Datenbanksysteme II:
File Structures

UIf Leser

Content of this Lecture

e File structure
— Heap files
— Sorted files
— Index Files
— Hierarchical Index Files

Ulf Leser: Implementation of Database Systems

5 Layer Architecture

Data Model

Logical Access

y

A\ 4

We are here Data Structures

Buffer Management

Operating System

|

Ulf Leser: Implementation of Database Systems

Files and Storage Structures

e \We have

— Records are stored in blocks without particular order
e Makes INSERTs and DELETEs faster

— Blocks are managed/cached by the buffer manager
— Access records by TID through cache manager with adr-translation

e DBs mainly search records with certain properties

- SELECT * FROM COSTUMER /
WHERE Name = "Bond" Tha;csscvé\]llfl'gl dSQL
WHERE Account# < 1000

e This is not “access by TID”

e How can we quickly find all records matching a query?
— Do we always need to scan all records in all blocks?

Ulf Leser: Implementation of Database Systems 4

Preface

e In the following, we talk a lot about searching in lists
— Unordered, ordered, hashing, trees, ...

e What is different from classical (main-mem) algorithms?
— Real data has duplicates
— We are on a block device and count 10
— Relational data is multidimensional
— Later: We need to combine many search criteria
— Differences random access — sequential I0

Ulf Leser: Implementation of Database Systems

Sequential (Heap) File

e Records are stored sequentially in the order of inserts

IR R

End of File

e Insert always adds to end of file
e “Holes” occur if records are deleted

— Can be reused by free-space management — complicated insert
e Minimal number of blocks: b, = [n/ r]

— n = number of records, r = number of records per block

e Better to keep some space free for growing records
— Fraction dep. on expected read/write ratio and record variability

UIf Leser: Implementation of Database Systems 6

Operations on Heap Files

e In the following: We assume highly selective searches
— If most records are selected, scanning is hard to beat — see later
e Assume we have b>b_ .. blocks

e Search by value of any attribute
— b/2 10 in case of successful searching a PK (on average)
— b IO in case of failure or searching non-unique values (always)

e Insert record without duplicate checking
— Remember: relational model is per-se duplicate—free
— Simple case: read last block, add, write last block: 2 IO
e Free space management makes things more complicated
e Insert record with duplicate checking / delete record
— b/2: for successful search and no insert (on average)
— b+1: in case of search without success and insert

Ulf Leser: Implementation of Database Systems

Content of this Lecture

e File structure
— Heap files
— Sorted files
— Index Files
— Hierarchical Index Files

Ulf Leser: Implementation of Database Systems

Sorted Files

e Sort records in file according to some attribute
— Fast searching when this attribute is search key
— More complex management — order must be preserved
— Not helpful when searching for other attributes

e QOperations and associated costs

— Search (using binsearch on blocks)
e log(b) IO; searching in block is free (as always)
— But: That’s mostly random-access 10
— Change / delete records based on value
e First search in log(b)
e Write changes / mark space as free

— Insert record
e First search correct position in log(b)
e Then do what?

Ulf Leser: Implementation of Database Systems

Inserting in a Sorted File

e General: Reserve free space in every new blocks
— Don't fill blocks to 100% when allocated first time
— Chances increase that later insertions can be handled in the block

e Option 1: Use space available in block
— 1 IO for writing

e Option 2: Move records through blocks to free space
— Enormously expensive — read/write entire file

e Option 3: Check neighbors
— See X blocks down and X blocks up in the file
— When space is found, in-between records need to be moved

— Cost: depends on how far we need/want to look
e +4 I0 if X=1 (two more reads, two more writes)

— If no place found: Use option 2 or 4

UIf Leser: Implementation of Database Systems 10

Overflow Blocks

e Option 4: Generate overflow blocks
— Create a new “overflow” block and insert record

— Requires that blocks are connected by pointers
e Sorted table scan possible only if blocks are chained in disc order
e But: Overflow blocks will not be in disc order

