4000 3rd level blocks holding levels 15-21 of kd-tree
– There are ~260K 4th level blocks holding level 22-23

• Together, app. 1M ~ 221 leaves
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Space Covered

• 1st block splits space in 64 regions
• 2nd level block split space in ~4K regions, each region 

covering 0,00025% of all points
• Query selectivity is (0,05)3 = 0,000125% of points 

– Always assuming uniform distribution
• Thus, we very likely find all results in one region of first 

two levels and require increasingly more outgoing nodes in 
3rd and 4th level
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Intuition
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Example - Box Query with kdb Tree

• Box query on thee dimensions, asking for a 5% range in 
each dimension
– In first block (7 levels), we have 2 splits for 2 and 3 for 1 dim
– In a box query, we know where to go in all splits
– We need to check only 1 second-level block
– In level 3, some splits are within query range 

• Let’s assume two: 1*22 = 4 blocks (of 64)
– In level 4, more splits are within query range 

• Let’s assume three: 4*23 = 64 blocks (of 4096)
– Level 4 blocks have 4 outgoing pointer: 4*64 = 256
– Altogether: 1+4+64+256 ~ 320 IO

• Compare to 1250 of composite index
• Compare to 270 in optimal case
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Example - Partial Box Query with kdb Tree

• Box query on 2nd and 3rd dimensions only, asking for a 
5% range in each dimension
– In first block (7 levels), we have 2 splits for 2 and 3 for 1 dim
– Assume bad luck – no range for the 4-split dimension
– We need to check 23=8 second-level blocks (of 64)
– In level 3, more splits are within query range 

• Let’s assume four: 8*24 = 128 blocks (of 4.096)
– In level 4, more splits are within query range 

• Let’s assume four again: 128*24 ~ 2.000 blocks
– Level 4 blocks have 4 outgoing pointer: 4*2.000 ~8.000
– Altogether: 1+8+2.000+8.000 ~ 10.000 IO

• Compare to 26.000 for composite index
• Compare to ~5.500 for optimal
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Balancing upon Insertions

• Similar method as for B+ trees
– Search appropriate leaf
– If leaf overflows, split

• Chose dimension and split value; re-distribute points into two blocks
• Propagate to parent node

– In parent node, a block-leaf must be replaced by an inner node
• With two new blocks as children

– This may make the parent overflow – propagate up the tree
• Splitting an inner node

– Chose a dimension and split value
– Distribute nodes to two new blocks

• Split might have to be propagated downwards
– Propagate new pointers to parent (and their children)
– Might lead to reorganization of entire tree
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Conclusion

• Pro kdb trees
– Conceptually nice, close to B-tree idea
– Balanced tree depth – good WC performance for searching
– May achieve optimal search performance

• Contra kdb
– No guaranteed fill degree

• Many insertions/deletions may lead to almost empty leaves
– Keeping balance requires sporadic tree reorganizations

• Runtime of single insert / delete operations become unpredictable
– Difficult to implement

• Rarely used in practice
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Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees
• Conclusions
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R-Trees

• Guttman. R-Trees: A Dynamic Index Structure for Spatial 
Searching. SIGMOD 1984. 

• Can store geometric objects (with area) as well as points
– Arbitrary geometric objects are represented by their minimal 

bounding box (MBB)
• Each object is stored in exactly one region on each level
• Since objects may overlap, regions may overlap
• Only regions containing data objects are represented

– Allows for fast stop when searching in empty regions
• Tree is kept balanced (like B tree)
• Guaranteed fill degree (like B tree)
• Many variations (see literature)
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Example (from Donald Kossmann)
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Compute MBBs for all non-
rectangular objects
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General Idea
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• We group clusters of spatial 
objects into minimal 
bounding box (MBB)

• Each MBB is represented by 
two corner points (in 2D, 
otherwise …)
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a1                                   

a2

a1 a2

General Idea
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• Objects are stored only once 
in leaf nodes

• We group MBBs hierarchically 
into overlapping regions
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Motivation: Objects that are not points

• We need overlapping regions
– For instance, if all MBBs overlap
– No split possible which creates disjoints sets of objects

• Objects crossing a split
– Stored in only one MBB (R-Tree)

• Search must examine both
• No redundant data

– Stored in both MBB (R+-Tree)
• Search may choose any one
• Redundant data
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R Tree versus kd Tree

kd Tree R Tree
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Concepts

• Inner nodes consist of a set of d-dimensional regions
• Every region is a (convex) hypercube – a MBB

• Regions are hierarchically organized
• Each region of an inner node points to a subtree or a leaf
• The region border is the MBB of all objects in this subtree

• Inner node: MBB of all child regions
• Leaf blocks: All objects are contained in the respective region

• Regions in one level may overlap
• Regions of a level do not cover the space of its parent 

completely (as opposed to the KD-tree)
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Concepts

