
Ulf Leser

Datenbanksysteme II:
Multidimensional Index Structures 2

Ulf Leser: Implementation of Database Systems 2

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees

– kd Tree
– kdb Tree

• R Trees

Ulf Leser: Implementation of Database Systems 3

kd Tree

• Grid file disadvantages
– All hyperregions of the d-dimensional space are eventually split at

the same scales (dimension/position)
– First cell that overflows determines split
– This choice is global and never undone

• kd Trees
– Bentley: Multidimensional Binary Search Trees Used for Associative

Searching. CACM, 1975.
– Multidimensional variation of binary search trees
– Hierarchical splitting of space into regions
– Regions in different subtrees may use different split positions
– Better adaptation to local clustering of data
– Note: kd Tree originally is a main memory data structure

Ulf Leser: Implementation of Database Systems 4

General Idea

• Binary, rooted tree
• Inner nodes define splits

(dimension / value)
• Dimensions may be

mixed in same level
• Leaves: Values + TIDs
• Each leaf (at depth m)

represents a d-dimen-
sional convex hypercube
– With m≤2d border planes

• Not balanced
– Bad WC search

(4,6)
(3,3)

(0,4)
(1,1)

(5,6)

(3,1)
(6,4)

x<3 x≥3

x<5

y<3

x ≥ 5

y ≥ 2

y<7
y≥1y<1

(2,0)

y≥3
y < 2

(4,9)

y ≥ 7

… …

Ulf Leser: Implementation of Database Systems 5

Main Memory or Secondary Storage?

• Keep everything in memory
– Leaves are singular points

• Tree in mem and blocks on disk
– Splits are delayed until block

overflows
• Store everything on disk

– kdb tree: Later
• On modern hardware

– Random mem access in inner tree
– Larger leaves create smaller trees
– Parallel search? SIMD?
– BB-Tree: Later

(4,6)
(3,3)

(5,6)
(6,4)

x≥3

x<5 x ≥ 5

y ≥ 2

y<7

y≥3
y < 2

(4,9)

y ≥ 7

… …

Ulf Leser: Implementation of Database Systems 6

The Brick Wall

(4,6)
(3,3)

(0,4)
(1,1)

(3,1)
(6,4)

x<3 x≥3

x<5

y<3

x ≥ 5

y ≥ 2

y<7
y≥1y<1

(2,0)

y≥3
y < 2

10

10

(4,9)

• Every split can be
chosen freely within
borders defined by
parents

• Splits are local
… …

Ulf Leser: Implementation of Database Systems 7

Local Adaptation

Ulf Leser: Implementation of Database Systems 8

Search Operations

• Exact point search
– ?

• Partial match query
– ?

• Range query
– ?

• Nearest Neighborhood
– ?

Ulf Leser: Implementation of Database Systems 9

Search Operations

• Exact point search (result size 1)
– In each inner node, decide upon direction based on split condition
– Search inside leaf
– Complexity = height of tree = O(n) in worst case

• Partial query
– If dimension of condition in inner node is part of the query –

proceed as for exact match
– Otherwise, follow all children (multiple search paths)
– Worst case (nothing to exclude) searches entire tree

• Range query
– Follow all children matching the range conditions (multiple paths)

Ulf Leser: Implementation of Database Systems 10

Nearest Neighbor

• Search point
• Upon descending, build a priority queue of all directions

not taken
– Compute minimal distance between point and hyper-region not

followed
– Keep sorted by this minimal distance

• Once at a leaf, visit hyperregions in order of distance to
query point
– Jump to split point and follow closest path
– Regions not visited are put into priority queue
– Iterate until point found such that provably no closer point exists

Ulf Leser: Implementation of Database Systems 11

Example

(4,6)
(3,3)

(0,4)
(1,1)

(3,1)
(6,4)

x<3 x≥3

x<5

y<3

x ≥ 5

y ≥ 2

y<7
y≥1y<1

(2,0)

y≥3
y < 2

10

10

(4,9)

Query: (5.1, 2.2)
… …

Ulf Leser: Implementation of Database Systems 12

kd-Tree Insertion

• Search leaf block; if space available – done
– The original kd-Tree has no blocks – we always split

• Otherwise, chose split (dimension + position) for this block
– This is a local decision, valid for subtree of this node
– Option 1: Use each dimension in turn and split region into two

equally sized subspaces (expects uniform distribution)
– Option 2: Consider current points in leaf and split in two sets of

approximately equal size (expects temporally constant distribution)
• But which dimension?
• Considering all is expensive – use heuristics

– Usual problem: We don’t know the future
– Wrong decisions in early splits may lead to tree degradation

