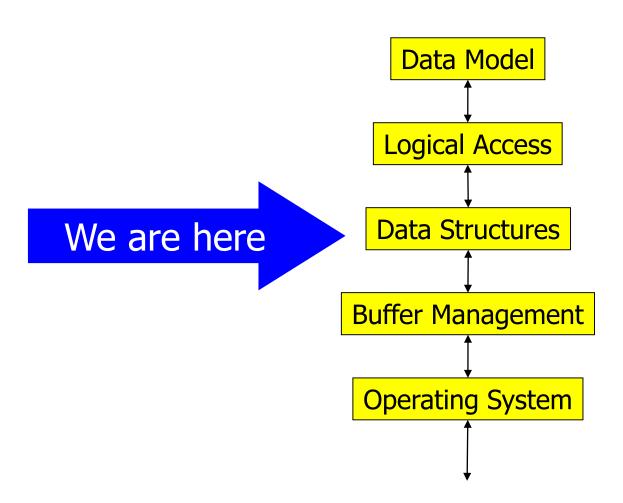


Datenbanksysteme II: Dynamic Hashing

Ulf Leser



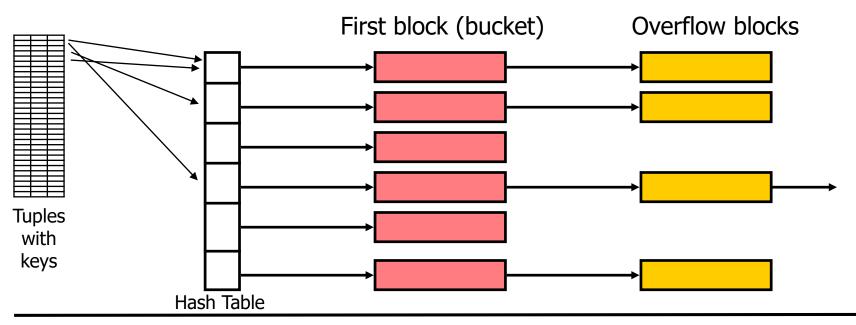
Content of this Lecture

- Hashing
- Extensible Hashing
- Linear Hashing

Sorting or Hashing

- Sorted or indexed files
 - Typically log(n) IO for searching / deletions
 - Overhead for keeping order in file or in index
 - Danger of degradation
 - Multiple orders require multiple indexes multiple overhead
 - Good support for range queries
- Can we do better ... under certain circumstances?
- Hash files
 - Can provide key-based access with 1 IO
 - Searching for multiple keys multiple hash indexes
 - Incurs overhead if table size changes considerably
 - Dynamic hashing
 - Bad for range queries

- Set of buckets (≥ 1 blocks) $B_0, \dots, B_{m-1}, m > 1$
 - We hash keys to blocks, not to single tuples
 - We need to search key inside block / bucket
- Hash function h(key) = {0 ,..., m-1}
- Hash table H (bucket directory) of size m with ptrs to B_i's



• Hash function on Name

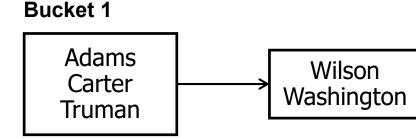
Why last char?

Bond George Victoria

Search "Adams"

- 1. h(Adams)=1
- 2. Bucket 1, Block 0?

Success



Search "Wilson"

- 1. h(Wilson)=1
- 2. Bucket 1, Block 0?
- 3. Bucket 1, Block 1?

Success

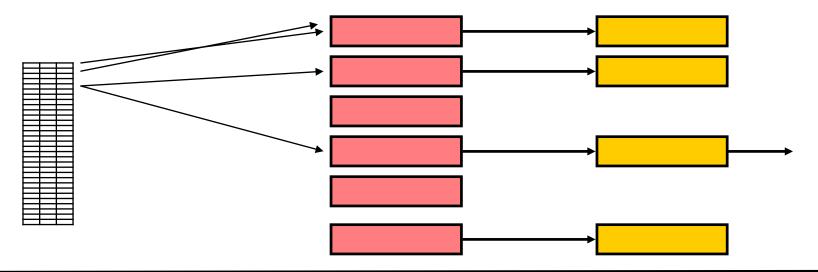
Search "Swift"

- 1. h(Elisabeth)=0
- 2. Bucket 0, Block 0?