— When block is added at end of file
e Sequential table scan still possible, but not in order of attribute

— In heavy RW tables, block order will be completely destroyed

Insertion
Overflow block

Block A-C ﬂ Block D-K Block L-R “ Block S-7%7 Block2 A-C

\v

Ulf Leser: Implementation of Database Systems 11

Properties Sorted Files

o Additional cost for keeping order

— INSERT requires log(b) search first

— Overflow blocks create more random-access 10
e We can sort by only one search key

— Searching on other attributes requires linear scans
e With more random-access

— Many ideas: See multi-dimensional indexes

e But: Search time grows only logarithmically with b
— For 10.000.000 blocks, we need ~23 IO
— But all random access

e Can we do better?

Ulf Leser: Implementation of Database Systems 12

Idea 1: Interpolated Search: Build Histograms

e Partition key value range into buckets
e Count number of keys in each bucket

e Searching: Start at estimated position of search key
— Example: Search “Immel”, [A-C]=7500, [D-F]=6200, [G-I]=3300
— Estimated position: 7500+6200+(3300/3)*2 + ...
— Continue with local search (e.g. exponential) at estimated position

e Advantages
— Very little IO if data is uniformly distributed — exact estimates
— Small space consumption when few buckets are used
e But: the more buckets (higher granularity), the better the estimates
e Disadvantages (see later for ideas)
— Histograms (statistics) need to be maintained
— Choosing optimal bucket humber and range is difficult

UIf Leser: Implementation of Database Systems 13

Content of this Lecture

e File structure
— Heap files
— Sorted files
— Index Files
— Hierarchical Index Files

Ulf Leser: Implementation of Database Systems

14

Idea 2: Decrease b

e Keep only essential info in less blocks
e Use additional file (index) storing only keys and TIDs
e Searching: (Bin-)search index, then access data by TID

e Advantages

— Data file need not be sorted any more

e Faster inserts in data file, but additional cost for updating index
— Integer keys: Fixed-length index entries; strings: Use fixed-length prefix

— Faster search due to smaller records and less blocks: b 4oy < brecords
— Several indexes can be build for different attributes
¢ More flexibility, more update cost
e Disadvantages
— More files to manage, lock, recover, ...
— No more fast sorted scans of entire table (e.g. for merge-join)

UIf Leser: Implementation of Database Systems 15

Further Decrease b: Index Sequential Files

o Data file has records sorted on key

e Index stores pairs (first key, pointer) for each data block
— Sparse index: Only put first key per block in index

e Constraint (k;, ptr): For all k in ptrT: k <k < ki,

Index file [T [k o] - |
Data files |rR[R|[R]..]| IR[R]R|..]
Block 5, Block b,

UIf Leser: Implementation of Database Systems 16

Searching in Index-Sequential Files

e Search key in index using binsearch, then access correct
block by TID

e Advantages

— Index has only few keys: bigex << Drecords

e Assume 10.000.000 records of size 200, |blockID|=10,
|search key|=20, block size=4096

e Number of blocks b= 10.000.000*200/4096 ~ 500.000
e Access if kept sorted: log(500.000) ~ 19 10
e Index-seq file: log(500.000*(10+20)/4096) ~ 12 IO +1 for data

— Chances that index fits into main memory
e Disadvantages

— Only possible for one attribute (data file must be sorted)
— More administration (compared to heap file)

Ulf Leser: Implementation of Database Systems

17

Even Better: Multi-Level Index Files

Sparse Sparse

2nd level 1st level Sorted File
10 > 110 » 10
90| -~ 30 20

170] 50

AN
250(|\ 70| ~ 30
N\

90
330 \ 1100 N 50
410 \\ 130\ 60
490 150
570 \\ 70
\

170 80
190 . 90

210 100

230

AN

Ulf Leser: Implementation of Database Systems \ \ \ \

Hierarchical Index-Sequential files

e Build a sparse, second-level index on the first-level index

e Advantages

— Access time is reduced further

e Assume 10.000.000 records of size 200, |blockID|=10,
|search key|=20, block size=4096, b = 500.000

e Index-seq file: log(500.000*(10+20)/4096) = 12+1 block IO
e With second level: log(3662*(10+20)/4096) = 5+2 blocks IO
o With three levels: log(28*(10+20)/4096) = 1+3

