
Ulf Leser

Datenbanksysteme II:
IO Complexity, Records & Blocks

Ulf Leser: Implementation of Database Systems 2

Content of this Lecture

• IO complexity model
• Records and pages
• Referencing tuples
• BLOBs and free space lists
• Example: Oracle block structure

Ulf Leser: Implementation of Database Systems 3

Again

Really expensive Reg-
ister

Very expensive Cache

~ 15 € / GB Main Memory

~ 0,04 € / GB Disk

Tape

Difference
~104

Ulf Leser: Implementation of Database Systems 4

Consequences

• Depending on the role of data access, algorithms need to
be designed and analyzed differently

• RAM model of computation
– Access to data costs essentially nothing (O(1))
– Only operations on the data count – comparison, arithmetic, etc.

• IO model of computation
– Operations cost nothing (because CPU so much faster than HDD)
– Only access to data counts – reading & writing blocks

• Beware: Sometimes both need to be considered
– E.g. operations with non-linear complexity
– That’s the setting in FONDA

Ulf Leser: Implementation of Database Systems 5

RAM analysis of Merge-Sort

• Basis: Two sorted lists of size n can be merged in O(n)

• Merge-Sort
– If list is of size 1, return (sublist is sorted)
– Else, divide list in two lists of equal size
– Call MERGE-SORT for each sublist
– Merge the sorted list

• Complexity
– O(n*log(n)) when measuring number of key comparisons

1 3 1

2 5 2

4 6 3

7 10 4

Ulf Leser: Implementation of Database Systems 6

IO Analysis of Merge-Sort

• Assume all data is in a sequence of blocks on disc
• Basis: Two sorted lists on disc consisting of n blocks each

can be merged in O(n) IO operations
– Read first blocks of each list (2 IO)
– Merge both sorted blocks into one output block (0 IO)
– If end of one input block is reached, read next block (1 IO)
– If output block is full, write to disc, then reuse (1 IO)
– In total, each block is read and written once – 4*n IO

• Now the recursive part of Merge Sort

Ulf Leser: Implementation of Database Systems 7

Recursive merge-sort

U
U
U
U
U
U
U
U

S
S
S
S
S
S
S
S

S

S

S

S

S

S

S

16 IO 16 IO 16 IO 16 IO
• Total IO: ~2*n*(log(n)+1)

– n: Number of blocks; we count single block operations
• No difference between random access and sequential IO

• How much main memory do we use?
– Never more than three blocks

• Can we do better?

Ulf Leser: Implementation of Database Systems 8

Example cont‘d

• Idea 1: Load more than one block into main memory
– Unsorted file with n blocks, main-memory M of size |M|=b blocks
– Read b blocks from file, sort in-memory, write

• 2b IO; sorting is free; needs in-place sorting algorithm
– Repeat until file is read entirely; generates x~n/b sorted files (runs)

• Total IO: Each block is read and written once: 2n IO

• Idea 2: Read concurrently from multiple files
– Merge x runs in one step by opening all x files at once
– Each block is again read and written: 2n IO

• Total (still): 4n IO, but … we are done

Ulf Leser: Implementation of Database Systems 9

Towards linear IO

U
U
U
U
U
U
U
U

S

S

S

b=4: 32 IO b=2: 32 IO

U
U
U
U
U
U
U
U

S

S

S

S

S

Idea 1:
Fill all your memory

Idea 2:
Merge all runs at once

Ulf Leser: Implementation of Database Systems 10

Works for all b

U
U
U
U
U
U
U
U

S
S
S
S
S
S
S
S

S

b=1: 32 IO

Ulf Leser: Implementation of Database Systems 11

More Precisely: Works for all b<n

U
U
U
U
U
U
U
U

S

b=8=n: 16 IO

Ulf Leser: Implementation of Database Systems 12

Blocked Multi-Way Merge-Sort

• Surprising: If b<n, total IO is 4n
– And 2n otherwise

• Main Trick: Use concurrent reads
– Parallel access is orthogonal to our cost model

• Concurrent reads help to “get away” from the logarithmic
number of rounds
– We don’t have log(n) deep 2-way trees, but a 2-layer b-way tree
– Realistic (up to a certain point) with appropriate controllers, discs, …

• Result: Linear IO
• But still O(n*log(n)) key comparisons

Ulf Leser: Implementation of Database Systems 13

Illustration

• Classical, binary setup
– Needs log2(N) many rounds
– Merges two blocks / runs in

each node

• Binary with more memory
– Height shrinks, but only by a

constant factor

Ulf Leser: Implementation of Database Systems 14

Illustration

• Classical, binary setup
– Needs log2(N) many rounds
– Merges two blocks / runs in

each node

• With concurrent reads
– Height becomes a constant: 2

Ulf Leser: Implementation of Database Systems 15

Limits

• Of course, there is a practical limit: How many blocks can
we open at once and read in parallel without delay?

