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e kdb Trees
— kd Tree
— kdb Tree

e R Trees
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kd Tree

e Grid file disadvantages

— All hyperregions of the d-dimensional space are eventually split at
the same scales (dimension/position)

— First cell that overflows determines split
— This choice is global and never undone

e kd Trees

— Bentley: Multidimensional Binary Search Trees Used for Associative
Searching. CACM, 1975.

— Multidimensional variation of binary search trees

— Hierarchical splitting of space into regions

— Regions in different subtrees may use different split positions
— Better adaptation to local clustering of data

— Note: kd Tree originally is a main memory data structure
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General Idea

e Binary, rooted tree

e Inner nodes define splits
(dimension / value)

e Dimensions may be
mixed in same level y<t

e |Leaves: Values + TIDs [zo

e Each leaf (at depth m)
represents a d-dimen-
sional convex hypercube

— With m<2d border planes

e Not balanced
— Bad WC search
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Main Memory or Secondary Storage?

e Keep everything in memory
— Leaves are singular points

e Tree in mem and blocks on disk

— Splits are delayed until block
overflows

e Store everything on disk
— kdb tree: Later

e On modern hardware
— Random mem access in inner tree
— Larger leaves create smaller trees
— Parallel search? SIMD?
— BB-Tree: Later
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The Brick Wall

y<1

(2,0)

i»
10

Every split can be
chosen freely within
borders defined by
parents

Splits are local
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Local Adaptation
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Search Operations

e Exact point search
- ?

e Partial match query
— 7

e Range query
— 7

e Nearest Neighborhood

- ?
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Search Operations

e Exact point search (result size 1)
— In each inner node, decide upon direction based on split condition
— Search inside leaf
— Complexity = height of tree = O(n) in worst case

e Partial query

— If dimension of condition in inner node is part of the query —
proceed as for exact match

— Otherwise, follow all children (multiple search paths)
— Worst case (nothing to exclude) searches entire tree
e Range query
— Follow all children matching the range conditions (multiple paths)
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Nearest Neighbor

e Search point

e Upon descending, build a priority queue of all directions
not taken

— Compute minimal distance between point and hyper-region not
followed

— Keep sorted by this minimal distance

e Once at a leaf, visit hyperregions in order of distance to
guery point
— Jump to split point and follow closest path
— Regions not visited are put into priority queue
— Iterate until point found such that provably no closer point exists
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Example

x<3 x>3

y<7
(4,9)
X>5
- y<2 y=2 i o

10

Query: (5.1, 2.2)

Ulf Leser: Implementation of Database Systems 11



kd-Tree Insertion

e Search leaf block; if space available — done
— The original kd-Tree has no blocks — we always split

e Otherwise, chose split (dimension + position) for this block
— This is a local decision, valid for subtree of this node

— Option 1: Use each dimension in turn and split region into two
equally sized subspaces (expects uniform distribution)

— Option 2: Consider current points in leaf and split in two sets of
approximately equal size (expects temporally constant distribution)
e But which dimension?

e Considering all is expensive — use heuristics
— Usual problem: We don‘t know the future

— Wrong decisions in early splits may lead to tree degradation
o As for Grid-Files, there is no guarantee on fill degree
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Deletion

e Search leaf block and delete point

o If block becomes (almost) empty
— If empty: Remove; else: Do nothing — bad fill degree

— Merge with neighbor leaf (if existing)
e Two leaves and one parent node are replaces by one leaf
* Not very clever if neighbor almost full
— Balance with neighbor leaf (if existing)
e Change split condition in parent such that children have equal size
e Not very clever if neighbor almost empty

— Consider larger neighborhood: Grant parents, grant-grant-par ...
e kd trees have no guaranteed balance (~ depth)
e There is no guaranteed fill degree
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Static kd Trees

e Assume the set of points to be indexed is static and known

e We can build worst-case optimal kd Trees

— Rotate through dimensions
e Typically in order of variance — wide-spread dimensions first

— Sort remaining points and choose median as split point
— Guarantees tree depth of O(log(n)) for point queries
— But clustering of points not considered — bad similarity queries
e Nearby points are not nearby in the tree
e Variant (for sim-search): K-means trees
— Iterative k-means clustering of points
— K: Tree width (fanout)
— Faster similarity queries, tree depth not guaranteed
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Content of this Lecture

e kdb Trees
— kd Tree
— kdb Tree

e R Trees
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kd Trees on Secondary Storage — Naive Solution

2N
x<.?/ V3
e Each leaf is one block /'(
e Store each inner node in / \ ! v
one block @o) fes) /<
. Ll / N—
— Inner blocks are essentially 7\
empty < /< 3 A Y22
— Since tree is not balanced, \
worst case requires O(n) IO o0 o o
/ (5 )
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kdb trees

e Map many inner nodes to a single blocks

Robinson: The kdb-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes. SIGMOD 1981.