Failure

Alternative: Direct Block Hashing

- We can also directly hash keys into (first) block number
 h(key) = BLOCK_OFFSET + h'(key)
- Removes need for storing hash table in main memory
- Heavily restricts block placement on disk
 - Requires consecutive range of blocks
 - Inappropriate for fast changing data



Efficiency of Hashing

- Given n records, r records per block, m buckets
- Assume hash table H is in main memory
- Average number of blocks per bucket: n / (m*r)
 - Assuming a uniform hash function and no empty space
 - Difficult to achieve in practice
- Search (block reads)
 - n / (m*r) / 2
 for successful search
 - n / (m*r) for unsuccessful search (entire bucket)
- Insert
 - n / (m*r) if end of bucket cannot be accessed directly
 - depends... if free space in one of the bucket
- If m large enough and good hash function: 1 IO

- Examples: Modulo, Bit-Shifting, aggregates, ...
- Desirable: Uniform mapping of keys into [0...m-1]
 - Keys should be equally distributed over all blocks all the time
- Uniform mapping only possible if data distribution and number of records (for estimating m) known in advance
- If known: Application-dependent hash functions
 - Incorporating knowledge on expected distribution of keys

Properties

- Hashing may degenerate to sequential scan
 - If number of buckets static and too small
 - If hash function produces large bias
- Extending hash table requires complete rehashing
 - We need a new hash function
 - Table lock: Blocks all operations on this table
- Inefficient for range queries scan
 - Or enumerate all distinct values in range (only integer)
- Very fast iff everything works fine
 - "Practically constant" IO complexity

Very bad for growing tables = for databases

Content of this Lecture

- Hashing
- Extensible Hashing
- Linear Hashing

- For DBMS, hashing must adapt to changing data volumes and value distributions
 - Dynamic hashing
- First idea: Extensible Hashing
 - Hash function generates (long) bitstrings
 - Should distribute values evenly on every position of bitstring
 - Only a prefix of this bitstring is used as index in hash table
 - Size of prefix adapts to number of records
 - As does size of hash table
 - Overflows requires rehashing table only partly

Hash functions

- h: $K \to \{0,1\}^*$
- Size of bitstring should be long enough for mapping into as many buckets as maximally desired
 - Though we do not use them all most of the time
- Example: reverse person IDs
 - -h(004) = 001000000... (4=0..0100)
 - -h(006) = 011000000... (6=0..0110)
 - -h(007) = 111000000...
 - -h(013) = 101100000... (13 =0..01101)
 - -h(018) = 010010000... (18 = 0..010010)
 - -h(032) = 000001000... (32 =0..0100000)
 - H(048) = 000011000... (48 = 0..0110000)

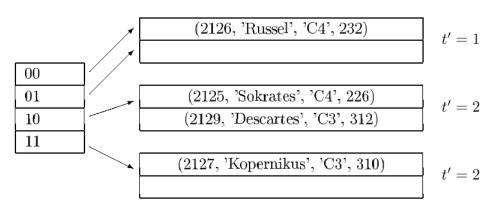
Extensible Hashing

- Parameters
 - d: global "depth" of hash table, size of longest prefix currently used
 - t: local "depth" of a bucket, size of prefix used in this bucket
- Example
 - Let a bucket store two records
 - Start with two buckets and 1 bit for identification $(d=t_1=t_2=1)$

Keys	as bitstring	reverse	h _{d=1} (k)
2125	100001001101	101100100001	1
2126	100001001110	011100100001	0
2127	100001001111	111100100001	1

Example cont'd

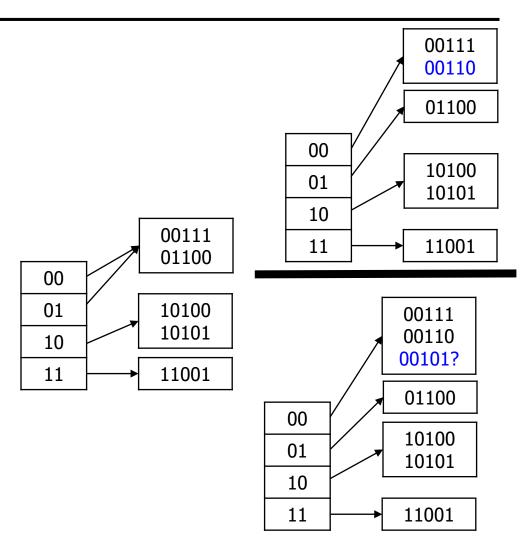
k	as bitstring	reverse	h _{d=1}
2125	100001001101	101100100001	1
2126	100001001110	011100100001	0
2127	100001001111	111100100001	1
2129	100001010001	100010100001	1



