
Ulf Leser

Datenbanksysteme II:
Multidimensional Index Structures 1

Ulf Leser: Implementation of Database Systems 2

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees

Ulf Leser: Implementation of Database Systems 3

Multidimensional Indexing

• Access methods so far support access on attribute(s) for
– Point query: Attribute = const (Hashing and B+ Tree)
– Range query: const1 ≤ Attribute ≤ const2 (B+ Tree)

• What about more complex queries?
– Point query on more than one attribute

• Combined through AND (intersection) or OR (union)
– Range query on more than one attribute
– Queries for objects with size

• “Sale” is a point in a multidimensional space
– Time, location, product, …

• Geometric objects have size: rectangle, cubes, polygons, …
– Similarity queries: Most similar object, closest object, …

Ulf Leser: Implementation of Database Systems 4

Example: 2D Points

10

10

Point X Y

P1 2 2

P2 2,5 2

P3 4,5 7

P4 4,7 6,5

P5 8 6

P6 8 9

P7 8,3 3

• Objects are points in a 2D space
• Queries

– Exact: Find all points with coordinates (A1, B1)
– Box: Find all points in a given rectangle within (A1, B1), (A2, B2)
– Partial: Find all points with X (Y) coordinate between …

Ulf Leser: Implementation of Database Systems 5

Definitions

• Exact Query: Conjunction of equality condition on every
attribute

SELECT * FROM POINT
WHERE a=x and b=y

• Range Query: Conjunction of two comparisons on one
attribute defining a non-empty interval

… WHERE x≥a and x≤b

• Box query: Conjunction of range queries in every dimension
… a1≤x and b1≤y and

a2≥x and b2≥y

• Partial query: All other
… a1≤x and b1≤y

Ulf Leser: Implementation of Database Systems 6

Option 1: Composite Index

10

10

Point X Y

P1 2 2

P2 2,5 2

P3 4,5 7

P4 4,7 6,5

P5 8 6

P6 8 9

P7 8,3 3

CREATE INDEX
ON point(x,y)

• Exact queries: Efficiently supported
• Box queries: Efficiently supported
• Partial query

– All points with X coordinate between …: Efficiently supported
– All points with Y coordinate between …: Not efficiently supported

Ulf Leser: Implementation of Database Systems 7

Composite Index

Index on X

Indexes
on Y

Indexes
on Y

Indexes
on Y

Indexes
on Y

Indexes on Z Indexes on Z Indexes on Z Indexes on Z…
…

Ulf Leser: Implementation of Database Systems 8

Composite Index

1|2 1|4 6|3 6|4 6|8

Index leaf nodes

• Usage
– Prefix of attribute list in index must be present in query
– The longer the prefix, the more efficient the evaluation

• Alternatives
– Also build index tab(Y, X) – one for every possible prefix

• Combinatorial explosion for more than two attributes
– Use independent indexes on each attribute

Ulf Leser: Implementation of Database Systems 9

Option 2: Independent Indexes

• Exact query: Not efficient
– Compute TID lists for each attribute
– Intersect

• Box query: Not efficient (compute ranges, intersect)
• Partial query: Not efficient with more than one dimension

Index on X Index on Y
1 1 6 6 6 2 3 4 4 8

CREATE INDEX
ON point(x)

CREATE INDEX
ON point(y)

Ulf Leser: Implementation of Database Systems 10

Intuition

Source: T. Grust, 2010

Ulf Leser: Implementation of Database Systems 11

Example – Independent Index

• Data
– 3 dimensions of range 1,...,100
– 1.000.000 points, randomly distributed
– Index leaves holding k=50 keys or records

• Assume three independent indexes
• Box query: Points with 40≤x≤50, 40≤y≤50, 40≤z≤50

– Each of the three B+-indexes has height 4
– Using x-index, we generate TID-list |X|~100.000
– Using y-index, we generate TID-list |Y|~100.000
– Using z-index, we generate TID-list |Z|~100.000
– For each index, we have 4+100.000/50=2004 IO
– Hopefully, we can keep the three lists in main memory
– Intersection yields app. 1.000 points, together 6012 IO

Ulf Leser: Implementation of Database Systems 12

Example – Composite index (X,Y,Z)

• Key length increases – assume k=30 (or 10 / more dims)
• Index is higher: Height ~ 5 (6)

– Worst case – index blocks only 50% filled
• We descend in 5 IO to leaves, read 10 points (1 IO),

ascend to Y-axis (2 IO – but cached), descend to leaves (2
IO), read 10 points (1 IO) …

• We do this 10*10 times
• Altogether

– k=30 => app. 3+100*(2+1) ~ 303 IO
• Compared to 6012 for independent indexes!

