

Datenbanksysteme II: Multidimensional Index Structures 1

Ulf Leser

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

Multidimensional Indexing

- Access methods so far support access on attribute(s) for
- Point query: Attribute $=$ const (Hashing and B+ Tree)
- Range query: const ${ }_{1} \leq$ Attribute \leq const $_{2} \quad$ ($B+$ Tree)
- What about more complex queries?
- Point query on more than one attribute
- Combined through AND (intersection) or OR (union)
- Range query on more than one attribute
- Queries for objects with size
- "Sale" is a point in a multidimensional space
- Time, location, product, ...
- Geometric objects have size: rectangle, cubes, polygons, ...
- Similarity queries: Most similar object, closest object, ...

Example: 2D Points

Point	X	Y
P1	2	2
P2	2,5	2
P3	4,5	7
P4	4,7	6,5
P5	8	6
P6	8	9
P7	8,3	3

- Objects are points in a 2D space
- Queries
- Exact: Find all points with coordinates (A1, B1)
- Box: Find all points in a given rectangle within (A1, B1), (A2, B2)
- Partial: Find all points with $X(Y)$ coordinate between ...

Definitions

- Exact Query: Conjunction of equality condition on every attribute

```
SELECT * FROM POINT
WHERE a=x and b=y
```

- Range Query: Conjunction of two comparisons on one attribute defining a non-empty interval
... WHERE $x \geq a$ and $x \leq b$
- Box query: Conjunction of range queries in every dimension

$$
\begin{array}{ll}
\ldots & a 1 \leq x \text { and } b 1 \leq y \text { and } \\
& a 2 \geq x \text { and } b 2 \geq y
\end{array}
$$

- Partial query: All other

$$
\ldots \quad a 1 \leq x \text { and } b 1 \leq y
$$

Option 1: Composite Index

Point	X	Y
P1	2	2
P2	2,5	2
P3	4,5	7
P4	4,7	6,5
P5	8	6
P6	8	9
P7	8,3	3

- Exact queries: Efficiently supported
- Box queries: Efficiently supported
- Partial query
- All points with X coordinate between ...: Efficiently supported
- All points with Y coordinate between ...: Not efficiently supported

Composite Index

Composite Index

- Usage
- Prefix of attribute list in index must be present in query
- The longer the prefix, the more efficient the evaluation
- Alternatives
- Also build index $\operatorname{tab}(\mathrm{Y}, \mathrm{X})$ - one for every possible prefix
- Combinatorial explosion for more than two attributes
- Use independent indexes on each attribute

Option 2: Independent Indexes

- Exact query: Not efficient
- Compute TID lists for each attribute
- Intersect
- Box query: Not efficient (compute ranges, intersect)
- Partial query: Not efficient with more than one dimension

Intuition

Source: T. Grust, 2010

Example - Independent Index

- Data
- 3 dimensions of range $1, \ldots, 100$
- 1.000.000 points, randomly distributed
- Index leaves holding k=50 keys or records
- Assume three independent indexes
- Box query: Points with $40 \leq x \leq 50,40 \leq y \leq 50,40 \leq z \leq 50$
- Each of the three B+-indexes has height 4
- Using x-index, we generate TID-list |X|~100.000
- Using y-index, we generate TID-list $|\mathrm{Y}| \sim 100.000$
- Using z-index, we generate TID-list |Z|~100.000
- For each index, we have 4+100.000/50=2004 IO
- Hopefully, we can keep the three lists in main memory
- Intersection yields app. 1.000 points, together 6012 IO

Example - Composite index (X,Y,Z)

- Key length increases - assume $\mathrm{k}=30$ (or 10 / more dims)
- Index is higher: Height ~ 5 (6)
- Worst case - index blocks only 50% filled
- We descend in 5 IO to leaves, read 10 points (1 IO), ascend to Y -axis (2 IO - but cached), descend to leaves (2 IO), read 10 points (1 IO) ...
- We do this $10 * 10$ times
- Altogether
- k=30 => app. 3+100*(2+1) ~ 303 IO
- Compared to 6012 for independent indexes!
- k=10 => app. 4+100*(3+1) ~ 404 IO

Conclusion

- We want composite indexes: Less IO
- Benefit grows for highly selective queries
- But: If selectivity is low, scanning of relation is faster anyway
- Sequential versus random IO
- For partial match queries, we would need to index all prefixes - not feasible
- Solution: Use multidimensional index structures (MDIS)

Multidimensional Index Structures

- Specialized IS for MD-objects with or without extend
- Points versus shapes
- Should have no priority or preferred dimensions
- Should adapt to uneven and changing data distribution
- Should have low worst case complexity (balanced structures)
- Should not use too much space
- Locality: Neighbors in space are stored nearby on disk (memory)
- In an ideal world, we would need only 1000/30~33 IO
- Necessary for efficient range / box queries
- Desirable for nearest neighbor queries; not in this lecture
- Area of intensive research for decades

Caveats

- In commercial DBMS, multi-dimensional is supported for
- Geometric objects: GIS extensions, spatial extender
- Multimedia data (images, songs, ...)
- Things get tricky if data is not uniformly distributed
- Dependent / correlated attributes (age - weight, income, height)
- Clustered values (e.g. population density)
- Special distributions (normal, Zipf, ...)
- Skew - deviation from assumed distribution
- Curse of dimensionality: MDIS degrade with more dims
- Trees difficult to balance, bad space usage, excessive management cost, expensive insertions/deletions, ...