• As for Grid-Files, there is no guarantee on fill degree

Ulf Leser: Implementation of Database Systems 13

Deletion

• Search leaf block and delete point
• If block becomes (almost) empty

– If empty: Remove; else: Do nothing – bad fill degree
– Merge with neighbor leaf (if existing)

• Two leaves and one parent node are replaces by one leaf
• Not very clever if neighbor almost full

– Balance with neighbor leaf (if existing)
• Change split condition in parent such that children have equal size
• Not very clever if neighbor almost empty

– Consider larger neighborhood: Grant parents, grant-grant-par …
• kd trees have no guaranteed balance (~ depth)
• There is no guaranteed fill degree

Ulf Leser: Implementation of Database Systems 14

Static kd Trees

• Assume the set of points to be indexed is static and known
• We can build worst-case optimal kd Trees

– Rotate through dimensions
• Typically in order of variance – wide-spread dimensions first

– Sort remaining points and choose median as split point
– Guarantees tree depth of O(log(n)) for point queries
– But clustering of points not considered – bad similarity queries

• Nearby points are not nearby in the tree

• Variant (for sim-search): K-means trees
– Iterative k-means clustering of points
– K: Tree width (fanout)
– Faster similarity queries, tree depth not guaranteed

Ulf Leser: Implementation of Database Systems 15

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees

– kd Tree
– kdb Tree

• R Trees

Ulf Leser: Implementation of Database Systems 16

kd Trees on Secondary Storage – Naive Solution

• Each leaf is one block
• Store each inner node in

one block
– Inner blocks are essentially

empty
– Since tree is not balanced,

worst case requires O(n) IO (4,6)
(3,3)

(0,4)
(1,1)

(5,6)

(3,1)
(6,4)

x<3 x≥3

x<5

y<3

x ≥ 5

y ≥ 2

y<
7

y≥
1

y<1

(2,0)

y≥3
y < 2

Ulf Leser: Implementation of Database Systems 17

kdb trees

• Map many inner nodes to a single blocks
– Robinson: The kdb-Tree: A Search Structure for Large

Multidimensional Dynamic Indexes. SIGMOD 1981.
– Inner nodes have two children (mostly in the same block)
– Each block holds many inner nodes
– Inner blocks have many children

• Roots of kd trees in other blocks
– Block tree has balanced height
– No guaranteed fill degree

• Operations
– Searching: As with kd trees, but

has balanced depth
– Insertion/Deletion: Keep block tree balance

Ulf Leser: Implementation of Database Systems 18

Sketch

Ulf Leser: Implementation of Database Systems 19

Example – Composite Index

• d=3, n=1E9, block size 4096, |point|=9, |b-ptr|=10
– App 450 points per leaf block ~ we need ~2.2M leaf blocks
– Uniform distribution

• Composite B+ index
– Inner blocks store 108-215 pointers; assume optimal density
– We need 3 levels

• 2nd level has 215 blocks and 46.000 pointers
• 3rd level has 46K blocks and 10M pointers, 2.2M are needed

• Box query, 5% selectivity in each dimension
– We read 5% of 2nd level blocks ~ 10 IO
– For each, we read 5% of 3rd level blocks ~ 10*215*0,05~100 IO
– For each, we read 5% of data blocks = 1150 IO
– Altogether: ~1250 IO
– Optimal: Selectivity is 0.053 ~ 125K points ~ 270 IO

Ulf Leser: Implementation of Database Systems 20

Visualization

x-Dim

y-Dim ... 215 ptr ...

... 215 ptr ...

Ulf Leser: Implementation of Database Systems 21

Example: Partial Box Query

• Partial query on 2nd and 3rd dimensions only, asking for a
5% range in both dimensions
– We need to scan all 215 2nd level blocks

• Each 2nd level block contains the 5% range of 1st dimension
– For each, we read 5% of 3rd level blocks = 2300 blocks
– For each, we read 5% of data blocks = ~25K data blocks
– Altogether: 27.000 IO
– Optimal* 1E9*0,05*0,05/455 ~ 5.500 blocks

Ulf Leser: Implementation of Database Systems 22

With Balanced kdb Tree

• Balanced kdb tree will have ~23 levels
– We need to address 1E9/455 ~221 blocks

• Consider 128=27 inner nodes in one kdb-block
– Rough estimate; we need to store 1 dim indicator, 1 split value,

and 2 ptr for each inner node, but most ptr are just offsets into the
same block

• kdb tree structure
– 1st level block holds 128 inner nodes = levels 1-7 of kd-tree