Inner nodes have two children (mostly in the same block)
Each block holds many inner nodes

Inner blocks have many children -

e Roots of kd trees in other blocks
Block tree has balanced height
No guaranteed fill degree

e (Operations o] ‘E’F
-

Searching: As with kd trees, but

has balanced depth J
Insertion/Deletion: Keep block tree balance
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Sketch

G2




Example — Composite Index

e d=3, n=1E9, block size 4096, |point|=9, |b-ptr|=10
— App 450 points per leaf block ~ we need ~2.2M leaf blocks
— Uniform distribution

e Composite B+ index
— Inner blocks store 108-215 pointers; assume optimal density
— We need 3 levels
e 21d |evel has 215 blocks and 46.000 pointers
o 3 Jevel has 46K blocks and 10M pointers, 2.2M are needed
e Box query, 5% selectivity in each dimension
— We read 5% of 2nd level blocks ~ 10 IO
— For each, we read 5% of 3rd level blocks ~ 10*215*0,05~100 IO
— For each, we read 5% of data blocks = 1150 IO
— Altogether: ~1250 IO
— Optimal: Selectivity is 0.053 ~ 125K points ~ 270 IO



Visualization

‘)Dimj

y-Dim

/

\

.. 215 ptr ...

.. 215 ptr ...
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Example: Partial Box Query

e Partial query on 2nd and 3rd dimensions only, asking for a
5% range in both dimensions

— We need to scan all 215 2nd level blocks
e Each 2nd level block contains the 5% range of 1st dimension

— For each, we read 5% of 3rd level blocks = 2300 blocks
— For each, we read 5% of data blocks = ~25K data blocks
— Altogether: 27.000 IO

— Optimal* 1E9*0,05*0,05/455 ~ 5.500 blocks
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With Balanced kdb Tree

e Balanced kdb tree will have ~23 levels
— We need to address 1E9/455 ~221 blocks

e Consider 128=27 inner nodes in one kdb-block

— Rough estimate; we need to store 1 dim indicator, 1 split value,
and 2 ptr for each inner node, but most ptr are just offsets into the
same block

o kdb tree structure
— 1st level block holds 128 inner nodes = levels 1-7 of kd-tree
e Last (7t) level has 64 nodes

— There are 64 2" |evel blocks holding levels 8-14 of kd-tree
e Together, 64*64 = 4096 nodes at 14t |evel

— There are ~4000 3 |evel blocks holding levels 15-21 of kd-tree

— There are ~260K 4t level blocks holding level 22-23
e Together, app. 1M ~ 221 |eaves
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Space Covered

e 1st block splits space in 64 regions

e 2nd level block split space in ~4K regions, each region
covering 0,00025% of all points

e Query selectivity is (0,05)° = 0,000125% of points
— Always assuming uniform distribution

e Thus, we very likely find all results in one region of first
two levels and require increasingly more outgoing nodes in
34 and 4t level

UIf Leser: Implementation of Database Systems 23



Intuition

24
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Example - Box Query with kdb Tree

e Box query on thee dimensions, asking for a 5% range in
each dimension
— In first block (7 levels), we have 2 splits for 2 and 3 for 1 dim
— In a box query, we know where to go in all splits
— We need to check only 1 second-level block

— In level 3, some splits are within query range
e Let's assume two: 1*22 = 4 blocks (of 64)
— In level 4, more splits are within query range
o Let's assume three: 4*23 = 64 blocks (of 4096)
— Level 4 blocks have 4 outgoing pointer: 4*64 = 256
— Altogether: 1+4+64+256 ~ 320 IO
e Compare to 1250 of composite index
e Compare to 270 in optimal case
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Example - Partial Box Query with kdb Tree

e Box query on 2nd and 3rd dimensions only, asking for a
5% range in each dimension
— In first block (7 levels), we have 2 splits for 2 and 3 for 1 dim
— Assume bad luck — no range for the 4-split dimension
— We need to check 23=8 second-level blocks (of 64)
— In level 3, more splits are within query range
e Let's assume four: 8*24 = 128 blocks (of 4.096)
— In level 4, more splits are within query range
o Let's assume four again: 128*2% ~ 2.000 blocks
— Level 4 blocks have 4 outgoing pointer: 4*2.000 ~8.000
— Altogether: 1+8+2.000+8.000 ~ 10.000 IO
e Compare to 26.000 for composite index
e Compare to ~5.500 for optimal

