Datenbanksysteme II:
Cost Estimation for Cost-Based Optimization

Ulf Leser
Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling
- Example: Oracle
- Some empirical observations
Motivation: Cost-based Optimizers

• Find best plan based on estimation of a plan’s cost
• Requires a cost model: How do we compute the cost of an operation, given its input, its output, and its internal computation?
• Most prominent: Size of intermediate results
 – Which are output of some operation and input to other operations
 – This is typically 1:1, for joins 2:1
 – Also called “cardinality estimation”
• In this lecture, we focus on cardinality estimation
 – For good reasons: Probably largest impact
Other Costs

- **Width** of tuples
 - Typically easy to estimate – we’ll mostly skip this

- **Real data access**
 - Disk or memory (or network)
 - Blocked / tuple, random / sequential

- **Computing the predicate**
 - Mostly very cheap: Comparisons
 - But: Aggregations, projections with functions
 - Very expensive: Median
 - Very expensive: Window Functions
Example

- Assume we store for each attribute: (count, min, max)
- Assume 3300 products, prices between 0-1000 Euro, 1M sales, index on sales.p_id and product.id
- Assuming uniform distribution
 - Price range is 0-1000 => selectivity of condition is 9/10
 - Expect 9/10*3300 ~ 3000 products
 - Choose BNL, hash, or sort-merge join
 - Depending on buffer available

```sql
SELECT *
FROM product p, sales S
WHERE p.id=s.p_id and
  p.price>100
```
Example

- Approaching real selectivity: Using **histograms**
 - Assume 10 buckets for price of products
 - We infer: Selectivity of condition is $5/3300 \sim 0.0015$
 - **Choose index-join**: scan p, collect id of selected products, use index on sales.p_id to access sales

- Note: We are making another assumption – which?
 - Maybe people mostly buy expensive goods?
Cost Estimation

• We approach cost estimation bottom-up
• Start by building a model of individual relations
 – Model should be much smaller than relation
 – Should allow for accurate predictions for all possible operations
 • Selection, projection, group-by, ...
 • We will have to make some compromises
 – Should be consistent – same estimates for different ways of implementing the same subquery
 – Should be easy to maintain when data changes
 – Should be generated quickly
 – Needs to be stored and accessed efficiently
 – Should be easily derivable for intermediate relations during query processing
First Model: Uniform Distribution

- With uniform distribution, we only need \((\text{count, min, max})\):
 - “Smaller”: Storing requires only a few bytes per attribute
 - More for string attributes
 - Need not always be exact: “zz” instead of “zweifel”, 5 instead of 5,231
 - “Accurate”: Let’s see (this lecture)
 - “Consistent”: No
 - “Maintainable”: In constant time for INSERT
 - Update/delete: Exact models may require finding new min / max
 - Alternative: Ignore update/delete, accept errors
 - “Fast generation”: Requires only one pass
 - Beware: Count usually cannot be derived from used space
 - “Efficient storage and retrieval”: Small is always efficient
 - “Derivable”: Let’s see (this lecture)
Other Models

- **Recall**: Small, accurate, updateable, derivable
- **Option 2**: Assume one of the *standard distributions*
 - Normal, Poisson, Zipf, ...
 - Weight of persons, number of sales per product, ...
 - Small: Very small model
 - Can be characterized by *few parameters* (mean, stddev, ...)
 - Accurate: Very accurate if values follow distribution tightly
 - But: How should the DB know which distribution is the right one?
 - Must be *specified by developer*
 - Updatable: There are no updates once parameters are known
 - Derivable: Very difficult to *impossible*
 - Normal distribution after SELECT is not normal anymore
 - We cannot use option 2 everywhere in the plan
 - Only used for *special cases*
Other Models II