• Last (7th) level has 64 nodes
– There are 64 2nd level blocks holding levels 8-14 of kd-tree

• Together, 64*64 = 4096 nodes at 14th level
– There are ~4000 3rd level blocks holding levels 15-21 of kd-tree
– There are ~260K 4th level blocks holding level 22-23

• Together, app. 1M ~ 221 leaves

Ulf Leser: Implementation of Database Systems 23

Space Covered

• 1st block splits space in 64 regions
• 2nd level block split space in ~4K regions, each region

covering 0,00025% of all points
• Query selectivity is (0,05)3 = 0,000125% of points

– Always assuming uniform distribution
• Thus, we very likely find all results in one region of first

two levels and require increasingly more outgoing nodes in
3rd and 4th level

Ulf Leser: Implementation of Database Systems 24

Intuition
x

y

x

y

z

x

y

z

x

y

x

y

z

x

y

z

x

y

x

y

z

x

y

z

x

y

x

y

z

x

y

z

x

y

x

y

z

x

y

z

Ulf Leser: Implementation of Database Systems 25

Example - Box Query with kdb Tree

• Box query on thee dimensions, asking for a 5% range in
each dimension
– In first block (7 levels), we have 2 splits for 2 and 3 for 1 dim
– In a box query, we know where to go in all splits
– We need to check only 1 second-level block
– In level 3, some splits are within query range

• Let’s assume two: 1*22 = 4 blocks (of 64)
– In level 4, more splits are within query range

• Let’s assume three: 4*23 = 64 blocks (of 4096)
– Level 4 blocks have 4 outgoing pointer: 4*64 = 256
– Altogether: 1+4+64+256 ~ 320 IO

• Compare to 1250 of composite index
• Compare to 270 in optimal case

Ulf Leser: Implementation of Database Systems 26

Example - Partial Box Query with kdb Tree

• Box query on 2nd and 3rd dimensions only, asking for a
5% range in each dimension
– In first block (7 levels), we have 2 splits for 2 and 3 for 1 dim
– Assume bad luck – no range for the 4-split dimension
– We need to check 23=8 second-level blocks (of 64)
– In level 3, more splits are within query range

• Let’s assume four: 8*24 = 128 blocks (of 4.096)
– In level 4, more splits are within query range

• Let’s assume four again: 128*24 ~ 2.000 blocks
– Level 4 blocks have 4 outgoing pointer: 4*2.000 ~8.000
– Altogether: 1+8+2.000+8.000 ~ 10.000 IO

• Compare to 26.000 for composite index
• Compare to ~5.500 for optimal

Ulf Leser: Implementation of Database Systems 27

Balancing upon Insertions

• Similar method as for B+ trees
– Search appropriate leaf
– If leaf overflows, split

• Chose dimension and split value; re-distribute points into two blocks
• Propagate to parent node

– In parent node, a block-leaf must be replaced by an inner node
• With two new blocks as children

– This may make the parent overflow – propagate up the tree
• Splitting an inner node

– Chose a dimension and split value
– Distribute nodes to two new blocks

• Split might have to be propagated downwards
– Propagate new pointers to parent (and their children)
– Might lead to reorganization of entire tree

Ulf Leser: Implementation of Database Systems 28

Conclusion

• Pro kdb trees
– Conceptually nice, close to B-tree idea
– Balanced tree depth – good WC performance for searching
– May achieve optimal search performance

• Contra kdb
– No guaranteed fill degree

• Many insertions/deletions may lead to almost empty leaves
– Keeping balance requires sporadic tree reorganizations

• Runtime of single insert / delete operations become unpredictable
– Difficult to implement

• Rarely used in practice

Ulf Leser: Implementation of Database Systems 29

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees
• Conclusions

Ulf Leser: Implementation of Database Systems 30

R-Trees

• Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. SIGMOD 1984.

• Can store geometric objects (with area) as well as points
– Arbitrary geometric objects are represented by their minimal

bounding box (MBB)
• Each object is stored in exactly one region on each level
• Since objects may overlap, regions may overlap
• Only regions containing data objects are represented

– Allows for fast stop when searching in empty regions
• Tree is kept balanced (like B tree)
• Guaranteed fill degree (like B tree)
• Many variations (see literature)

Ulf Leser: Implementation of Database Systems 31

Example (from Donald Kossmann)

c5

c3

c2

c4

c8

c1 c7

c6

c12

c11

c10c9

Compute MBBs for all non-
rectangular objects

Ulf Leser: Implementation of Database Systems 32

General Idea

b5

b4

b3
b2

b1

c5

c3

c2

c4

c8

c1 c7

c6

c12

c11

c10c9

• We group clusters of spatial
objects into minimal
bounding box (MBB)