- New record with x=2129
- Bucket for "1" is full
- Need to split
 - Duplicate hash table, d++
 - We conceptually have four buckets
 - Un-splitted blocks remain unchanged
 - Overflowing bucket is split and records are distributed according to next bit

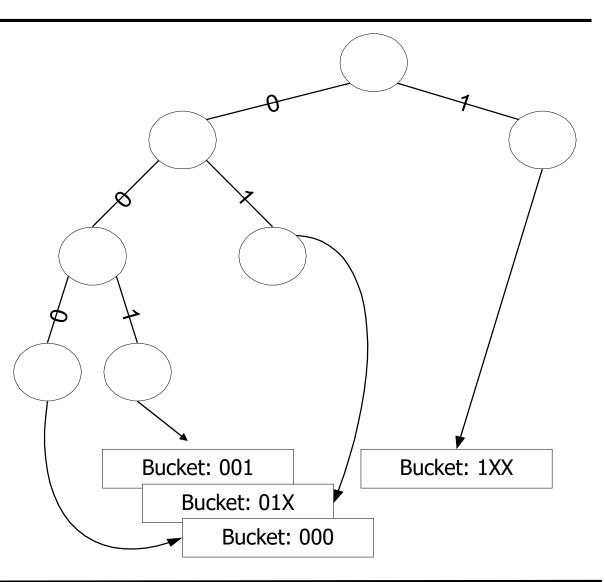
Special Cases

- If block b overflows and t(b)<d
 - Create two new buckets, leave d unchanged
 - Distribute data from b according to bit t(d) and t(d)++
 - Adapt pointers in h
- If distribution creates one overflown and one empty bucket
 - Recurse split
 overflown bucket again
 (and again and again ...)