– k=10 => app. 4+100*(3+1) ~ 404 IO

Ulf Leser: Implementation of Database Systems 13

Conclusion

• We want composite indexes: Less IO
– Benefit grows for highly selective queries
– But: If selectivity is low, scanning of relation is faster anyway

• Sequential versus random IO

• For partial match queries, we would need to index all
prefixes – not feasible

• Solution: Use multidimensional index structures (MDIS)

Ulf Leser: Implementation of Database Systems 14

Multidimensional Index Structures

• Specialized IS for MD-objects with or without extend
– Points versus shapes
– Should have no priority or preferred dimensions
– Should adapt to uneven and changing data distribution
– Should have low worst case complexity (balanced structures)
– Should not use too much space
– Locality: Neighbors in space are stored nearby on disk (memory)

• In an ideal world, we would need only 1000/30~33 IO
• Necessary for efficient range / box queries
• Desirable for nearest neighbor queries; not in this lecture

• Area of intensive research for decades

Ulf Leser: Implementation of Database Systems 15

Caveats

• In commercial DBMS, multi-dimensional is supported for
– Geometric objects: GIS extensions, spatial extender
– Multimedia data (images, songs, …)

• Things get tricky if data is not uniformly distributed
– Dependent / correlated attributes (age – weight, income, height)
– Clustered values (e.g. population density)
– Special distributions (normal, Zipf, …)
– Skew – deviation from assumed distribution

• Curse of dimensionality: MDIS degrade with more dims
– Trees difficult to balance, bad space usage, excessive management

cost, expensive insertions/deletions, …

Ulf Leser: Implementation of Database Systems 16

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees

Ulf Leser: Implementation of Database Systems 17

Partitioned Hashing

• Let a1 , a2 ,..., ad be the attributes to be indexed
• Define a hash function hi for each ai generating a bitstring
• Definition

– Let hi(ai) map each ai into a bitstring of length bi

– Let b=∑ bi (length of global hash key in bits)

– The global hash function h(v1 , v2 , . . . , vd) → [0, ..., 2b-1]

is defined as h(v1 , v2 , . . . , vd) = h1(v1) ⊕ h2(v2) ⊕ … ⊕ hk (vd)
• We need B = 2b buckets

– Static address space – dynamic structures later

Ulf Leser: Implementation of Database Systems 18

• Data: (3,6),(6,7),(1,1),(3,1),(5,6),(4,3),(5,0),(6,1),(0,4),(7,2)
• Let h1, h2 be (b1=b2=1, b=2)

hi (vi) = 0 if 0 ≤ vi ≤ 3
1 otherwise

• Four buckets with addresses 00, 01, 10, 11

• Note: This is an order preserving hash function – rare!
– Modulo is not order preserving

a20

0

1

1

a1(5,0)

(1,1)

(4,3) (6,1)

(3,1) (0,4)

(7,2)

(3,6)

(5,6)(6,7)

Example

Ulf Leser: Implementation of Database Systems 19

Queries with Partitioned Hashing

• Exact queries: Direct access to bucket
– All points in bucket are candidates; check identity to query

• Partial queries
– Only parts of the global hash key are determined
– Use those as filter; scan all buckets passing the filter
– Let c be the number of unspecified bits

• Then 2c buckets must be searched
• These are certainly not ordered on disk– random IO

• Range / box queries
– Not efficiently supported if hash functions are not order preserving

Ulf Leser: Implementation of Database Systems 21

Partitioned Hashing: Conclusions

• No adaptation to skew
– Long overflow chains or large directories

• Size: Static size of hash table
– Can only be saved by overflow chains
– But: Can be combined with extensible/linear hashing

• Locality: Neighboring points in space not nearby in index
– Usually, hash functions are not order preserving to achieve more

uniform spread
– Bad support for all non-exact queries or nearest neighbor queries

Ulf Leser: Implementation of Database Systems 22

Content of this Lecture

• Introduction to multidimensional indexing
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees

Ulf Leser: Implementation of Database Systems 23

Grid File

• Classical multidimensional index structure
– Nievergelt, J., Hinterberger, H. and Sevcik, K. C. (1984). "The Grid

File: An Adaptable, Symmetric Multikey File Structure." ACM TODS
– Can be seen as extensible version of partitioned hashing
– Good for uniformly distributed data, bad for skewed data
– Numerous variations, we only look at the basic method

• Design goals
– Aims to support all types of queries
– Guarantee “two IO” access to each point

• Under certain assumptions
– Adapt dynamically to the number of points

Ulf Leser: Implementation of Database Systems 24

Principle

• Partition each dimension into disjoint intervals (scales)
– EXCESS: Uniform scales; less adaptive, no scale management

• Intersection of all intervals defines grid cells
– d-dimensional hypercubes

• Grid cells are addressed from the grid directory (GD)
– A simple multidimensional array

