

Datenbanksysteme II: Multidimensional Index Structures 1

Ulf Leser

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

Multidimensional Indexing

- Access methods so far support access on attribute(s) for
 - Point query: Attribute = const (Hashing and B+ Tree)
 - Range query: $const_1 \leq Attribute \leq const_2$ (B+ Tree)
- What about more complex queries?
 - Point query on more than one attribute
 - Combined through AND (intersection) or OR (union)
 - Range query on more than one attribute
 - Queries for objects with size
 - "Sale" is a point in a multidimensional space
 - Time, location, product, ...
 - Geometric objects have size: rectangle, cubes, polygons, ...
 - Similarity queries: Most similar object, closest object, ...

Example: 2D Points

- Objects are points in a 2D space
- Queries
 - Exact: Find all points with coordinates (A1, B1)
 - Box: Find all points in a given rectangle within (A1, B1), (A2, B2)
 - Partial: Find all points with X (Y) coordinate between ...

Definitions

 Exact Query: Conjunction of equality condition on every attribute

> SELECT * FROM POINT WHERE a=x and b=y

• Range Query: Conjunction of two comparisons on one attribute defining a non-empty interval

... WHERE x≥a and x≤b

Box query: Conjunction of range queries in every dimension

- ... al $\leq x$ and bl $\leq y$ and al $\geq x$ and bl $\geq y$
- Partial query: All other
 - ... al $\leq x$ and bl $\leq y$

Option 1: Composite Index

- Exact queries: Efficiently supported
- Box queries: Efficiently supported
- Partial query
 - All points with X coordinate between ...: Efficiently supported
 - All points with Y coordinate between ...: Not efficiently supported

Composite Index

Composite Index

- Usage
 - Prefix of attribute list in index must be present in query
 - The longer the prefix, the more efficient the evaluation
- Alternatives
 - Also build index tab(Y, X) one for every possible prefix
 - Combinatorial explosion for more than two attributes
 - Use independent indexes on each attribute

- Exact query: Not efficient
 - Compute TID lists for each attribute
 - Intersect
- Box query: Not efficient (compute ranges, intersect)
- Partial query: Not efficient with more than one dimension

Intuition

Source: T. Grust, 2010

Example – Independent Index

- Data
 - 3 dimensions of range 1,...,100
 - 1.000.000 points, randomly distributed
 - Index leaves holding k=50 keys or records
- Assume three independent indexes
- Box query: Points with $40 \le x \le 50$, $40 \le y \le 50$, $40 \le z \le 50$
 - Each of the three B+-indexes has height 4
 - Using x-index, we generate TID-list |X|~100.000
 - Using y-index, we generate TID-list |Y|~100.000
 - Using z-index, we generate TID-list |Z|~100.000
 - For each index, we have 4+100.000/50=2004 IO
 - Hopefully, we can keep the three lists in main memory
 - Intersection yields app. 1.000 points, together 6012 IO

- Key length increases assume k=30 (or 10 / more dims)
- Index is higher: Height ~ 5 (6)
 - Worst case index blocks only 50% filled
- We descend in 5 IO to leaves, read 10 points (1 IO), ascend to Y-axis (2 IO – but cached), descend to leaves (2 IO), read 10 points (1 IO) ...
- We do this 10*10 times
- Altogether
 - − k=30 => app. 3+100*(2+1) ~ 303 IO
 - Compared to 6012 for independent indexes!
 - − k=10 => app. 4+100*(3+1) ~ 404 IO

Conclusion

- We want composite indexes: Less IO
 - Benefit grows for highly selective queries
 - But: If selectivity is low, scanning of relation is faster anyway
 - Sequential versus random IO
- For partial match queries, we would need to index all prefixes – not feasible
- Solution: Use multidimensional index structures (MDIS)

Multidimensional Index Structures

- Specialized IS for MD-objects with or without extend
 - Points versus shapes
 - Should have no priority or preferred dimensions
 - Should adapt to uneven and changing data distribution
 - Should have low worst case complexity (balanced structures)
 - Should not use too much space
 - Locality: Neighbors in space are stored nearby on disk (memory)
 - In an ideal world, we would need only 1000/30~33 IO
 - Necessary for efficient range / box queries
 - Desirable for nearest neighbor queries; not in this lecture
- Area of intensive research for decades

- In commercial DBMS, multi-dimensional is supported for
 - Geometric objects: GIS extensions, spatial extender
 - Multimedia data (images, songs, ...)
- Things get tricky if data is not uniformly distributed
 - Dependent / correlated attributes (age weight, income, height)
 - Clustered values (e.g. population density)
 - Special distributions (normal, Zipf, ...)
 - Skew deviation from assumed distribution
- Curse of dimensionality: MDIS degrade with more dims
 - Trees difficult to balance, bad space usage, excessive management cost, expensive insertions/deletions, ...