• Problem 1: We need to have many files open at a time
– Example: 1M blocks, b=2
– Generates 500K runs of size 2 each
– We probably cannot open 500K files at once

• Problem 2: We need to hold n/b+1 blocks in main memory
– We will not be able to load 500K blocks in memory in case b=2
– We could load a block, take first record, load next block …

• Solutions?

Ulf Leser: Implementation of Database Systems 16

Mega-Runs

• Solution for problems 1 and 2
– The limiting factor is min(b, number_open_files)
– Assume that b=min(b, number_open_files)

• Ignore the one block we need for writing (makes math easier)
– Thus, we can sort b*b blocks using our method

• Read and sort b blocks, each time generating one of b runs
– Partition file in partitions of b2 blocks
– Sort each partition, generating a mega-run
– Open all mega-runs in parallel and merge
– If there are more than b mega-runs, apply recursively

• We are back at logarithmic complexity
• But – when will this take effect?

– We digest b2 blocks at once!

Ulf Leser: Implementation of Database Systems 17

Illustration

• Needs one file handle and
one block memory for
each edge

• Constant height only if
– Unlimited number of opened

files
– Unlimited main memory

• Assume b=4
• Tree again has logarithmic

height
• But at base b: logb(n)
• The additional in-memory

cost for merging b values is
ignored in our cost model

…

Megaruns

Ulf Leser: Implementation of Database Systems 18

Analysis

• Without mega-runs
– One run sorts b blocks; we can read b files in parallel
– Hence, we can sort b2 blocks (hard limit)
– Suppose

• Block size=4096B, record size=200: ~20 records per block
• Main memory: 512 MB, ~400MB free: ~100.000 blocks (b=100.000)
• Sorts 100.0002*20 = 200.000.000.000 records
• With 4GB free memory: 2E13 records = 2 “Peta-records”

• With mega runs
– In one mega-run (=partition), we sort b2 blocks
– Using 1 more level of mega runs, we can sort b partitions of size b2
– Sorts 100.0003*20 = 2E16 records = 4000 petabyte
– With 128GB free memory: 6E28 records

Ulf Leser: Implementation of Database Systems 19

Sequential IO

• We ignored differences between random access /
sequential reads/writes
– Differences are not captured by our IO model
– Opening n/b files at once and reading them block-by-block – much

random access
• How can we maximize sequential IO?

Ulf Leser: Implementation of Database Systems 20

Block Sequences

• Don’t read/write blocks one-at-a-time
• Work on sequences of consecutive blocks in each run

– For instance, merge two sorted lists by every time reading b/3
blocks of each file

• Two third for reading, one third for writing
• Only read another b/3 blocks when first exhausted
• Write b/3 blocks in one sequential write

– Merge n/b runs by every time reading b/(n/b+1) blocks of each run
• Effect is the stronger, the larger b

– Memorize: Always try to use all memory you have

Ulf Leser: Implementation of Database Systems 21

Illustration

• Binary with more memory
– Height shrinks compared to

block-wise
– But much random IO

• Binary with sequential IO
– Height grows again
– But much less random

access and many more
sequential reads

Ulf Leser: Implementation of Database Systems 22

Asynchronous Read/Write

• Anything else to optimize?
– What does the machine do while waiting for (slow) IO?

• Use non-blocking, asynchronous IO
• Divide each third in two partitions
• Work with one partition; when done, issue IO request and

continue with other partition while IO is happening to refill
first partition

Ulf Leser: Implementation of Database Systems 23

Take-Home Messages

• Sorting is linear on disc in terms of IO even for extremely
large data sets

• Always try to use all memory you can get
• In practice: Consider all players

– Does the disk controller cache tracks?
– How many blocks can be read in O(1) in parallel? Congestion?
– Is b a constant, or can we request memory dynamically?
– Which parts can be implemented asynchronously?
– …

Ulf Leser: Implementation of Database Systems 24

Ignoring IO cost is a bad idea

Ulf Leser: Implementation of Database Systems 25

Content of this Lecture

• IO complexity model
• Records and pages
• Referencing tuples
• BLOBs and free space lists
• Example: Oracle block structure