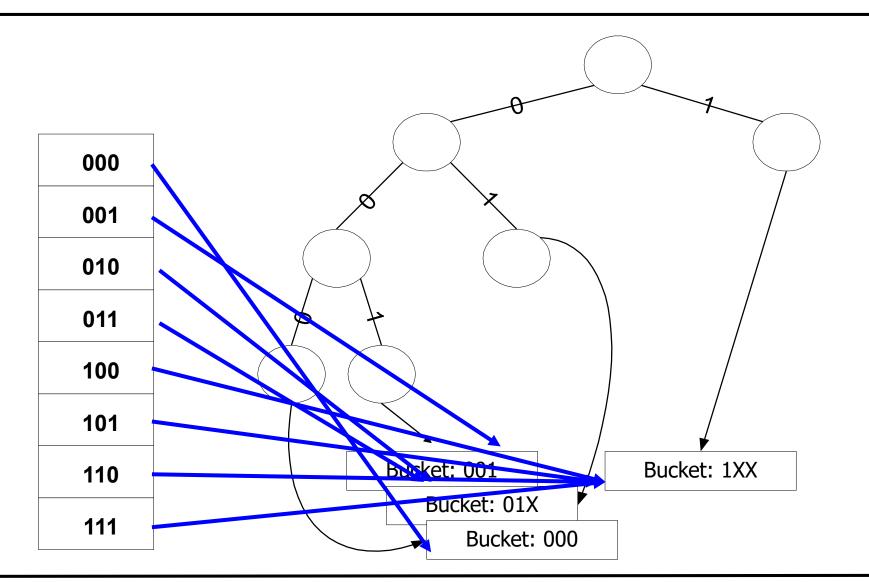


More Complex Example

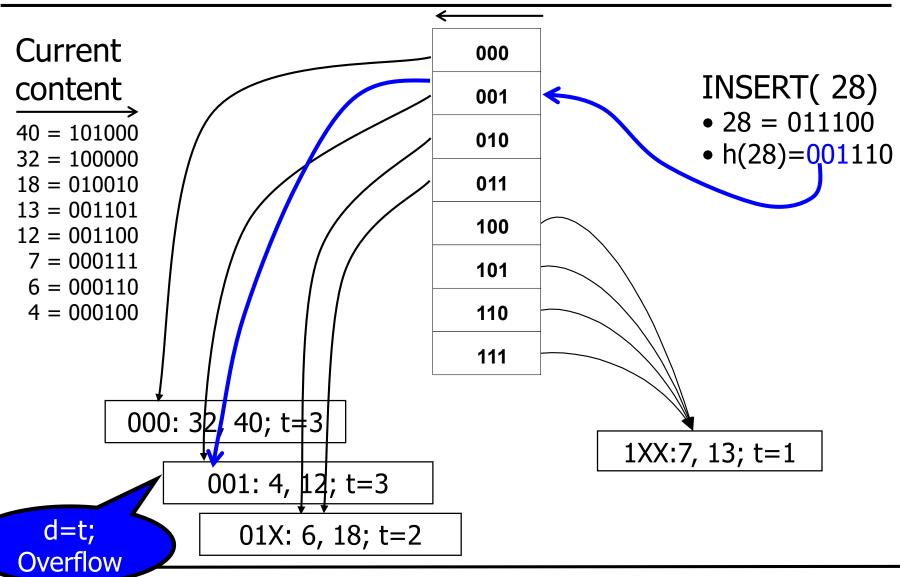
- Assume reversed bit hash function on integers
- Currently four buckets in use
- Global depth d=3
- Local depth t between 1 and 3
- Size of hash table: 2^d=8