• Each MBB is represented by
two corner points (in 2D,
otherwise …)

max

min

Ulf Leser: Implementation of Database Systems 33

a1

a2

a1 a2

General Idea

b5

b4

b3
b2

b1

c5

c3

c2

c4

c8

c1 c7

c6

c12

c11

c10c9

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12

b1 b2 b3 b4 b5

• Objects are stored only once
in leaf nodes

• We group MBBs hierarchically
into overlapping regions

Ulf Leser: Implementation of Database Systems 34

Motivation: Objects that are not points

• We need overlapping regions
– For instance, if all MBBs overlap
– No split possible which creates disjoints sets of objects

• Objects crossing a split
– Stored in only one MBB (R-Tree)

• Search must examine both
• No redundant data

– Stored in both MBB (R+-Tree)
• Search may choose any one
• Redundant data

Ulf Leser: Implementation of Database Systems 35

R Tree versus kd Tree

kd Tree R Tree

Ulf Leser: Implementation of Database Systems 36

Concepts

• Inner nodes consist of a set of d-dimensional regions
• Every region is a (convex) hypercube – a MBB

• Regions are hierarchically organized
• Each region of an inner node points to a subtree or a leaf
• The region border is the MBB of all objects in this subtree

• Inner node: MBB of all child regions
• Leaf blocks: All objects are contained in the respective region

• Regions in one level may overlap
• Regions of a level do not cover the space of its parent

completely (as opposed to the KD-tree)

Ulf Leser: Implementation of Database Systems 37

Concepts

• Guaranteed fill degree: The number of regions of a node
(except for the root) is between m and M
– M : the maximum number of entries in a node
– m: set to some fraction of M, e.g. M/2

• The root node has at least 2 entries

• Balanced: Leaf nodes are at the same level

Ulf Leser: Implementation of Database Systems 38

Searching

• Point query (for points as data objects)
– At each inner node, find all regions

containing the point
– All those subtrees must be searched

• Box overlap query: Find all objects
overlapping with a given query
– In each node, intersect query with all regions
– >1 region might have non-empty overlap
– All those subtrees must be searched

• Box inclusion query: Find all objects
within a given query object
– Same as overlap query

Ulf Leser: Implementation of Database Systems 39

One State

b5

b4

b3
b2

b1

c5

c3

c2

c4

c8

c1 c7

c6

c12

c11

c10c9

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12

a1

a2

a1 a2

Ulf Leser: Implementation of Database Systems 40

Example: Overlap Query

a1 a2

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12

No overlap in child regions
(only in MBB) – stop search

b5

b4

b3
b2

b1

c5

c3

c2

c4

c8

c1 c7

c6

c12

c11

c10c9

a1

a2

Ulf Leser: Implementation of Database Systems 41

Inserting an Object

• Traverse the R-tree top-down, starting from the root
• In each node, find all candidate regions

– Any region may overlap the object completely, partly, or not
– Object may overlap none, one, or many regions – partly or

completely
– If at least one region with complete overlap

• Choose one (smallest?) and descend
– If none with complete, but at least one with partial overlap

• Choose one (largest overlap?) and descend
– If no overlapping region at all

• Choose one (closest?) and descend

• Eventually, we reach a leaf
– We insert object in only one leaf

Ulf Leser: Implementation of Database Systems 42

Continuation

• If free space in leaf
– Insert object and adapt MBB of leaf
– Recursively adapt MBBs up the tree
– This usually generates larger overlaps – search degrades

• If no free space in leaf
– Split block in two regions
– Compute MBBs
– Adapt parent node: One more child, changed MBBs
– May affect MBB of higher regions and/or incur overflows at high

regions – ascend recursively

Ulf Leser: Implementation of Database Systems 43

Example: Insertion, Search Phase
a1 a2

b1 b2 b3 b4 b5

c1 c2 c4 c5 c6 c7 c8 c9 c10c11c12

• Search regions whose MBB
must be expanded the least

• Repeat on each level
• Here: Leaf overflow, split

– Note: Choosing b4 would
avoid split – but how can we
know?

b5

b4

b3
b2

b1

c5

c3

c2

c4

c8

c1 c7

c6

c12

c11

c10c9

a1

a2

Ulf Leser: Implementation of Database Systems 44

Example: Insertion, Split Phase

b5

c12

c11

c10

b4 b5

c8 c9 c10c11c12

c13

Several splits are possible

b6

b4 b5 b6

c8 c9 c11c12 c10c13

b5

c12

c11

c10

c13

c12

c11

c10

c13

Ulf Leser: Implementation of Database Systems 45

Example: Insertion, Adaptation Phase

a1 a2

b1 b2 b3

c1 c2 c3 c4 c5 c6 c7

b4 b5 b6

c8 c9 c11c12 c10c13

• MBBs of all parent nodes must be adapted
• Block split might induce node splits in higher levels

of the tree (not here)