Ulf Leser: Implementation of Database Systems 26

5 Layer Architecture

We are here

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 27

Storing relational data

• Fundamental elements:
Records (or tuples) consisting of typed attributes (or fields)

• We need to
– Quench records on pages
– Find all attribute values of a given tuple
– Find a record in a page
– Find a page (next lecture)
– This is physical, record-at-a-time access

• And not the set-based semantics of SQL

• Central issue: Stable record references

Ulf Leser: Implementation of Database Systems 28

Quenching Records

r1 r2 r4r3 r3

r1 r2 lost storage

• Fields (and thus records) can have fixed or variable length
• Mapping of records to pages

– “Spanned Record”

– “Unspanned Record”

• Spanning records?
– Requires two (or even more) IO operations
– Transaction management on block level much more difficult
– Offers better space utilization
– Allows arbitrarily large records

• Practice: Avoid spanning records
– But how to handle oversize records?

Ulf Leser: Implementation of Database Systems 29

Adressing Fields of a Records

• Assume records with k fields and n byte total

• V1: Fixed length records:
Store as array

• Variable length records
– V2: Mark end of fields

• Space: n+k; requires special
end symbol; access O(n)

– V3: Store lengths of fields
• Space: n+k*|len|; requires

fixed |len|; access O(k)
– V4: Use record dictionary

• Space: n+k*|ptr|; requires
fixed |ptr|; access O(2)

20 bytes 10 bytes 4 bytes

20 bytes 10 bytes 4 bytes

20 bytes 10 bytes 4 bytes

20 bytes 10 bytes 4 bytes

Ulf Leser: Implementation of Database Systems 30

Variable Length Records

• Don’t be afraid of variable length records (up to a certain
length)
– Varchar
– More freedom in data modeling
– Enables much better space utilization
– Additional work for DB is manageable

• Think twice when using very large fields
– Images, XML files, graphs (in DB2), varchar (512MB), …
– Do not fit in single pages – usual techniques don’t work
– Need special support by the RDBMS (CLOBs, BLOBs)

Ulf Leser: Implementation of Database Systems 31

Storing NULL‘s

• NULL has special semantics
– Assume z=NULL; then, the following is not the same in SQL

• if (z) then XXX else YYY;
• If (z) then XXX; if (not z) then YYY;

– Not at all the same: z=“” and z=NULL
• Purposefully no value given versus … (unclear)

• The many meanings of NULL
– Not known, not defined, no value at the moment, …

• NULLs as field values need special techniques
– We need to discern “” from NULL
– For fixed length, with end marks, length indicator: Use special

symbol (otherwise unused)
– For record dictionary: set pointer to NULL

Ulf Leser: Implementation of Database Systems 32

Content of this Lecture

• IO complexity model
• Records and pages
• Referencing tuples
• BLOBs and free space lists
• Example: Oracle block structure

Ulf Leser: Implementation of Database Systems 33

Referencing Tuples

• Tuples are identified by tuple ID (TID) (or RID)
• At system level, tuples need to be addressable

– Must allow to locate records: Block and location in block
– References from indexes,

transaction contexts,
cursors, …

– Must be unique and immutable
• Uniqueness for identification
• Immutable for stable references

• Still, physical location should be changeable
– For growing tuples, for improving free space management,

during block reorganization, …
• Semi-physical referencing: Decoupling TID from location

Data File
Records

Index1

Index2 Cursor

Transaction

Ulf Leser: Implementation of Database Systems 34

Addressing a Record in a Page

• Option 1: TID = <BlockID, Offset>

• Option 2: TID = <BlockID, LocalID>, then search

BlockID
Offset

LocalID|…
BlockID -- Search --

• Good: direct acc. in page
• Bad: no moving

• Good: Moving within block
• Bad: Requires a block scan;

LocalID must be managed

Ulf Leser: Implementation of Database Systems 35

Using a Block Directory

• Block directory (tuple table):
– TID = <BlockID, DirOffset>

• Method of choice
– TID remains stable when tuple moves within block
– No scan, only 2 indirections

• Requires management of block directory within each
block (requires space; must be locked; …)

• How to move across blocks?