UIf Leser: Implementation of Database Systems 26



Balancing upon Insertions

e Similar method as for B+ trees
— Search appropriate leaf

— If leaf overflows, split
e Chose dimension and split value; re-distribute points into two blocks
e Propagate to parent node

— In parent node, a block-leaf must be replaced by an inner node
e With two new blocks as children

— This may make the parent overflow — propagate up the tree
e Splitting an inner node

— Chose a dimension and split value

— Distribute nodes to two new blocks

e Split might have to be propagated downwards

— Propagate new pointers to parent (and their children)
— Might lead to reorganization of entire tree



Conclusion

e Pro kdb trees
— Conceptually nice, close to B-tree idea
— Balanced tree depth — good WC performance for searching
— May achieve optimal search performance

e Contra kdb

— No guaranteed fill degree
e Many insertions/deletions may lead to almost empty leaves

— Keeping balance requires sporadic tree reorganizations
e Runtime of single insert / delete operations become unpredictable

— Difficult to implement
e Rarely used in practice

Ulf Leser: Implementation of Database Systems
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Content of this Lecture

e kdb Trees
e R Trees
e Conclusions
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R-Trees

e Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. SIGMOD 1984.

e (Can store geometric objects (with area) as well as points

— Arbitrary geometric objects are represented by their minimal
bounding box (MBB)

e Each object is stored in exactly one region on each level
e Since objects may overlap, regions may overlap

e Only regions containing data objects are represented
— Allows for fast stop when searching in empty regions

e Tree is kept balanced (like B tree)
e Guaranteed fill degree (like B tree)
e Many variations (see literature)
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Example (from Donald Kossmann)
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General Idea

e We group clusters of spatial
objects into minimal

cl2Z

D2 ™ bounding box (MBB)
b1 - . b
" L2 . e Each MBB is represented by
c two corner points (in 2D,
I! C7:| otherwise ...)
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I I

[
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General Idea
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Motivation: Objects that are not points

e We need overlapping regions
— For instance, if all MBBs overlap
— No split possible which creates disjoints sets of objects

e Objects crossing a split
— Stored in only one MBB (R-Tree)

e Search must examine both
e No redundant data B

— Stored in both MBB (R+-Tree)

e Search may choose any one

e Redundant data
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R Tree versus kd Tree

kd Tree

R Tree
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Concepts

e Inner nodes consist of a set of d-dimensional regions
e Every region is a (convex) hypercube —a MBB
e Regions are hierarchically organized
e Each region of an inner node points to a subtree or a leaf

e The region border is the MBB of all objects in this subtree

e Inner node: MBB of all child regions
e Leaf blocks: All objects are contained in the respective region

e Regions in one level may overlap

e Regions of a level do not cover the space of its parent
completely (as opposed to the KD-tree)
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Concepts

e Guaranteed fill degree: The number of regions of a node
(except for the root) is between m and M
— M : the maximum number of entries in a node
— m: set to some fraction of M, e.g. M/2

e The root node has at least 2 entries

e Balanced: Leaf nodes are at the same level

Ulf Leser: Implementation of Database Systems
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Searching

e Point query (for points as data objects)

— At each inner node, find all regions
containing the point

— All those subtrees must be searched

e Box overlap query: Find all objects -
overlapping with a given query

— In each node, intersect query with all regions '

— >1 region might have non-empty overlap ‘
— All those subtrees must be searched

e Box inclusion query: Find all objects | |
within a given query object

— Same as overlap query

Ulf Leser: Implementation of Database Systems
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One State
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Example: Overlap Query

c12|

o :

[ | :
" B : | <16 No overlap in child regions
':’:4 | ! | ' (only in MBB) — stop search
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Inserting an Object

e Traverse the R-tree top-down, starting from the root

e In each node, find all candidate regions

— Any region may overlap the object completely, partly, or not

— Object may overlap none, one, or many regions — partly or
completely

— If at least one region with complete overlap
e Choose one (smallest?) and descend