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

Partitioned Hashing

- Let $a_{1}, a_{2}, \ldots, a_{d}$ be the attributes to be indexed
- Define a hash function h_{i} for each a_{i} generating a bitstring
- Definition
- Let $h_{i}\left(a_{i}\right)$ map each a_{i} into a bitstring of length b_{i}
- Let $b=\sum b_{i}$ (length of global hash key in bits)
- The global hash function $h\left(v_{1}, v_{2}, \ldots, v_{d}\right) \rightarrow\left[0, \ldots, 2^{b}-1\right]$ is defined as $h\left(v_{1}, v_{2}, \ldots, v_{d}\right)=h_{1}\left(v_{1}\right) \oplus h_{2}\left(v_{2}\right) \oplus \ldots \oplus h_{k}\left(v_{d}\right)$
- We need $B=2^{b}$ buckets
- Static address space - dynamic structures later

Example

- Data: $(3,6),(6,7),(1,1),(3,1),(5,6),(4,3),(5,0),(6,1),(0,4),(7,2)$
- Let h_{1}, h_{2} be ($\left.b_{1}=b_{2}=1, b=2\right)$

$$
h_{i}\left(v_{i}\right)=\begin{array}{ll}
0 & \text { if } 0 \leq v_{i} \leq 3 \\
1 & \text { otherwise }
\end{array}
$$

- Four buckets with addresses 00, 01, 10, 11

- Note: This is an order preserving hash function - rare!
- Modulo is not order preserving

Queries with Partitioned Hashing

- Exact queries: Direct access to bucket
- All points in bucket are candidates; check identity to query
- Partial queries
- Only parts of the global hash key are determined
- Use those as filter; scan all buckets passing the filter
- Let c be the number of unspecified bits
- Then 2^{c} buckets must be searched
- These are certainly not ordered on disk- random IO
- Range / box queries
- Not efficiently supported if hash functions are not order preserving

Partitioned Hashing: Conclusions

- No adaptation to skew
- Long overflow chains or large directories
- Size: Static size of hash table
- Can only be saved by overflow chains
- But: Can be combined with extensible/linear hashing
- Locality: Neighboring points in space not nearby in index
- Usually, hash functions are not order preserving to achieve more uniform spread
- Bad support for all non-exact queries or nearest neighbor queries

Content of this Lecture

- Introduction to multidimensional indexing
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

Grid File

- Classical multidimensional index structure
- Nievergelt, J., Hinterberger, H. and Sevcik, K. C. (1984). "The Grid File: An Adaptable, Symmetric Multikey File Structure." ACM TODS
- Can be seen as extensible version of partitioned hashing
- Good for uniformly distributed data, bad for skewed data
- Numerous variations, we only look at the basic method
- Design goals
- Aims to support all types of queries
- Guarantee "two IO" access to each point
- Under certain assumptions
- Adapt dynamically to the number of points

Principle

- Partition each dimension into disjoint intervals (scales)
- EXCESS: Uniform scales; less adaptive, no scale management
- Intersection of all intervals defines grid cells
- d-dimensional hypercubes
- Grid cells are addressed from the grid directory (GD)
- A simple multidimensional array

Principle

- Partition each dimension into disjoint intervals (scales)
- Intersection of all intervals defines grid cells
- Grid cells are addressed from the grid directory (GD)
- Cells are grouped in regions; region = bucket = block
- When multi-cell region overflows - split
- When single-cell region overflows - new scale, change GD
- Buckets hold values + TID

Exact Queries

- Assumption: GD in main memory
- Size: $\left|S_{1}\right|^{*}\left|S_{2}\right|^{*} \ldots\left|S_{d}\right|$, when S_{i} is the set of scales for dimension I
- Becomes (too) large for high dimensional data
- 1. Compute grid cell
- Look-up coordinates in scales to obtain GD coordinates
- E.g. binsearch on sorted scale list
- Cell in GD contains pointer to region/bucket on disk
- Bucket contains all data points in this grid cell (maybe more)
- 2. Load bucket and find point(s): $1^{\text {st }}$ IO
- As usual, we do not look at how to search inside a bucket
- 3. Access record following TID: $2^{\text {nd }}$ IO

Other Queries

- Box queries
- Compute all matching scales
- Access all corresponding cells in GD
- Load and search all buckets
- Partial queries
- Compute partial GD coordinates
- All GD cells with these coordinates may contain points
- Both cases: Efficiency depends on matching of range conditions to scales
- Using scales as range conditions - very efficient
- Using range conditions in between scales - less efficient

Excursion: Nearest Neighbor Queries

- Find bucket containing query point
- Search points in this region and choose closest
- Can we finish with the closest point in this region?