— Higher levels are very small — cache permanently
e With more than one level, inserting becomes tricky

— Either degradation (overflows) or costly reorganizations
— Better: B-trees (later)

Ulf Leser: Implementation of Database Systems

19

Index Files and Duplicates

e What happens if search key is not unique?

e Index file may
— Store duplicates: one pointer for each record
— Ignore duplicates: one pointer for each distinct value
e Smaller index file
e Requires sorted data file
e "Semi-sparse” index
e Index degradation
— If only few distinct values exist, every search selects many TID
e E.g. index on Boolean attributes — index has only two different entries
— Semi-sparse index leads to less 10
— But selects blocks in random IO — scan might be cheaper

UIf Leser: Implementation of Database Systems 20

Secondary Index Files

e Primary ind.: Index on attribute on which data file is sorted

e Secondary index: Index on any other attribute
— Cannot exploit order in data file

TID
— Must be dense at first level Buckets
e Improvement:
Use intermediate 10

20

buckets only for TIDs 55

INAVAVA

— Buckets hold TIDs 40

sorted by index key 50

AN
— Buckets don't store 60 \;
key values
— Advantageous

R\

for low cardinality attributes

Ulf Leser: Implementation of Database Systems 21

Indexes in Oracle

o Data files are heap files

— Exception: Index-organized tables (I0T)
e Recommended only for “read-only” tables

— Every primary key is indexed automatically
— Every UNIQUE attribute is indexed automatically
— Default: B* tree
o Alternatives: Multidim index, bitmap index, user-defined
e Join index: Index on attribute of foreign table with FK/PK

o Cluster index (DB2) — cluster tables and index common key
— Example: Cluster department and employee on common depNum
— Tuples with same depNum will go into same data block
— Cluster index: Create index on depNum (~ persistent join)
— Oracle has no clustered indexes — use index-organized tables

Ulf Leser: Implementation of Database Systems 22

Content of this Lecture

e File structure
— Heap files
— Sorted files
— Index Files
— Hierarchical Index Files

e Excursion: Indexing texts

Ulf Leser: Implementation of Database Systems

23

Excursion: Indexing Text

e Information retrieval
— Searching documents with keywords
— Typically, each document is represented as “bag of words”
— Queries search for documents containing a set of words
e Naive relational database way fails
— Indexed varchar2(64KB) attribute containing text
— Not efficient for keyword queries (INSTR())
— We cannot store each word in an extra column

e Alternatives?

Ulf Leser: Implementation of Database Systems

24

Inverted Lists

e Build a secondary, bucketed index on the words

e Find documents by intersecting buckets
— Enables AND, NOT or OR

Documents

cat —

— |...the cat is fat ...

dog - \
\ ...Was raining cats

- and dogs...

Inverted lists -

...Fido the
dog ...

Ulf Leser: Implementation of Database Systems

	Foliennummer 1
	Content of this Lecture
	5 Layer Architecture
	Files and Storage Structures
	Preface
	Sequential (Heap) File
	Operations on Heap Files
	Content of this Lecture
	Sorted Files
	Inserting in a Sorted File
	Overflow Blocks
	Properties Sorted Files
	Idea 1: Interpolated Search: Build Histograms
	Content of this Lecture
	Idea 2: Decrease b
	Further Decrease b: Index Sequential Files
	Searching in Index-Sequential Files
	Even Better: Multi-Level Index Files
	Hierarchical Index-Sequential files
	Index Files and Duplicates
	Secondary Index Files
	Indexes in Oracle
	Content of this Lecture
	Excursion: Indexing Text
	Inverted Lists