— If none with complete, but at least one with partial overlap
e Choose one (largest overlap?) and descend

— If no overlapping region at all

e Choose one (closest?) and descend

e Eventually, we reach a leaf
— We insert object in only one leaf

Ulf Leser: Implementation of Database Systems
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Continuation

o If free space in leaf
— Insert object and adapt MBB of leaf
— Recursively adapt MBBs up the tree
— This usually generates larger overlaps — search degrades

e If no free space in leaf
— Split block in two regions
— Compute MBBs
— Adapt parent node: One more child, changed MBBs

— May affect MBB of higher regions and/or incur overflows at high
regions — ascend recursively

Ulf Leser: Implementation of Database Systems
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Example: Insertion, Search Phase

bl|b2{b3

CETE ol

c4|c5 co6|c/ c8]c9 c10c11c12|

e Search regions whose MBB
must be expanded the least

e Repeat on each level

e Here: Leaf overflow, split

— Note: Choosing b4 would
avoid split — but how can we
know?
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Example: Insertion, Split Phase

. . |
Several splits are possible e

: cl1]| bs!

L

c8 c10c11fe12
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Example: Insertion, Adaptation Phase

alfa2
bl|b2|b3 b4 b5k 6
cllc2|c3||cd|c5 c6|c7 c&|c9 |cllc12 clOx13

e MBBs of all parent nodes must be adapted

e Block split might induce node splits in higher levels
of the tree (not here)
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Where to Split

e Finding the best splitting strategy has seen ample research

e Wish 1: Avoid overlaps
— Compute split such that overlap is minimal (or even avoided)
— Minimizes necessity to descend to different children during search
— May create larger regions — more futile searches in “empty” regions

e Wish 2: Minimize covered space
— Compute split such that total volume of all MBBs is minimal

— Increases changes to descend on multiple paths during search
— But: Unsuccessful searches can stop earlier
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Deletions in the R Tree

e As usual: In case of underflow, the block is removed

e R Trees typically do not move objects to neighbor leafs
— MBBs would have to be adopted
— But relationship of MBBs may be quite arbitrary
— May create very large overlaps, very large spaces covered
— One could find optimal moves, but ... expensive

o Trick: Delete by Reinsertion
— Re-Insert every objects that remained in the underflown block
— Insert strategies will be applied again
— No particular delete strategy required — focus on good insertions

— But costly: A single delete may incur many inserts
e Depending on m

Ulf Leser: Implementation of Database Systems
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R+ Tree

e Two effects leading to inefficiency during search
— Overlapping MBBs lead to multiple search paths
— A few large objects enforce large MBBs covering much dead space

e R+ Tree

— Objects overlapping with two regions are stored in both
— MBBs in a node never overlap

e Much faster search, but
— Search must perform duplicate removal as last steps

— Insertion / deletion may have to walk multiple paths, incurring
multiple adaptations

— Higher space consumption due to redundancy

— Insertion may require down- and upward adaption
o Like kdb Trees
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R* Tree

e As Grid-files or kd-Trees, R Trees take decisions during
insertions that determine the future of some regions
— MBBs in chosen subtree change
— During insertions, they usually grow

e If these decisions prove wrong, large overlapping MBBs
emerge, making search slow
— Too many branches need to be traversed

e R*; Revise your decisions from time to time
— Chose regions and fraction of objects at random in regular intervals
— Delete and reinsert

— Leads to smaller MBBs and faster operations
e Price: The unnecessary reinsertions
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Content of this Lecture

e kdb Trees
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e Conclusions
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Multidimensional Data Structures Wrap-Up

e Many more MDIS: X tree, VA-file, hb-tree, UB trege, ...

— Store objects more than once; other than rectangular shapes; map
coordinates into integers; ...

e All MDIS degrade with increasing number of dimensions
(d>10) or very unusual skew
— For neighborhood and range queries
— Hierarchical MDIS degenerate to an expensive linear scan
e Trick: Find lower-dimensional representations with provable
lower bounds on distance to prune space
— Requires distance function-specific lower bounding techniques

e Alternative: Approximate MDIS (LSH, randomized kd Trees)
— Find almost all neighbors, with/out given probability
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