• Guaranteed fill degree: The number of regions of a node 
(except for the root) is between m and M
– M : the maximum number of entries in a node
– m: set to some fraction of M, e.g. M/2

• The root node has at least 2 entries

• Balanced: Leaf nodes are at the same level 
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Searching

• Point query (for points as data objects)
– At each inner node, find all regions 

containing the point
– All those subtrees must be searched

• Box overlap query: Find all objects 
overlapping with a given query
– In each node, intersect query with all regions
– >1 region might have non-empty overlap
– All those subtrees must be searched

• Box inclusion query: Find all objects 
within a given query object
– Same as overlap query
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One State
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Example: Overlap Query
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No overlap in child regions 
(only in MBB) – stop search
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Inserting an Object

• Traverse the R-tree top-down, starting from the root
• In each node, find all candidate regions

– Any region may overlap the object completely, partly, or not
– Object may overlap none, one, or many regions – partly or 

completely
– If at least one region with complete overlap

• Choose one (smallest?) and descend
– If none with complete, but at least one with partial overlap 

• Choose one (largest overlap?) and descend
– If no overlapping region at all

• Choose one (closest?) and descend

• Eventually, we reach a leaf
– We insert object in only one leaf
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Continuation

• If free space in leaf
– Insert object and adapt MBB of leaf
– Recursively adapt MBBs up the tree
– This usually generates larger overlaps – search degrades

• If no free space in leaf
– Split block in two regions
– Compute MBBs
– Adapt parent node: One more child, changed MBBs
– May affect MBB of higher regions and/or incur overflows at high 

regions – ascend recursively
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Example: Insertion, Search Phase
a1 a2

b1 b2 b3 b4 b5

c1 c2 c4 c5 c6 c7 c8 c9 c10c11c12

• Search regions whose MBB 
must be expanded the least

• Repeat on each level
• Here: Leaf overflow, split

– Note: Choosing b4 would 
avoid split – but how can we 
know?
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Example: Insertion, Split Phase
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Example: Insertion, Adaptation Phase

a1 a2

b1 b2 b3

c1 c2 c3 c4 c5 c6 c7

b4 b5 b6

c8 c9 c11c12 c10c13

• MBBs of all parent nodes must be adapted
• Block split might induce node splits in higher levels 

of the tree (not here)
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Where to Split

• Finding the best splitting strategy has seen ample research
• Wish 1: Avoid overlaps

– Compute split such that overlap is minimal (or even avoided)
– Minimizes necessity to descend to different children during search 
– May create larger regions – more futile searches in “empty” regions

• Wish 2: Minimize covered space 
– Compute split such that total volume of all MBBs is minimal
– Increases changes to descend on multiple paths during search
– But: Unsuccessful searches can stop earlier
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Deletions in the R Tree

• As usual: In case of underflow, the block is removed
• R Trees typically do not move objects to neighbor leafs

– MBBs would have to be adopted 
– But relationship of MBBs may be quite arbitrary
– May create very large overlaps, very large spaces covered
– One could find optimal moves, but … expensive

• Trick: Delete by Reinsertion
– Re-Insert every objects that remained in the underflown block
– Insert strategies will be applied again
– No particular delete strategy required – focus on good insertions
– But costly: A single delete may incur many inserts 

• Depending on m
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R+ Tree

• Two effects leading to inefficiency during search 
– Overlapping MBBs lead to multiple search paths
– A few large objects enforce large MBBs covering much dead space

• R+ Tree
– Objects overlapping with two regions are stored in both
– MBBs in a node never overlap

• Much faster search, but
– Search must perform duplicate removal as last steps
– Insertion / deletion may have to walk multiple paths, incurring 

multiple adaptations
– Higher space consumption due to redundancy 
– Insertion may require down- and upward adaption 

• Like kdb Trees
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R* Tree

• As Grid-files or kd-Trees, R Trees take decisions during 
insertions that determine the future of some regions
– MBBs in chosen subtree change
– During insertions, they usually grow

• If these decisions prove wrong, large overlapping MBBs 
emerge, making search slow 
– Too many branches need to be traversed

• R*: Revise your decisions from time to time
– Chose regions and fraction of objects at random in regular intervals
– Delete and reinsert
– Leads to smaller MBBs and faster operations 

• Price: The unnecessary reinsertions
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Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees
• Conclusions
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Multidimensional Data Structures Wrap-Up

• Many more MDIS: X tree, VA-file, hb-tree, UB tree, …
– Store objects more than once; other than rectangular shapes; map 

coordinates into integers; …
• All MDIS degrade with increasing number of dimensions 

(d>10) or very unusual skew
– For neighborhood and range queries
– Hierarchical MDIS degenerate to an expensive linear scan

• Trick: Find lower-dimensional representations with provable 
lower bounds on distance to prune space
– Requires distance function-specific lower bounding techniques

• Alternative: Approximate MDIS (LSH, randomized kd Trees)
– Find almost all neighbors, with/out given probability
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