Datenbanksysteme II:
Query Optimization

Ulf Leser
5 Layer Architecture

- Data Model
- Logical Access
- Data Structures
- Buffer Management
- Operating System

We are here
Content of this Lecture

- Introduction
- Rewriting Subqueries
- Algebraic Term Rewriting
- Optimizing Join Order
- Plan Enumeration
- A counter-example
Is Optimization Worth It?

• Goal: Find cheapest way to compute a query result
 – Generate and assess different physical plans to answer the query
 – All plans must be semantically equal

• Optimization itself costs time
 – Some steps have exponential complexity
 • E.g. join order: 10 joins – potentially $\sim 3^{10}$ steps
 – Finding the best plan might take more time than executing an arbitrary plan
 • And usually we don’t find the best plan anyway

• Why bother?
Example

```sql
SELECT C.name, C.address
FROM customer C, order O
WHERE C.name = O.c_name AND O.product = "coffee"
```

- **Assumptions**
 - 1:n relationship between C and O
 - |C|=100, 5 tuples per block, b(C)=20
 - |O|=10,000, 10 tuples per block, b(O) = 1,000
 - Result size: 50 tuples
 - **Intermediate results**
 - (C.name, C.address): 50 per block
 - Join result (C,O) with full tuples: 3 per block
 - Small main memory
First Attempt

• