
Ulf Leser

Datenbanksysteme II:
Caching



Ulf Leser: Implementation of Database Systems 2

Content of this Lecture

• Caching Overview
• Accessing tuples
• Cache replacement strategies
• Cache fetch policy: Prefetching



Ulf Leser: Implementation of Database Systems 3

Caching = Buffer Management

Buffer Manager

Main Memory Buffer
Block on

Disc

Block request

P0 P1 P2 …

.. … … …



Ulf Leser: Implementation of Database Systems 4

IO Buffering

• RDBMS requests block Y from buffer manager
• Buffer manager checks if …

– Y in cache: Grant access

– Y not in cache
• No free space in buffer?

– Choose block Z in buffer
– If Z has been changed – write Z to disc 
– Mark Z as free and proceed

• Free space available? 
– Load Y into free space
– Grant access

Cache fetch policy

Address rewriting

Cache replacement 
policy



Ulf Leser: Implementation of Database Systems 5

Same Problem across the Entire Storage Hierarchy

CPU register
L1 cache line
L2 cache line

L3 block access
Main memory cache
Disk controller cache 

Disk



Ulf Leser: Implementation of Database Systems 6

Finding a Block

• We need to check if block Y is in buffer
– Y is physical block ID on disk yet a logical block ID in a virtual 

address space in memory
– In memory, the blockID doesn’t tell anything about the location

• Possibilities
– Memory blocks store their own block ID

• Find Y: Search all blocks 
• Slow, but no global data structures to synchronize

– Mapping table
• Manage a list of all blockIDs with their locations 
• Find Y: Scan this list 

– less memory access, can be sorted
• Fast, requires synchronization
• Performed in any OS all the time

– OS page table, memory translation using translation lookaside buffer
Source: https://en.wikipedia.org/wiki/Page_table



Ulf Leser: Implementation of Database Systems 7

Access with a TID

• Assume we access the 10th attribute of a tuple TID
• Assume we use a mapping table – what should we return?
• By delegation: x:=getData(TID,10); y=getData(TID; 11)

– getData() translates virtual TID into mem location and returns 
attribute value

– Access requires one indirection
• By pointer: adr := getAdr(TID); x:=adr[10]; y=adr[11]

– Adr now is a physical memory pointer that can be reused
– Faster, but …



Ulf Leser: Implementation of Database Systems 8

Access with a TID

• Assume we access the 10th attribute of a tuple TID
• Assume we use a mapping table – what should we return?
• By pointer: adr := getAdr(TID); x:=adr[10]; y=adr[11]

– Adr now is a physical memory pointer that can be reused
– Pinned tuples: Direct reference exists

• From an index, from a transaction, from a running query, …
• Tuple must not move, block must not be evicted

– Cache manager must know, has less options
• Requires special means to mark pinned tuples (ref counter)
• If adr becomes invalid – core dump

– Unpinned tuples: No references to location exist
• Tuple may be moved 
• Block may be evicted



Ulf Leser: Implementation of Database Systems 9

Content of this Lecture

• Caching Overview
• Accessing tuples
• Cache replacement strategies
• Cache fetch policy: Prefetching



Ulf Leser: Implementation of Database Systems 10

Caching Strategies – Going Wrong

• Imagine a nested loop join
– Outer relation A has 10 blocks, inner relation B has 6 blocks

• Buffer size 6 blocks
• Assume caching with FIFO (first in – first out)

– Cache is filled with A1 and B1, B2, B3, B4, B5
– Loading B6 replaces A1
– For next inner loop, A1 must be loaded again, replacing B1

• We need the next record in A1, which is not in memory any more
– For loading A2, B2 is replaced, B1 replaces B3, …

• FIFO is a typical OS caching strategies
• DB needs to be able to control cache behavior



Ulf Leser: Implementation of Database Systems 11

Caching Strategies – Better Strategy

• Imagine a nested loop join
– Outer relation A has 10 blocks, inner relation B has 6 blocks

• Buffer size 6 blocks
• Proceed as follows

– Cache is filled with A1 and B1, B2, B3, B4, B5
– Build an inner-inner loop (blocked nested loop)

• Keep A1 until finished with all its records
– After B1,… loading B6 replaces, e.g., B1
– For next outer loop, A2 replaces A1
– Inner loop: B1, B2, B3, B4, B6 without replacement
– Next: B6 replaces B2
– …



Ulf Leser: Implementation of Database Systems 12

Caching Aspects

• What to manage?
– Records, blocks, chunks (sequences of blocks), tables

• How many blocks to load?
– Optimal strategy ensures block is in buffer at time of request
– “Block-at-a-time” versus “Read ahead” (prefetching)

• Which blocks to evict (replace)?
– Cache replacement strategies

• Good cache management requires information flow from 
DB layers to buffer manager
– Example: Scanning a relation (read ahead)
– Example: Executing a “Nested Loop Join” (fix outer-loop blocks)



Ulf Leser: Implementation of Database Systems 13

Granularity of Cached Units

• Records: Makes no sense at a blocked device like HDD
• Blocks (default): OS blocks or database blocks
• Chunks

– Group blocks into larger “chunks”
– IO on chunks can exploit sequentially access
– Good for large operations (large table joins or sorts)
– Bad for many local accesses (single records) across all tables

• Tables
– Table are like ultra-large chunks

• Whose size cannot be controlled by memory manager - bad
– But: Fix heavily used (small) tables 
– E.g.: System catalog, Oracles CACHE parameter



Ulf Leser: Implementation of Database Systems 14

Cache Replacement: Based on What?