Ulf Leser: Implementation of Database Systems 46

Where to Split

• Finding the best splitting strategy has seen ample research
• Wish 1: Avoid overlaps

– Compute split such that overlap is minimal (or even avoided)
– Minimizes necessity to descend to different children during search
– May create larger regions – more futile searches in “empty” regions

• Wish 2: Minimize covered space
– Compute split such that total volume of all MBBs is minimal
– Increases changes to descend on multiple paths during search
– But: Unsuccessful searches can stop earlier

Ulf Leser: Implementation of Database Systems 47

Deletions in the R Tree

• As usual: In case of underflow, the block is removed
• R Trees typically do not move objects to neighbor leafs

– MBBs would have to be adopted
– But relationship of MBBs may be quite arbitrary
– May create very large overlaps, very large spaces covered
– One could find optimal moves, but … expensive

• Trick: Delete by Reinsertion
– Re-Insert every objects that remained in the underflown block
– Insert strategies will be applied again
– No particular delete strategy required – focus on good insertions
– But costly: A single delete may incur many inserts

• Depending on m

Ulf Leser: Implementation of Database Systems 48

R+ Tree

• Two effects leading to inefficiency during search
– Overlapping MBBs lead to multiple search paths
– A few large objects enforce large MBBs covering much dead space

• R+ Tree
– Objects overlapping with two regions are stored in both
– MBBs in a node never overlap

• Much faster search, but
– Search must perform duplicate removal as last steps
– Insertion / deletion may have to walk multiple paths, incurring

multiple adaptations
– Higher space consumption due to redundancy
– Insertion may require down- and upward adaption

• Like kdb Trees

Ulf Leser: Implementation of Database Systems 49

R* Tree

• As Grid-files or kd-Trees, R Trees take decisions during
insertions that determine the future of some regions
– MBBs in chosen subtree change
– During insertions, they usually grow

• If these decisions prove wrong, large overlapping MBBs
emerge, making search slow
– Too many branches need to be traversed

• R*: Revise your decisions from time to time
– Chose regions and fraction of objects at random in regular intervals
– Delete and reinsert
– Leads to smaller MBBs and faster operations

• Price: The unnecessary reinsertions

Ulf Leser: Implementation of Database Systems 50

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees
• Conclusions

Ulf Leser: Implementation of Database Systems 51

Multidimensional Data Structures Wrap-Up

• Many more MDIS: X tree, VA-file, hb-tree, UB tree, …
– Store objects more than once; other than rectangular shapes; map

coordinates into integers; …
• All MDIS degrade with increasing number of dimensions

(d>10) or very unusual skew
– For neighborhood and range queries
– Hierarchical MDIS degenerate to an expensive linear scan

• Trick: Find lower-dimensional representations with provable
lower bounds on distance to prune space
– Requires distance function-specific lower bounding techniques

• Alternative: Approximate MDIS (LSH, randomized kd Trees)
– Find almost all neighbors, with/out given probability

	Foliennummer 1
	Content of this Lecture
	kd Tree
	General Idea
	Main Memory or Secondary Storage?
	The Brick Wall
	Local Adaptation
	Search Operations
	Search Operations
	Nearest Neighbor
	Example
	kd-Tree Insertion
	Deletion
	Static kd Trees
	Content of this Lecture
	kd Trees on Secondary Storage – Naive Solution
	kdb trees
	Sketch
	Example – Composite Index
	Visualization
	Example: Partial Box Query
	With Balanced kdb Tree
	Space Covered
	Intuition
	Example - Box Query with kdb Tree
	Example - Partial Box Query with kdb Tree
	Balancing upon Insertions
	Conclusion
	Content of this Lecture
	R-Trees
	Example (from Donald Kossmann)
	General Idea
	General Idea
	Motivation: Objects that are not points
	R Tree versus kd Tree
	Concepts
	Concepts
	Searching
	One State
	Example: Overlap Query
	Inserting an Object
	Continuation
	Example: Insertion, Search Phase
	Example: Insertion, Split Phase
	Example: Insertion, Adaptation Phase
	Where to Split
	Deletions in the R Tree
	R+ Tree
	R* Tree
	Content of this Lecture
	Multidimensional Data Structures Wrap-Up