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

- Let a_1 , a_2 ,..., a_d be the attributes to be indexed
- Define a hash function h_i for each a_i generating a bitstring
- Definition
 - Let $h_i(a_i)$ map each a_i into a bitstring of length b_i
 - Let $b=\sum b_i$ (length of global hash key in bits)
 - The global hash function $h(v_1, v_2, ..., v_d) \rightarrow [0, ..., 2^{b-1}]$

is defined as $h(v_1$, v_2 , . . . , v_d) $~=~h_1(v_1)\oplus h_2(v_2)\oplus ...\oplus h_k(v_d$)

• We need $B = 2^b$ buckets

Static address space – dynamic structures later

Example

- Data: (3,6),(6,7),(1,1),(3,1),(5,6),(4,3),(5,0),(6,1),(0,4),(7,2)
- Let h_1 , h_2 be $(b_1 = b_2 = 1, b = 2)$ h_i $(v_i) = 0$ if $0 \le v_i \le 3$ 1 otherwise
- Four buckets with addresses 00, 01, 10, 11

	0	$a_2 \longrightarrow 1$	
0	(1,1) (3,1)	(3,6) (0,4)	Î
1	(4,3)(5,0) (6,1) (7,2)	(6,7) (5,6)	a₁ ↓

- Note: This is an order preserving hash function rare!
 - Modulo is not order preserving

- Exact queries: Direct access to bucket
 - All points in bucket are candidates; check identity to query
- Partial queries
 - Only parts of the global hash key are determined
 - Use those as filter; scan all buckets passing the filter
 - Let c be the number of unspecified bits
 - Then 2^c buckets must be searched
 - These are certainly not ordered on disk- random IO
- Range / box queries
 - Not efficiently supported if hash functions are not order preserving

- No adaptation to skew
 - Long overflow chains or large directories
- Size: Static size of hash table
 - Can only be saved by overflow chains
 - But: Can be combined with extensible/linear hashing
- Locality: Neighboring points in space not nearby in index
 - Usually, hash functions are not order preserving to achieve more uniform spread
 - Bad support for all non-exact queries or nearest neighbor queries

Content of this Lecture

- Introduction to multidimensional indexing
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

- Classical multidimensional index structure
 - Nievergelt, J., Hinterberger, H. and Sevcik, K. C. (1984). "The Grid File: An Adaptable, Symmetric Multikey File Structure." ACM TODS
 - Can be seen as extensible version of partitioned hashing
 - Good for uniformly distributed data, bad for skewed data
 - Numerous variations, we only look at the basic method
- Design goals
 - Aims to support all types of queries
 - Guarantee "two IO" access to each point
 - Under certain assumptions
 - Adapt dynamically to the number of points

- Partition each dimension into disjoint intervals (scales)
 - EXCESS: Uniform scales; less adaptive, no scale management
- Intersection of all intervals defines grid cells
 - d-dimensional hypercubes
- Grid cells are addressed from the grid directory (GD)
 - A simple multidimensional array

Principle

- Partition each dimension into disjoint intervals (scales)
- Intersection of all intervals defines grid cells
- Grid cells are addressed from the grid directory (GD)
- Cells are grouped in regions; region = bucket = block
 - When multi-cell region overflows split
 - When single-cell region overflows new scale, change GD
- Buckets hold values + TID

- Assumption: GD in main memory
 - Size: $|S_1|^*|S_2|^*...|S_d|$, when S_i is the set of scales for dimension I
 - Becomes (too) large for high dimensional data
- 1. Compute grid cell
 - Look-up coordinates in scales to obtain GD coordinates
 - E.g. binsearch on sorted scale list
 - Cell in GD contains pointer to region/bucket on disk
 - Bucket contains all data points in this grid cell (maybe more)
- 2. Load bucket and find point(s): 1st IO
 - As usual, we do not look at how to search inside a bucket
- 3. Access record following TID: 2nd IO

Other Queries

Box queries

- Compute all matching scales
- Access all corresponding cells in GD
- Load and search all buckets
- Partial queries
 - Compute partial GD coordinates
 - All GD cells with these coordinates may contain points
- Both cases: Efficiency depends on matching of range conditions to scales
 - Using scales as range conditions very efficient
 - Using range conditions in between scales less efficient

- Find bucket containing query point
- Search points in this region and choose closest
 - Can we finish with the closest point in this region?