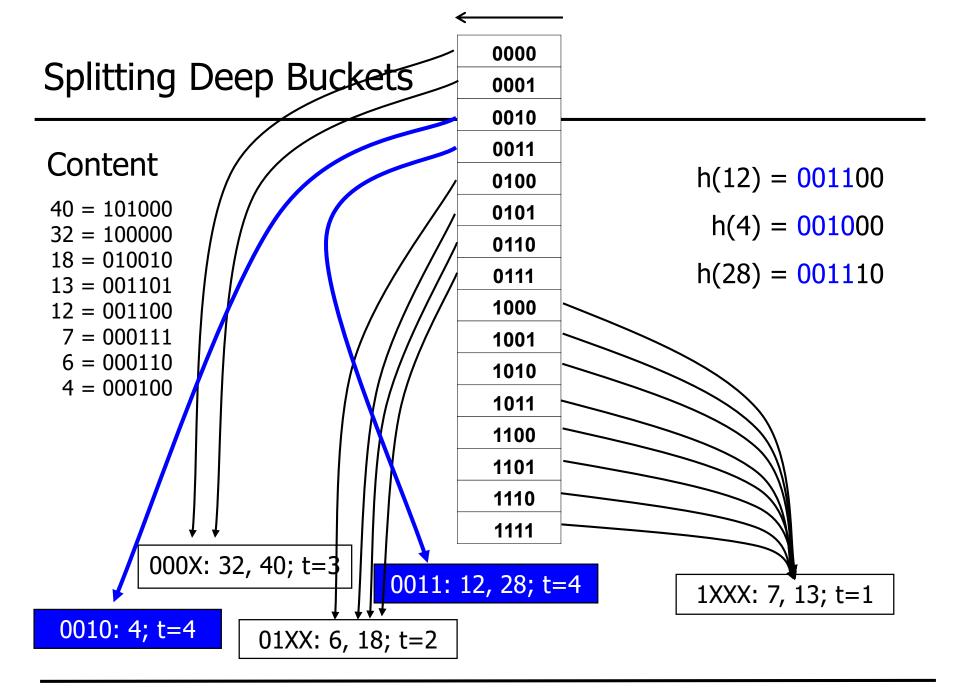
Example: Hash Table

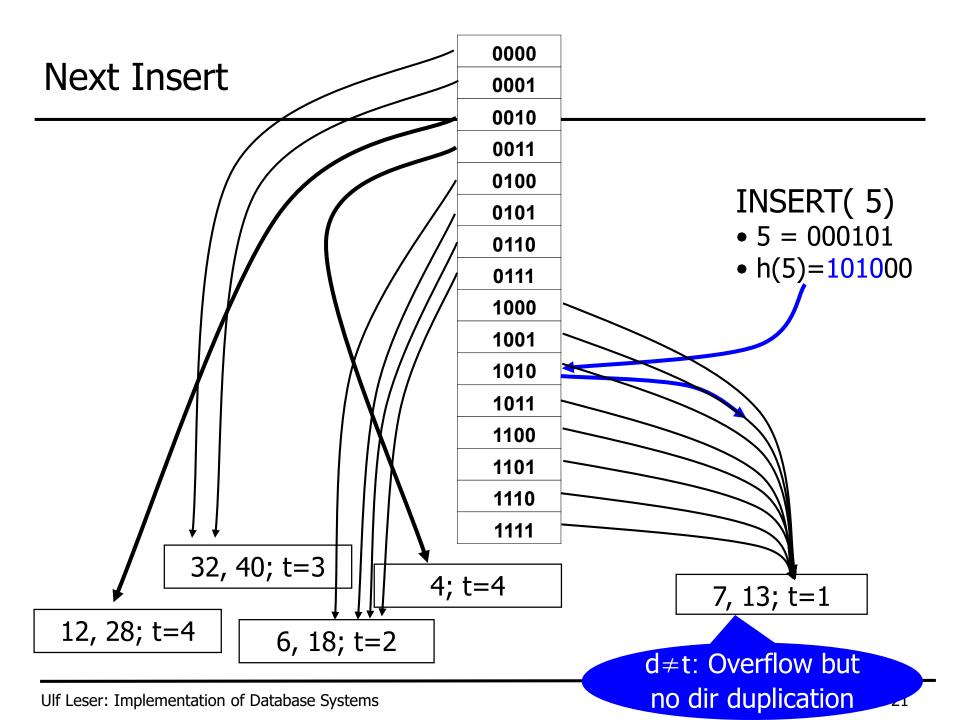


Inserting Values



Ulf Leser. Implementation of Database Systems





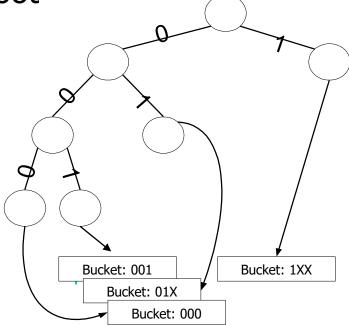
- Assume we have to split overflowing bucket B
- B is shallow if t<d
- For all records $r \in B$, h(r) has the same length-t prefix
- If we split at next position (t++)
 - Generate new bucket and rehash records
 - This might generate an empty bucket
 - The other bucket might still be overflowing repeat split
 - In the example, we rehash 5=101000, 7=111000, 13=101100
 - Hence, one split suffices (with block prefixes 10 and 11)
 - But, if we had 5=10100, 13=101100, 21=101010?
- Might eventually force a deep split with increase in d
 - Deep split: Hash table doubles

Summary

- Advantages
 - Adapts to growing or shrinking number of records
 - Deletion not shown
 - No rehashing of the entire table only overflown bucket
 - Very fast if directory can be cached and h is well chosen
- Disadvantages
 - Directory needs to be maintained (locks during splits, storage ...)
 - Does not properly handle skew wrt hash function
 - No guaranteed bucket fill degree
 - Many buckets might be almost empty, few almost full
 - Directory can grow exponentially for linearly more records
 - If all records share a very long prefix
 - Values are not sorted, no range queries

Exponentially Growing Hash Table?

- Can be avoided
- Organize hash table as tree
- Ranges of buckets with local depth smaller than global depth are leaves closer to root
- Properties
 - May drastically reduce memory requirements
 - Access is slower: Following pointers, random access in main memory



Content of this Lecture

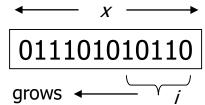
- Hashing
- Extensible Hashing
- Linear Hashing

Linear Hashing

- Similar to Extensible Hashing, but
 - Doesn't double directory on overflow, but increases site one-by-one
 - Guaranteed lower bound for bucket fill-degree
 - Leads to some overflow blocks in buckets
 - No more guarantee on 1 IO
 - But only little more if hash function spreads evenly

Overview

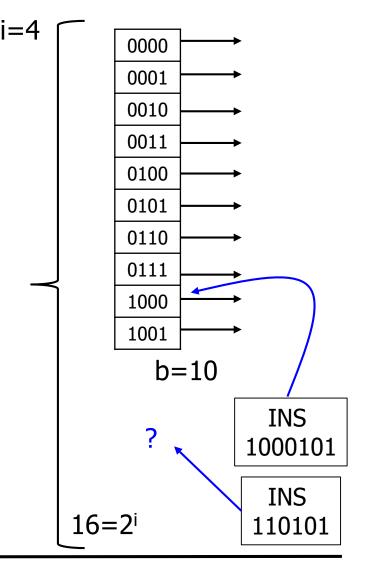
- h generates bitstring of length x, read right to left
- Global parameters
 - i: Current number of bits from x used
 - As i grows, more bits are considered



- If h generates x bits, we use $a_1a_2...a_i$ for the last i bits of h(k)
- b: Total number of buckets currently used
 - Only the first b values of bitstrings of length i have their own buckets
- n: Total number of records
- Fix threshold t linear hashing guarantees that n/b<t
 - The fill-degree constraint (FDC)
 - As n increases, we sometimes must increase b to keep FDC
 - Linear hashing only guarantees the average fill-degree
 - But does not prevent scans in case of "bad" hash function
 - Restricts the average #buckets that must be searched, but not the WC

Illustration

- We can address 2ⁱ buckets
 - If we need more, i must be increased
- We have only b buckets
 - If we need more because of FDC, we need to increase b
 - As long as $b < 2^i$ no problem
 - Otherwise we first need to increase i
- A key k is hashed to a bitstring h(k) whose last i bits are called m(k)
 - That is the address of k in the current hash table
 - m(k) maybe smaller than b (no problem) or larger (problem)

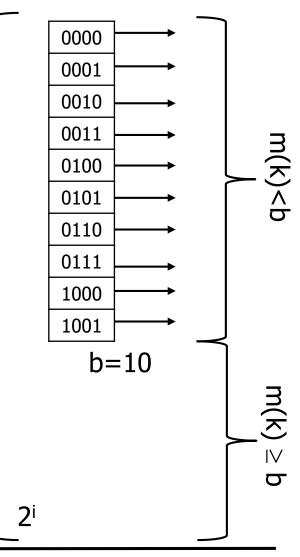


- Inserting a new key k has two phases
- 1st action: We store k
 - Compute m(k)
 - Bucket m(k) may exist or not take proper action
- 2nd action: If FDC is hurt repair
 - By inserting, n has grown by 1, so n/b might now be larger than t
 - If yes: We increase b (and possibly i)
 - This means creating a new bucket where do we split?

Insert(k): First Action

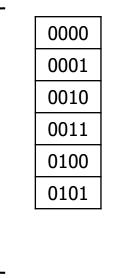
2ⁱ⁻¹

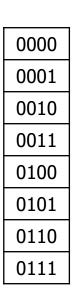
- Note: By construction, $b \ge 2^{i-1}$
 - Proof comes later
- If m(k)<b
 - The target bucket exists
 - Store k in bucket m(k), potentially using overflow blocks
- If m(k)≥b
 - Bucket m(k) does not exist
 - We redirect k into a bucket that does exist
 - Flip i-th bit (from the right) of h(k) to 0 and store k in this bucket
 - This bit is 1 (proof later)
 - Note: This flipping also needs to be done when searching keys



Insert(k): Second Action

- Check threshold; if n/b≥t, then
 - If $b=2^i$
 - No more room to add another bucket
 - Set i++
 - This is only conceptual no physical action
 - Proceed (now we have b<2ⁱ)
 - If $b < 2^i$
 - There is still room in our address space
 - We add (b+1)th bucket and set b++
 - Which bucket to split?
 - We do not split the bucket where we just inserted
 - We do not split the fullest bucket
 - Instead, we use a cyclic scheme to avoid extra admin cost





Which Bucket to Split

- We split buckets in fixed, cyclic order
- Always split bucket with number b-2ⁱ⁻¹
 - As b increases, this cycles through all buckets
 - Let $b=1a_2a_3...a_i$; then we split block with ID $a_2a_3...a_i$ into two blocks with ID $0a_2a_3...a_i$ and ID $1a_2a_3...a_i$
 - Requires redistribution of bucket with hash key a₂a₃...a_i
 - This is one of the buckets where we had put redirected records
 - This is not necessarily an overflown bucket
 - Recall: Only the average fill degree is guaranteed