- **Recall**: Small, accurate, updateable, derivable
- **Option 3**: Approximation of distribution by histograms
 - Different types, more or less adequate for different distributions
 - **Parameterized size**, quite simple to build
 - Accuracy depends on type and size
 - Rather efficient means for updates and derivations
 - Later this lecture
- **Option 4**: Sampling
 - Maintain a random sample of tuples for each relation
 - Estimate all costs on this sample
 - Configurable size, larger = more accurate
 - Derivation is like simulating a query
 - Even later this lecture
Important Note

- Derived estimations need not be exact
 - Should only help to discern good transformations from bad ones
 - Only order of alternatives matters, not their concrete cost
 - If 1st/2nd plan have estimated costs 1,1/1,15, although real costs are 10/1000, we nevertheless reach our goal – choosing the best

- Estimates in reality are often very bad
 - Orders of magnitude (see examples at end of this lecture)
 - Especially when data deviates from assumptions of the model
 - Still, resulting plans might be very good

- Trade-off: Accuracy of model-derived estimates versus effort to maintain models
Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling
- Example: Oracle
- Some empirical observations
Rules of Thumb

- We discuss **impact of each relational operation** on parameters of a simple model assuming uniform distributions
 - S will denote the result of a (unary, binary) operation
- For relation R and attribute A, our model consists of
 - $v(R, A)$: Number of **distinct values** of A
 - $\text{max}(R, A), \text{min}(R, A)$: Maximal/minimal value of A
 - Values that do exist in R, not maximal / minimal possible values
 - $|R|$: Number of tuples in R
 - Note: R may be an **intermediate result**
Size after a Selection

• Assume \(\min \leq \text{const} \leq \max \)
• Selection of the \(S = \sigma_{A=\text{const}}(R) \)
 - \(|S| = |R| / v(R,A) \)
 - \(v(S,A) = 1; \max(S,A) = \min(S,A) = \text{const} \)
• Selection of the form “\(A < \text{const} \)” (or “\(A \leq \geq > \text{const} \)”)
 - \(|S| = |R| / (\max - \min) \times (\text{const} - \min) \)
 - \(v(S,A) = v(R,A) / (\max - \min) \times (\text{const} - \min) \)
 - \(\min(S,A) = \min; \max(S,A) = \text{const} \)
 - Alternative: \(|S| = |R| / k \) (e.g. \(k=10,15,... \))
 • Idea: With such queries, one usually searches for outliers
 • \(k \sim \) frequency of outliers (“\text{magic constant}”)
 • Very rough estimate, but requires no knowledge of values in \(A \) at all
Selection II

• Selection of the form “A≠const”
 – |S| = |R| * (v(R,A)-1)/v(R,A)
 • We assume that const exists as value in A
 – v(S,A)=v(R,A)-1
 – min(S,A)=min, max(S,A)=max
 – Alternative model: |S| = |R|
Complex Selections

- **Conjunction**: Selection of the form \(A \theta c_1 \land B \theta c_2 \land \ldots \)
 - Assumption: Statistical independence of atomic conditions
 - Total selectivity is \(\text{sel}(c_1) \times \text{sel}(c_2) \times \ldots \)
 - \(\nu, \min, \max \) are adapted iteratively

- **Negation**: Selection of the form \(\neg A \theta c \)
 - Selectivity is \(1 - \text{sel}(c) \)

- **Disjunction**: Selection of the form \(A \theta c_1 \lor B \theta c_2 \lor \ldots \)
 - Rephrase into \(\neg (\neg (A \theta c_1) \land \neg (B \theta c_2) \land \ldots) \)
 - Selectivity is \(1 - (1 - \text{sel}(c_1)) \times (1 - \text{sel}(c_2)) \times \ldots) \)

- Be careful: \(A < 55 \land A > 55 \)
Distinct and Projection

- Selectivity of DISTINCT
 - $|S| = v(R, A)$
 - $v(S, A) = v(R, A)$, min$(S, A) = \min$, max$(S, A) = \max$