Ulf Leser: Implementation of Database Systems 25

Principle

• Partition each dimension into disjoint intervals (scales)
• Intersection of all intervals defines grid cells
• Grid cells are addressed from the grid directory (GD)
• Cells are grouped in regions; region = bucket = block

– When multi-cell region overflows – split
– When single-cell region overflows – new scale, change GD

• Buckets hold values + TID
B1 B2

B3

B4

Ulf Leser: Implementation of Database Systems 26

Exact Queries

• Assumption: GD in main memory
– Size: |S1|*|S2|*…|Sd|, when Si is the set of scales for dimension I
– Becomes (too) large for high dimensional data

• 1. Compute grid cell
– Look-up coordinates in scales to obtain GD coordinates

• E.g. binsearch on sorted scale list
– Cell in GD contains pointer to region/bucket on disk
– Bucket contains all data points in this grid cell (maybe more)

• 2. Load bucket and find point(s): 1st IO
– As usual, we do not look at how to search inside a bucket

• 3. Access record following TID: 2nd IO

Ulf Leser: Implementation of Database Systems 27

Other Queries

• Box queries
– Compute all matching scales
– Access all corresponding cells in GD
– Load and search all buckets

• Partial queries
– Compute partial GD coordinates
– All GD cells with these coordinates may contain points

• Both cases: Efficiency depends on matching of range
conditions to scales
– Using scales as range conditions – very efficient
– Using range conditions in between scales – less efficient

Ulf Leser: Implementation of Database Systems 28

Excursion: Nearest Neighbor Queries

• Find bucket containing query point
• Search points in this region and choose closest

– Can we finish with the closest point in this region?

Ulf Leser: Implementation of Database Systems 29

Nearest Neighbor Queries

• Find bucket containing query point
• Search points in this region and choose closest

– Can we finish with the closest point in this region?
– Usually not

• Check distances to all borders
• If point found is closer than any

border, we are done
• Otherwise, we need to search

neighboring regions
• Do iteratively and always adapt

radius to current closest point
• Visit neighbor buckets in order of distance to query point

– Very fast if nearest neighbor provably is in same region

7

8 9

10 11

12

1

2

3 4

5

6

13

14

15

Ulf Leser: Implementation of Database Systems 30

Inserting Points

• Search grid cell; if bucket has space: Insert point
• Otherwise (overflow): Split

– Assume we have to split a single-cell region
– Choose a dimension and new scale within region interval
– Split all affected GD cells – cuts through all dimensions

• Consider n dimensions and Si scales in dimension i
• Split in dim i affects d1*…*di-1*di+1*…*dn cells in GD
• Example: d=3, Si=4; |GD|=43=64; any split affects 42 cells

– Split overflown bucket along new scale (new region)
– Do not split other (un-overflown) buckets containing the new scale

• Only copy pointers within GD
– Choice of dimension and interval is difficult

• Optimally, we would like to “split” many rather full blocks
• We also want to consider our future expectation

Ulf Leser: Implementation of Database Systems 31

Example

• Imagine one block holds 3 points
– [Usually scales are unevenly spaced]

• New point causes overflow
• Vertical split

– “Splits” 2 (3,4)-point blocks
– Leaves one 3-point block

• Horizontal split
– “Splits” 2 (3,4)-point blocks
– Leaves one 3-point block

• Note: Real splits will happen only
in the future

Ulf Leser: Implementation of Database Systems 32

Choosing a Split

• We wish
– W1: Split points evenly in overflow bucket
– W2: Future-Split points evenly other affected buckets
– W3: Split future points within bucket range evenly
– W4: Future-Split future points within other affected buckets

• W1: Sort points in every dimension and chose median
• W2 is expensive: Load all affected blocks in every dim.
• W3, W4: Require guessing the future

– W1 and W2 assume that future distribution is same as past dist.
• Wishes can be are contradicting

– A balanced split in overflown cells (W1) may lead to unbalanced
splits in other cells (W2)

• Alternative: Round-robin in dimensions and chose median

Ulf Leser: Implementation of Database Systems 33

Inserting Points in Multi-Cell Regions

• Overflow in a multi-cell region
– A bucket to which multiple GD entries point

• Split region into smaller regions (or cells) along existing,
not yet realized scales
– GRID file only considers existing scales not yet used for split in this

region
• No local adaptation – decisions from the past have to be obeyed

– GD structure is left unchanged; only cell entries change
• Which scale to use (there may be more than one)?

– This is a local decision
– Chose splits that best distribute the bucket that is split

Ulf Leser: Implementation of Database Systems 34

???