Nearest Neighbor Queries

- Find bucket containing query point
- Search points in this region and choose closest
- Can we finish with the closest point in this region?
- Usually not
- Check distances to all borders
- If point found is closer than any border, we are done
- Otherwise, we need to search neighboring regions
- Do iteratively and always adapt radius to current closest point

- Visit neighbor buckets in order of distance to query point
- Very fast if nearest neighbor provably is in same region

Inserting Points

- Search grid cell; if bucket has space: Insert point
- Otherwise (overflow): Split
- Assume we have to split a single-cell region
- Choose a dimension and new scale within region interval
- Split all affected GD cells - cuts through all dimensions
- Consider n dimensions and S_{i} scales in dimension i
- Split in dim i affects $\mathrm{d}_{1}{ }^{*} . . * \mathrm{~d}_{\mathrm{i}-1} * \mathrm{~d}_{\mathrm{i}+1} * \ldots{ }^{*} \mathrm{~d}_{\mathrm{n}}$ cells in GD
- Example: $d=3, S_{i}=4 ;|G D|=4^{3}=64$; any split affects 4^{2} cells
- Split overflown bucket along new scale (new region)
- Do not split other (un-overflown) buckets containing the new scale
- Only copy pointers within GD
- Choice of dimension and interval is difficult
- Optimally, we would like to "split" many rather full blocks
- We also want to consider our future expectation

Example

- Imagine one block holds 3 points
- [Usually scales are unevenly spaced]
- New point causes overflow
- Vertical split
- "Splits" 2 (3,4)-point blocks
- Leaves one 3-point block
- Horizontal split
- "Splits" 2 (3,4)-point blocks
- Leaves one 3-point block
- Note: Real splits will happen only in the future

Choosing a Split

- We wish
- W1: Split points evenly in overflow bucket
- W2: Future-Split points evenly other affected buckets
- W3: Split future points within bucket range evenly
- W4: Future-Split future points within other affected buckets
- W1: Sort points in every dimension and chose median
- W2 is expensive: Load all affected blocks in every dim.
- W3, W4: Require guessing the future
- W1 and W2 assume that future distribution is same as past dist.
- Wishes can be are contradicting
- A balanced split in overflown cells (W1) may lead to unbalanced splits in other cells (W2)
- Alternative: Round-robin in dimensions and chose median

Inserting Points in Multi-Cell Regions

- Overflow in a multi-cell region
- A bucket to which multiple GD entries point
- Split region into smaller regions (or cells) along existing, not yet realized scales
- GRID file only considers existing scales not yet used for split in this region
- No local adaptation - decisions from the past have to be obeyed
- GD structure is left unchanged; only cell entries change
- Which scale to use (there may be more than one)?
- This is a local decision
- Chose splits that best distribute the bucket that is split
???

Grid File Example 1 [J. Gehrke]

Assume $\mathrm{k}=6$

Grid File Example 2

Grid File Example 3

A	B
C	B

A	1	7	8	13	14	15
	B	2	4	6	9	11
	12					
	3	5	10			

Grid File Example 4

A	D	B
C	C	B

A	1	8	13	16		
	2	4	6	9	11	12
	C	3	5	10		
	3					
D	7	14	15			

One Future

We now must perform this split; creates one almost empty and one full bucket; next split will happen soon

Grid File Example 5

A	H	D	F	B
A	I	D	F	B
A	I	G	F	B
E	E	G	F	B
C	C	C	C	B

Deleting Points

- Search point and delete
- If bucket becomes "almost empty", try to merge with other buckets
- A merge is the removal of a split - chose scale to "unmake"
- Should build larger convex regions
- This can become difficult
- Potentially, more than two regions need to be merged to keep convexity
- Eventually, also scales may be removed
- Shrinkage of GD
- Example: Where can we merge?

A	H	D	F	B
A	I	D	F	B
A	I	G	F	B
E	E	G	F	B
C	C	C	C	B

Convex Regions

A	H	D	F	B
A	I	D	F	B
A	I	G	F	B
E	E	G	F	B
C	C	C	C	B

A		B	F	B
A		S	F	B
A	I	G	F	B
E	E	G	F	B
C	C	C	C	B

- Non-convex regions: Range and neighborhood queries have to scan increasingly many buckets

A	A	A	F	B
A	D	F	B	
A	I	G	F	B
E	E	G	F	B
C	C	C	C	B

Some Observations

- Grid files always split at hyperplanes parallel to the dimension axes
- This is not always optimal
- Use other bounding shapes: circles, polygons, etc.
- More complex- forms might not disjointly fill the space any more
- Allow overlaps (see R trees)
- There is no guaranteed block-fill degree - degeneration
- Choosing a new scale is a local decision with global consequences
- No local adaptation: GD grows very fast
- Need not be realized immediately, but restricts later choices in other regions
- Bad adaptation to skewed data