- Selectivity of projection
 - Projections usually only change the width of a tuple
 - Exception: Window functions
 - Width may increase: Computed attributes
 - Selectivity = 1 under **BAG semantics**

 - Caution
 - In real life, we need to estimate sizes in bytes
 - This requires **number of tuples and size of tuples**
 - Our current model ignores this issue
DISTINCT and GROUP-BY

• Selectivity of GROUP-BY
 – Same as selectivity of distinct on group attributes
• But: Selectivity of SELECT DISTINCT A,B,C FROM ...
Projection and Distinct

- **Selectivity of GROUP-BY**
 - Same as selectivity of distinct on group attributes
- **But: Selectivity of `SELECT DISTINCT A,B,C FROM ...`**
 - Not easy: We need to know correlations of values
 - Clearly, \(\leq < |S| \leq v(R,A) \times v(R,B) \times v(R,C) \)
 - Simple heuristic: \(|S| = \min\left(\frac{1}{2} |R|, v(R,A) \times v(R,B) \times v(R,C) \right) \)
- **Alternative**
 - Multi-dimensional histograms (later)
Selectivity of Cartesian Product

- Consider $S = R \times T$
 - $|S| = |R| \times |T|$
 - For all attributes A of S: $\text{max}(S,A)$, $\text{min}(S,A)$, $v(S,A)$ are copied from base relation
Selectivity of Joins

- Consider join: $R \bowtie_A T$ (means $\sigma_{R.A=T.A}(R \times T)$)

- What is the selectivity of the join?
 - Need to know about correlations of values in different relations
 - Similar problem as for \ldots DISTINCT A,B,C \ldots,

- Suggestions
 - Option 1: We assume (or know!) joining a PK with a FK
 - Thus, if $v(R,A)<v(T,A)$, $T.A$ is PK in T and $R.A$ is FK
 - Or vice versa
 - Then, each FK "finds" its PK
 - Thus: $|S|=|R|$, $\max(S,A)=\max(R,A)$, $\min(S,A)=\min(R,A)$, $v(S,A)=v(R,A)$
Selectivity of Joins

• Option 2: Assume that value sets are similar
 - Assumption: Users don’t join independent attributes
 - Thus, most tuples will find a join partner
 - Thus, each tuple from T will join with app. |R|/v(R,A) tuples from R
 - Symmetrically, each tuple from R will join with app. |T|/v(T,A) tuples from T
 - Thus, we expect |T|*|R|/v(R,A) or |R|*|T|/v(T,A)
 - Typical solution: |S| = |R|*|T| / (max(v(T,A), v(R,A))
 - |R|<|T|: v(S,A)=v(R,A), min(S,A)=min(R,A), max(S,A) = max(R,A)

• What about Theta-Joins: R⋈_{R.A<T.B} T ?
 - For each distinct value T.B, estimate which fraction of R has smaller values in R.A, then aggregate
Remarks

- We did not discuss effects of operations on other attributes
- Simple model: Ignore
 - Operation on R.A does not influence models of other attributes of R
 - Example: “age<19” does not change min(R,name) or max(R,name)
 - Often wrong: “age<19” does change max(R, income)
- In all other cases, we need to have models taking correlations of value sets into account
 - E.g. Multi-Dimensional Histograms
- As far as I know: Nowhere used in practice
Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling
- Example: Oracle
- Some empirical observations
Histograms

- **Real data** is rarely uniformly distributed
 - Nor Poisson, normal, Zipf, ...
- **Solution: Histograms** [for single attributes]
 - Partition the (current) value range into **buckets**
 - Count **frequency of tuples** in each bucket (i.e. range)
 - During optimization, **estimate selectivities** from affected buckets
 - Typical: Uniform distribution assumption inside each bucket
- **Advantage**
 - Hope: Frequencies **vary less inside smaller ranges**
 - **Lower errors** due to smaller ranges for uniformity assumption
Issues

- We must think about
 - How should we chose the borders of buckets?
 - What do we store for each bucket (could be more than count)?
 - How do we keep buckets up-to-date?
Distribution