- Find bucket containing query point
- Search points in this region and choose closest
 - Can we finish with the closest point in this region?
 - Usually not
 - Check distances to all borders
 - If point found is closer than any border, we are done
 - Otherwise, we need to search neighboring regions
 - Do iteratively and always adapt radius to current closest point

- Visit neighbor buckets in order of distance to query point
- Very fast if nearest neighbor provably is in same region

- Search grid cell; if bucket has space: Insert point
- Otherwise (overflow): Split
 - Assume we have to split a single-cell region
 - Choose a dimension and new scale within region interval
 - Split all affected GD cells cuts through all dimensions
 - Consider n dimensions and S_i scales in dimension i
 - Split in dim i affects d₁*...*d_{i-1}*d_{i+1}*...*d_n cells in GD
 - Example: d=3, S_i =4; |GD|=4³=64; any split affects 4² cells
 - Split overflown bucket along new scale (new region)
 - Do not split other (un-overflown) buckets containing the new scale
 - Only copy pointers within GD
 - Choice of dimension and interval is difficult
 - Optimally, we would like to "split" many rather full blocks
 - We also want to consider our future expectation

Example

- Imagine one block holds 3 points
 [Usually scales are unevenly spaced]
- New point causes overflow
- Vertical split
 - "Splits" 2 (3,4)-point blocks
 - Leaves one 3-point block
- Horizontal split
 - "Splits" 2 (3,4)-point blocks
 - Leaves one 3-point block
- Note: Real splits will happen only in the future

Choosing a Split

- We wish
 - W1: Split points evenly in overflow bucket
 - W2: Future-Split points evenly other affected buckets
 - W3: Split future points within bucket range evenly
 - W4: Future-Split future points within other affected buckets
- W1: Sort points in every dimension and chose median
- W2 is expensive: Load all affected blocks in every dim.
- W3, W4: Require guessing the future
 - W1 and W2 assume that future distribution is same as past dist.
- Wishes can be are contradicting
 - A balanced split in overflown cells (W1) may lead to unbalanced splits in other cells (W2)
- Alternative: Round-robin in dimensions and chose median

Inserting Points in Multi-Cell Regions

- Overflow in a multi-cell region
 - A bucket to which multiple GD entries point
- Split region into smaller regions (or cells) along existing, not yet realized scales
 - GRID file only considers existing scales not yet used for split in this region
 - No local adaptation decisions from the past have to be obeyed
 - GD structure is left unchanged; only cell entries change
- Which scale to use (there may be more than one)?
 - This is a local decision
 - Chose splits that best distribute the bucket that is split

???

Grid File Example 1 [J. Gehrke]

Assume k=6

One Future

We now must perform this split; creates one almost empty and one full bucket; next split will happen soon

Deleting Points

- Search point and delete
- If bucket becomes "almost empty", try to merge with other buckets
 - A merge is the removal of a split chose scale to "unmake"
 - Should build larger convex regions
 - This can become difficult
 - Potentially, more than two regions need to be merged to keep convexity
 - Eventually, also scales may be removed
 - Shrinkage of GD
 - Example: Where can we merge?

A	Н	D	F	В
A	Ι	D	F	В
A	Ι	G	F	В
E	E	G	F	В
С	С	С	С	В

Convex Regions

A	Η	D	F	В
A	Ι	D	F	В
A	Ι	G	F	В
Е	Е	G	F	В
С	С	С	С	В

 Non-convex regions: Range and neighborhood queries have to scan increasingly many buckets

Some Observations

- Grid files always split at hyperplanes parallel to the dimension axes
 - This is not always optimal
 - Use other bounding shapes: circles, polygons, etc.
 - More complex– forms might not disjointly fill the space any more
 - Allow overlaps (see R trees)
- There is no guaranteed block-fill degree degeneration
- Choosing a new scale is a local decision with global consequences
 - No local adaptation: GD grows very fast
 - Need not be realized immediately, but restricts later choices in other regions
 - Bad adaptation to skewed data