Buckets Split Order

Assume we would split after every insert

i	b	Existing buckets	Bucket to split: b-2 ⁱ⁻¹	Generates
1	2=10	0,1	0	00 10
2	3=11	00,10 1	1	01 11
	4=100	00,10 01,11	00	000 100
3	5=101	000,100 10,01,11	01	001 101
	6=110	000,100 001,101 10,11	10	010 110
	7=111	000,100,001,101, 010,110, 11	11	011 111

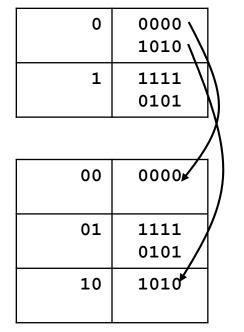
 Assume 2 records in one block, bitstring length x=4, t=1.74, i=1

0	0000 1010
1	1111

Start situation

1a) Insert k=0101
m(k)=1<b=2
Insert into bucket 1
But now n/b≥t</pre>

1b) Since $b=2^{i}=2=10_{b}$ We need more address space Increase i (virtually) Add bucket number $2=10_{b}$ $b=10_{b}=1a_{1}$: Split bucket 0 into 10 and 00 b++



01: Yet unsplit stores 01 and 11 (by flipping)

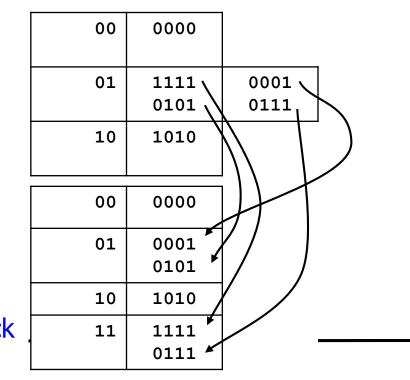
2) Insert k=0001 m(k)=1, bucket exists Insert into m(k) Requires overflow block

00	0000	
01	1111 0101	0001
10	1010	

3a) Insert k=0111
m(k)=3=b=11
Bucket doesn't exist
Flip and redirect to 01

3b) Now $n/b=6/3 \ge t - We split$ b<4, so no need to increase i Add bucket number $3=11_b$ Since $b=11_b$, we split 01 Removes (here) overflown block

Ulf Leser: Implementation of Database Systems



4a) Insert 0011 m(k)= $3=11_{b} < b=4=100_{b}$ Insert into 11_{b}

00	0000	
01	0001 0101	
10	1010	
11	1111 0111	0011

4b) We must split again Since b=2ⁱ, increase i Nothing to do physically ("Think" a leading 0)

00	0000	
01	0001	
	0101	
10	1010	
11	1111	0011
	0111	

4c) Split Add block number $4=100_{b}$ Split 000_{b} into 000_{b} and 100_{b}

000	0000	
001	0001 0101	
010	1010	
011	1111 0111	0011
100	-	

We keep the average bucket filling But we have unevenly filled buckets – some empty, some overflown

Observations (Proofs)

- Due to the extension mechanism: $2^{i-1} \le b \le 2^i$
 - Whenever b reaches 2ⁱ, i is increased => 2ⁱ doubles and b=2ⁱ/2 (for the new i)
 - Hence, b as binary number always has the form $1b_1b_2...b_{i-1}$
- By definition: m(k)<2ⁱ
 - But possibly: m>b
 - Such m must have a leading 1, as b must have one (see previous observation)
 - If we drop the leading 1 in m, we get $m_{new} < 2^{i-1}$
 - Since $n \ge 2^{i-1}$, $m_{new} \le b$
 - Thus, the chosen bucket m_{new} must already exist
- How do we implement the hash table?
 - Not as array, as it must grow in small steps (and shrink)
 - Linked list (linear search in memory) or AVL tree (log(n))

Summary

- Advantages
 - Adapts to varying number of records
 - Slower growth and on average better space usage compared to extensible hashing
 - Guaranteed fill degree
- Disadvantages
 - Search can degrade, as buckets are split in fixed order
 - No adaptation to skewed value distribution
 - Creates random-access IO on disk through overflow blocks