- Assume normal distribution of weights
 - Spread: 120-40=80, mean: 80, stddev: 12; 100,000 people
- Uniform distribution: 100,000/80=1250 for each possible weight
- Leads to large errors in almost all possible query ranges
Equi-Width Histograms

- Fix number b of buckets
- Borders are equi-distant (border values need not be stored)
- In each bucket, assume average frequency inside bucket
Equi-Width Histograms 2

- Bucket counts can be computed by scanning relation once
- Remaining error depends on
 - Number of buckets (more buckets -> less errors, but more space)
 - Distribution of values in each bucket
Equi-Depth

- Fix number b of buckets
- Chose borders such that frequency of values in each bucket is approximately equal
 - If single value more frequent than $|R|/b$ - use other histograms
Equi-Depth

- Buckets have varying sizes (borders need to be stored)
- Better **fit to data**
- Computation?
 - Sort all values, then jump in equally wide steps
Example

- **Query:** Number of people with weight in [65-70]
 - Real value: 11603
 - **Uniform distribution:** \((70-65+1) \times 1250 = 7500\)
 - Error: 4103 \(\sim\) 35%
 - **Equi-width histogram**
 - Range 60-69 has average 1469
 - Range 70-79 has average 2926
 - Estimation: \(5 \times 1469 + 1 \times 2926 = 10271\)
 - Error: 1332 \(\sim\) 11%
Example cont’d

• Query: Number of people with weight in [65-70]
 – Real value: 11603
 – Uniform distribution: \((70-65+1)*1250 = 7500\)
 • Error: 4103 \(\sim\) 35%
 – **Equi-depth** histogram
 • Range 65-69 has average 1850
 • Range 70-73 has average 2581
 • Estimation: \(5*1850 + 1*2581 = 11831\)
 • Error: 228 \(\sim\) 2%

• Error depends on concrete value or range

• In general, **equi-depth histograms are considered more accurate** than equi-width histograms
 – But more costly to build and maintain
Other: Serial Histograms

- Sort values by frequency and build buckets as ranges of frequencies (rare values, less rare values, ...)
 - Frequency ranges of different buckets do not overlap
- Better fit, but values in buckets must be stored explicitly
 - There are no consecutive ranges any more
 - Not directly applicable for REAL or VARCHAR (discretize!)
- Range queries must find their values in all buckets

<table>
<thead>
<tr>
<th>Value</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cnt</td>
<td>12</td>
<td>92</td>
<td>10</td>
<td>180</td>
<td>22</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bucket</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>4</td>
<td>2,5,7</td>
<td>1,3,6</td>
</tr>
<tr>
<td>Total cnt</td>
<td>180</td>
<td>194</td>
<td>42</td>
</tr>
<tr>
<td>σ^2</td>
<td>0</td>
<td>~1400</td>
<td>~28</td>
</tr>
</tbody>
</table>
Other: V-Optimal Histograms

- Sort values by frequency and build buckets such that *weighted variance is minimized* in each bucket
 - Explicitly considers the *expected error*
- **Provably best class of histograms** for “average” queries
 - But costly to generate and maintain
 - Best known algorithm is $O(b \times n^2)$ (n: |values|, b: |buckets|)

<table>
<thead>
<tr>
<th>Value</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cnt</td>
<td>12</td>
<td>92</td>
<td>10</td>
<td>180</td>
<td>22</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bucket</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>4</td>
<td>2,5</td>
<td>1,3,6,7</td>
</tr>
<tr>
<td>Total cnt</td>
<td>180</td>
<td>172</td>
<td>64</td>
</tr>
<tr>
<td>σ^2</td>
<td>0</td>
<td>~72</td>
<td>~35</td>
</tr>
</tbody>
</table>
Other Types of Histograms