BlockID

Block directory

Ulf Leser: Implementation of Database Systems 36

Delegation

• Replace tuple with TID’: Another TID, used only internally
• Upon further moves, only adapt pointer (TID’)

– No chaining of references
– Accessing tuple requires at most two block IO

• Might incur degeneration
– Too many 2-block-accesses
– Incentive for periodic re-organizations

TID‘
BlockID

Block directory

Ulf Leser: Implementation of Database Systems 37

TIDs versus Foreign Keys

• Foreign key is a logical value at the data model layer, TID
is a semi-physical value at in internal layer

• FKs are looked-up in an index, TIDs are essentially direct
physical addresses

• FKs are visible to developers, TID (usually) not
– Can be accessed in some systems, but think twice before using for

anything – there are no guarantees
• FK is an integrity constraint, not a pointer

– May join foreign key with any other value in the database as well

Ulf Leser: Implementation of Database Systems 38

Content of this Lecture

• IO complexity model
• Records and pages
• Referencing tuples
• BLOBs and free space lists
• Example: Oracle block structure

Ulf Leser: Implementation of Database Systems 39

Storing BLOBs

• BLOB/ CLOB : Binary / Character large Objects
– Images, video, music, PDF, …

• May have gigabyte in size (depending on DBMS)
• Do not fit into a block, page, segment, …
• BLOBs typically are stored in separate data structures

– Ever read a BLOB through JDBC?
– Access much harder than for ordinary attributes

• May be managed by file system or by DBMS (tablespaces)
• If managed by file system: File may be deleted, other

access credentials, …

Ulf Leser: Implementation of Database Systems 40

Storing BLOBs

• Blob-chain
– Allows sequential reads

• If blocks are really
sequential on disk

– Difficult to seek specific
positions inside BLOB

– No limitation in size

BlockID

Block directory

BLOB-Start or
BLOB-Directory

• Blob-directory
– No sequential reads

– Potential “hicks” while
reading

– Easier to move to specific
positions

– Size limited through dir size

Ulf Leser: Implementation of Database Systems 41

INSERT – Finding Free Space

• What happens if a record is deleted?
– Mark record as deleted in block directory (tombstone)
– Compress block or leave “hole” in block
– In either case, free space is left

• INSERT a record
– Possibility 1: Always into last block of table files

• Always increases Highwater mark
• No space reuse (apart from updates)
• Requires periodic reorganizations to ensure sufficient space utilization

– Possibility 2: Try to find free space inside blocks
• Space must be large enough (simple for fixed-size tuples)
• Many possible strategies: Next free space? Best fitting space? Space in

block with is most underutilized? Space in cached blocks?
• Requires management of free space lists per logical storage unit

Ulf Leser: Implementation of Database Systems 42

Life is complex

• Oracle procedure for
finding free space

• Free space is
administered at the level
of segments
– Logical database objects

• Explanation
– TFL: transaction free list
– PFL: process free list
– MFL: master free list
– HWM: High water mark

Ulf Leser: Implementation of Database Systems 43

Content of this Lecture

• IO complexity model
• Records and pages
• Referencing tuples
• BLOBs and free space lists
• Example: Oracle block structure

Ulf Leser: Implementation of Database Systems 44

Oracle Block Structure

• DBA: Data Block
Header: block address
(global and relative
in tablespace)

• Block type: data,
index, redo, ...

• Table directory: tables in this block (for clustered data)
• Row directory: offset of tuples in block
• ITL: Interested transaction list – locks on rows in block

– ITL grows and shrinks – “ITL wait”, INITTRANS, MAXTRANS
– Locks are not cleaned upon TX end – next TX checks TX-ID

Ulf Leser: Implementation of Database Systems 45

Creating a table

CREATE TABLE "SCOTT"."EMP"
(EMPNO NUMBER(4,0), …)

PCTFREE 10
PCTUSED 40
INITRANS 1
MAXTRANS 255
NOCOMPRESS
LOGGING
STORAGE(INITIAL 65536

NEXT 1048576
MINEXTENTS 1
MAXEXTENTS …
PCTINCREASE 0)

TABLESPACE SYSTEM

• PCTFREE: Not filled by inserts
(reserved for updates) – avoids
row chaining

• PCTUSED: Low mark before block
is put into free list

• INITTRANS: Initial space reserved
for TX-locks in each block

• MAXTRANS: Max space reserved
for TX-locks

• NOCOMPRESS
• LOGGING: generates REDO or not
• INITIAL: Size of 1st extent
• NEXT: Size of next extent
• MINEXT: Number of extents

allocated immediately (each size
INITIAL, but total space not
continuous)

• MAXEXT: Max. number of extents
• PCTINCREASE: Increase of NEXT

size