• What do we know of a block that is correlated to the 
probability of its future use?
– Age

• Time since block was loaded first
• Or: Time since last access in memory

– Living references (block is pinned)
– Changed records (incurs block write)
– Demand: Number of accesses over (recent) time

• Trade-offs
– Young blocks have few refs, but are involved in current operations
– Old blocks have many refs, but might already be out-of-fashion
– Demand often is in bursts – use sliding window (“recent”)

• Properties can be combined / weighted for decision



Ulf Leser: Implementation of Database Systems 15

General Policies

• Last in first out (LIFO): Replace block that was loaded last
• First in first out (FIFO): Replace block that was loaded first
• Least frequently used (LFU): Replace block with smallest 

demand
• Least recently used (LRU): Replace block that was not 

access for the longest time
• Least reference density (LRD): Replace block with the 

worst ratio of age and demand
• Clock: Approximate age with less management
• Random: Chose block at random (nothing to manage)



Ulf Leser: Implementation of Database Systems 16

Implementing LRU with a LRU queue

• When block is requested
– Critical operation: 

Search blockID in queue
– Implemented with two lists

• Queue sorted by least access
• Hashmap: BlockIDs to queue positions (quasi-constant time)

• Access block
– Search blockID in hashmap (almost O(1))
– Block in cache

• Follow pointer to queue
• Delete entry in queue and reinsert on top of queue (O(log(n)))

– Otherwise; load block: Add at top of queue (O(log(n)))
• Evict block

– Find least block in queue; remove from queue and hashmap



Ulf Leser: Implementation of Database Systems 17

CLOCK (“2nd chance” caching)

• Reserve a “used” bit B in each block
• Define cyclic order between blocks (e.g. linked list)
• Initialize a pointer to a randomly chosen block

• Block is used 
– Set B:=1

• Block needs to be replaced
– Move cyclic pointer
– If used=1, change to 0 and move pointer to next block
– If used=0, replace this block and move pointer to next block

• New block has B:=1

• Makes queue superfluous (hashmap still needed)



Ulf Leser: Implementation of Database Systems 18

Content of this Lecture

• Caching Overview
• Accessing tuples
• Cache replacement strategies
• Cache fetch policy: Prefetching



Ulf Leser: Implementation of Database Systems 19

Cache fetch policy: Pre-fetching or not

• Prefetching: Load blocks not yet needed but probably soon
• Examples

– If block from relation is requested, also load next blocks
• Possible full table scan? 

– If object is accessed, also load referenced objects
• Not implemented in RDBMS, but in OODBMS / OR-mappers

• Disc pre-fetching – if sector is requested, read entire track
• Pre-fetching incurs replacement of multiple blocks

– Evicts more blocks without knowing if this is for good
• Using sequential and asynchronous (non-blocking) IO, pre-

fetching may save a lot of time



Ulf Leser: Implementation of Database Systems 20

Other Cache Issues

• Be aware: Your data is not written immediately
– With caching, data stays on volatile device much longer than 

without
– Cache manager needs to check if writing before replacement is 

necessary at all (dirty flag)
– Special care required – recovery strategies

• Cache consistency in distributed (shared-nothing) systems
– If more than one process caches in different locations, data may 

become stale
– Requires costly synchronization (the dead of distributed systems)

• Cache consistency in concurrent TX systems
– If more than one TX changes data, multiple versions of a block 

may exist 
– Requires costly synchronization (see TX handling)



Ulf Leser: Implementation of Database Systems 21

Semantic Caching: Caching Query Result

• Example
– Q1: “Select name from person where age>45” 
– Q2: “Select * from person where age>18”
– Q1 can be answered using result tuples from Q2

• Powerful but complicated technique
– Can a query be answered using results of one or more other q’s?
– Query containment, “answering queries using views”

• Very complicated for write operations
– Cached result blocks are not IO blocks

• Semantic caching not used by any real DB today
– Note: Normal caching sometimes “mimics” semantic caching
– If Q1 executed after Q2, blocks from Q2 are in cache
– But: Computations need to be repeated (e.g. aggregation)



Ulf Leser: Implementation of Database Systems 22

Many Tasks Compete for Main Memory

• SGA: System global area 
– Processes communicate through SGA
– Requires locking of main memory structures – latches

• Library cache: buffers SQL prepared statements using LRU
• Java pool: area for java stored procedures
• Each process additionally gets its PGA (process global area)
• Each area is limited and can become a bottleneck



Ulf Leser: Implementation of Database Systems 23

Take-Home

• Many cache strategies have been (and are still) developed
• General versus domain-specific
• Simple strategies are surprisingly good in many cases

– LRU or even random
– PostGreSql / MySql: LRU / Clock
– Commercial databases: Unknown

• With operator-depending fixing of blocks and special tricks for large 
operations


	Foliennummer 1
	Content of this Lecture
	Caching = Buffer Management
	IO Buffering
	Same Problem across the Entire Storage Hierarchy
	Finding a Block
	Access with a TID
	Access with a TID
	Content of this Lecture
	Caching Strategies – Going Wrong
	Caching Strategies – Better Strategy
	Caching Aspects
	Granularity of Cached Units
	Cache Replacement: Based on What?
	General Policies
	Implementing LRU with a LRU queue
	CLOCK (“2nd chance” caching)
	Content of this Lecture
	Cache fetch policy: Pre-fetching or not
	Other Cache Issues
	Semantic Caching: Caching Query Result
	Many Tasks Compete for Main Memory
	Take-Home