- **End-biased histograms**
 - Sort values by frequency and build singleton buckets for k largest/smallest frequencies plus one bucket for all other values
 - Simple form of serial histograms, quite effective for many real-world data distributions (e.g. Zipf-like distributions)
- “Commercial systems seem mostly to use **equi-depth and compressed histograms** (mixture of equi-depth and end-biased histograms)”

Ioannidis, Y. (2003). "The history of histograms (abridged)". VLDB
Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
 - Types of histograms
 - Joins, construction, maintenance
- Sampling
- Example: Oracle
- Some empirical observations
Histograms for Join Estimation

- Assume sales and reclamations
 - And a slightly strange query, not passing along PK/FK constraints
 - Probably a mistake? But the DB must execute (and optimize) it anyway!

```sql
SELECT count(*)
FROM sales S, reclamation R
WHERE S.productID=R.productID;
```

- 20K tuples
- 3K different values
- 380 tuples
- 250 different values
Example without Histograms

• Without histograms, assuming \textbf{uniform distribution}
 – Recall join-formula (no PK/FK)
 – Gives $|S| \times |R|/(\max (v(R,\text{productID}), v(S,\text{productID}))) \sim 2500$
Example with Histograms

- Uniform distribution within buckets
 - And uniform distribution of distinct values
 - Better: Store cnt of distinct value per bucket
 - \((7000 \times 300/500) + (450 \times 60/500) + ... \approx 4200\)
- More complicated if bucket borders of join attributes do not coincide
 - Always the case for equi-depth histograms

<table>
<thead>
<tr>
<th>Range</th>
<th>B.pID</th>
<th>R.pID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-499</td>
<td>7000</td>
<td>300</td>
</tr>
<tr>
<td>-999</td>
<td>450</td>
<td>60</td>
</tr>
<tr>
<td>-1499</td>
<td>2650</td>
<td>0</td>
</tr>
<tr>
<td>-1999</td>
<td>4900</td>
<td>0</td>
</tr>
<tr>
<td>-2499</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>-2999</td>
<td>4900</td>
<td>0</td>
</tr>
</tbody>
</table>
Histograms and Complex Conditions

• We only considered histograms for single attributes
• How to apply histograms for complex conditions?
 – People with weight<30 and age<25?
 – People with income>1M and tax depth<100K?
 – Until now, we assumed statistical independence of attributes
 – Better estimates require conditional distributions
 – But: Combinatorial explosion of the number of combinations
 • Plus: Could be connected by AND, OR, AND NOT, ...
• Multidimensional histograms
 – Active research area
 – Need sophisticated storage structures – multidimensional indexes
Maintaining Equi-Width Histograms

- **Building**: Two scans
 - One for finding (min, max), one for counting bucket frequencies
 - Borders are regularly distributed over range
 - We can compute histograms for all attributes of a table at once

- **Maintaining**
 - If min / max does not change: Increase/ decrease frequencies in affected bucket
 - That’s the most frequent case: Maintaining **EW-histograms is cheap!**
 - Finding the bucket is in O(1)
 - If min/max does change: **Rebuild histogram**
 - Or ignore change and only change frequency in first/last bucket
Maintaining Equi-Depth Histograms

- **Building: Sort**
 - We need to sort all values, then partition into b roughly equal-size intervals
 - Requires one scan+sort per attribute
 - That’s rather expensive
 - Alternative: Use sample to estimate border values

- **Maintaining**
 - Almost all changes influence borders of buckets
 - Only updates of value within ED-range do not
 - Option 1: Accept intermediate inequalities in bucket frequencies
 - ... and regularly re-compute entire histogram
 - Option 2: Implement complex bucket merging/ splitting procedures
Offline Histograms

- Other option: Compute only on request and do not update
 - Administrator needs to trigger re-computation of (all, table-wise, attribute-wise, ...) statistics from time to time
 - Otherwise, query performance may degrade
 - Both cases (new or outdated statistics) may lead to unpredictable changes in query behavior
- For long, this was the only available option
- Automatically maintaining statistics is an active research topic
 - General trend: Reduce total cost of ownership
 - Self-optimizing, self-maintaining, zero-administration, ...
Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- **Sampling**
- Some empirical observations
Sampling