Ulf Leser: Implementation of Database Systems 35

A

A A

Assume k=6

1

2

3
4

5

6

1 2 3 4 5 6

Grid File Example 1 [J. Gehrke]

Ulf Leser: Implementation of Database Systems 36

1 2 3 4 5 6A

A AA B A B

7

8 9

10 11

12

1 3 5 7A
2 4 6B

8

9

10

11 12

1

2

3
4

5

6

Grid File Example 2

Ulf Leser: Implementation of Database Systems 37

A B A BA B

C

A B

C B

1 3 5 7 8 10A
2 4 6 9 11 12B

7

8 9

10 11

12

1

2

3
4

5

6

13

14

15

1 7 8 13A
2 4 6 9 11 12B
3 5 10C

14 15

Grid File Example 3

Ulf Leser: Implementation of Database Systems 38

A B

C

A B

C B

A D B

C

A D

C C

B

B
7

8 9

10 11

12

1

2

3
4

5

6

13

14

15

1 3 5 7 8 10A
2 4 6 9 11 12B

1 7 8 13A
2 4 6 9 11 12B
3 5 10C

14 15

16

1 2 3 4 5 6A 1 3 5 7A
2 4 6B

1 7 8 13A
2 4 6 9 11 12B
3 5 10C

1 8 13 16A
2 4 6 9 11 12B
3 5 10C
7 14 15D

Grid File Example 4

Ulf Leser: Implementation of Database Systems 39

A B

C

A B

C B

A D B

C

A D

C C

B

B
7

8 9

10 11

12

1

2

3
4

5

6

13

14

15

1 3 5 7 8 10A
2 4 6 9 11 12B

1 7 8 13A
2 4 6 9 11 12B
3 5 10C

14 15

16

1 2 3 4 5 6A 1 3 5 7A
2 4 6B

1 7 8 13A
2 4 6 9 11 12B
3 5 10C

1 8 13 16A
2 4 6 9 11 12B
3 5 10C
7 14 15D

One Future

We now must perform this split; creates one almost empty and one full
bucket; next split will happen soon

Ulf Leser: Implementation of Database Systems 40

x1 x2 x3 x4

y4

y2

y1

A B

C

D

E

F

G

H

Iy3

A H

A I

D

D

F

F

B

B

A I G F B

E E G F B

C C C C B

Grid File Example 5

Ulf Leser: Implementation of Database Systems 41

Deleting Points

• Search point and delete
• If bucket becomes ”almost empty”, try to merge with other

buckets
– A merge is the removal of a split – chose scale to “unmake”
– Should build larger convex regions
– This can become difficult

• Potentially, more than two regions
need to be merged to keep convexity

– Eventually, also scales may be removed
• Shrinkage of GD

– Example: Where can we merge?

A H

A I

D

D

F

F

B

B

A I G F B

E E G F B

C C C C B

Ulf Leser: Implementation of Database Systems 42

Convex Regions

A H

A I

D

D

F

F

B

B

A I G F B

E E G F B

C C C C B

A I

A I

D

D

F

F

B

B

A I G F B

E E G F B

C C C C B

A A

A I

D

D

F

F

B

B

A I G F B

E E G F B

C C C C B

• Non-convex regions: Range and
neighborhood queries have to scan
increasingly many buckets

Ulf Leser: Implementation of Database Systems 43

Some Observations

• Grid files always split at hyperplanes parallel to the
dimension axes
– This is not always optimal
– Use other bounding shapes: circles, polygons, etc.
– More complex– forms might not disjointly fill the space any more
– Allow overlaps (see R trees)

• There is no guaranteed block-fill degree – degeneration
• Choosing a new scale is a local decision with global

consequences
– No local adaptation: GD grows very fast
– Need not be realized immediately, but restricts later choices in

other regions
– Bad adaptation to skewed data

	Foliennummer 1
	Content of this Lecture
	Multidimensional Indexing
	Example: 2D Points
	Definitions
	Option 1: Composite Index
	Composite Index
	Composite Index
	Option 2: Independent Indexes
	Intuition
	Example – Independent Index
	Example – Composite index (X,Y,Z)
	Conclusion
	Multidimensional Index Structures
	Caveats
	Content of this Lecture
	Partitioned Hashing
	Example
	Queries with Partitioned Hashing
	Partitioned Hashing: Conclusions
	Content of this Lecture
	Grid File
	Principle
	Principle
	Exact Queries
	Other Queries
	Excursion: Nearest Neighbor Queries
	Nearest Neighbor Queries
	Inserting Points
	Example
	Choosing a Split
	Inserting Points in Multi-Cell Regions
	???
	Grid File Example 1 [J. Gehrke]
	Grid File Example 2
	Grid File Example 3
	Grid File Example 4
	One Future
	Grid File Example 5
	Deleting Points
	Convex Regions
	Some Observations