- Scanning a table for computing a histogram is expensive, yet accuracy is limited
 - If out-of-date, if conditions don’t match bucket borders, ...
- Other approach: Use a sample of the data
 - Reservoir sampling: Compute a random sample and maintain
 - If chosen randomly, sample should have same distribution as full data set – and also all correlations
 - Usually, a 1-5% sample suffices
 - The larger $|T|$, the smaller the percentage
- Also useful for approximate COUNT, AVG, SUM, etc.
 - Approximate query processing: Faster answers with small errors
 - Active research area (“Taming the terabyte”)
Building and Maintaining

- Idea: How to get a random sample of s% of table T?
 - Selecting first s% rows is a bad idea (yet fast)
 - Solution: Scan and pick every tuple with probability s
 - Will create a sample S of size roughly s*|T|
 - Exact size doesn’t matter
 - We just have to make sure that there is no buffer overflow

- Maintain
 - DELETE: If tuple in sample is deleted, choose new tuple at random
 - INSERT: Add new tuple to S with probability s
 - UPDATE: Propagate to sample
 - All this is expensive: Operations always need to check S
 - Alternative: Ignore and rebuild from time to time
Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling
- Example: Oracle
- Some empirical observations
Example: Oracle Basic Statistics

- Table statistics
 - Number of rows
 - Number of blocks
 - Average row length
- Column statistics
 - Number of distinct values (NDV) in column
 - Number of nulls in column
 - Data distribution (histogram)
- Index statistics
 - Number of leaf blocks
 - Levels
 - Clustering factor
- System statistics
 - I/O performance and utilization
 - CPU performance and utilization

- If activated: “Oracle gathers statistics on all database objects automatically and maintains those statistics in a regularly-scheduled maintenance job.”
- High-frequency tables: “Because the automatic statistics gathering runs during an overnight batch window, the statistics on tables which are significantly modified during the day may become stale”
Example: Oracle Histograms

- Most frequent values are very frequent
- Every bucket one value
- Equi-Depth

NDV > n

- Frequency Histogram
- Height-Balanced Histogram

ESTIMATE_PERCENT = AUTO_SAMPLE_SIZE

- No

Percentage of rows for top n frequent values ≥ p

- No

Top n Frequency Histogram

- Yes

\[\text{NDV} = \text{Number of distinct values} \]
\[n = \text{Number of histogram buckets (default is 254)} \]
\[p = \left(1 - \frac{1}{n}\right) \times 100 \]
Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling
- Example: Oracle
- Some empirical observations
 - Leis, Gubichev, Mirchev, Boncz, Kemper, Neumann (2015): “How good are query optimizers, really?”, PVLDB
Empirical Observations

- **Goal**: Try to **separately measure** the relative impact of **cardinality estimation**, **cost model**, and **join order algorithm**
 - Hypothesis: Distribution assumptions (uniform) underlying most cost models are usually wrong
 - How much does this impact plan quality?

- **Approach**
 - **“Real-life” benchmark**: IMDB data, 21 tables, ~3GB raw data, many correlations between everything
 - Forget TPC-DS, TPC-H – synthetically generated (uniform) data
 - 33 query types with each ~3 incarnations; 113 queries, 3-16 joins
 - Use optimizers (with hints) to obtain cardinality estimates
 - Execute queries to obtain true cardinalities
 - Compare results from **five different database systems**
 - PostGreSQL, Hyper, DBMS-A, DBMS-B, DBMS-C
Selectivity of Selections on Base Tables

<table>
<thead>
<tr>
<th></th>
<th>median</th>
<th>90th</th>
<th>95th</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PostgreSQL</td>
<td>1.00</td>
<td>2.08</td>
<td>6.10</td>
<td>207</td>
</tr>
<tr>
<td>DBMS A</td>
<td>1.01</td>
<td>1.33</td>
<td>1.98</td>
<td>43.4</td>
</tr>
<tr>
<td>DBMS B</td>
<td>1.00</td>
<td>6.03</td>
<td>30.2</td>
<td>104000</td>
</tr>
<tr>
<td>DBMS C</td>
<td>1.06</td>
<td>1677</td>
<td>5367</td>
<td>20471</td>
</tr>
<tr>
<td>HyPer</td>
<td>1.02</td>
<td>4.47</td>
<td>8.00</td>
<td>2084</td>
</tr>
</tbody>
</table>

Table 1: Q-errors for base table selections

- 50% of estimates are almost perfect, in all systems
- 90% of estimates are wrong by a factor of 6 at most – but much worse in DBMS-C
- Extreme errors go up to factor 100.000
- Simple PostGres model works rather well
 - Min/max, distinct values, histograms
Cardinality Estimates for Multi-Joins

- All systems work rather well for up to 2 joins
 - With median errors below 10
- In all systems, accuracy decreases quickly with more joins
 - Note the logarithmic scale at y-axis
- Join sizes mostly are heavily underestimated
Do not Use TPC-H!

- Uniform data – perfect estimations
Impact on Runtime

- Approach: Obtain estimates from system X, inject into PostGres, let PostGres optimize and run the query
 - “Optimal”: Same approach using true cardinalities

<table>
<thead>
<tr>
<th></th>
<th><0.9</th>
<th>[0.9,1.1)</th>
<th>[1.1,2)</th>
<th>[2,10)</th>
<th>[10,100)</th>
<th>>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>PostgreSQL</td>
<td>1.8%</td>
<td>38%</td>
<td>25%</td>
<td>25%</td>
<td>5.3%</td>
<td>5.3%</td>
</tr>
<tr>
<td>DBMS A</td>
<td>2.7%</td>
<td>54%</td>
<td>21%</td>
<td>14%</td>
<td>0.9%</td>
<td>7.1%</td>
</tr>
<tr>
<td>DBMS B</td>
<td>0.9%</td>
<td>35%</td>
<td>18%</td>
<td>15%</td>
<td>7.1%</td>
<td>25%</td>
</tr>
<tr>
<td>DBMS C</td>
<td>1.8%</td>
<td>38%</td>
<td>35%</td>
<td>13%</td>
<td>7.1%</td>
<td>5.3%</td>
</tr>
<tr>
<td>HyPer</td>
<td>2.7%</td>
<td>37%</td>
<td>27%</td>
<td>19%</td>
<td>8.0%</td>
<td>6.2%</td>
</tr>
</tbody>
</table>

- Observations
 - Estimates from DBMS-A (HyPer) lead to near-optimal plans in 54% (37%) of all queries
 - DBMS-B (C, Hyper) estimates lead to plans more than 10 times slower than “optimal” for 32% (12%, 14%) of all queries
 - Overall: Even extremely bad estimates (DBMS-C) do not impact query performance too much too often
 - Wrong estimates sometimes even speed-up queries!
Quality of Cost Models

- Using **true cardinality** makes cost estimates much better
 - See different columns
- Changing the concrete cost model has little impact
 - See different rows
 - “Tuned”: MainMem-adapted
 - “Simple”: Roughly our option 1
- Message: **Invest in cardinality estimates**, not in performance modelling
But …

- More interesting results in the paper
 - E.g.: More indexes make estimations harder – larger search space
 - “Harder”, not “worse”

- But
 - A single data set
 - Real data, but synthetic workload
 - Runtimes are all from PostGres, ignoring many special features in the runtime engines of other systems
 - No parallelization
 - Although this data fits in memory, PostGres is not a MM-DBMS
 - Logs are writing to disk all the time

- Solution: Measure, model, and optimize for your workload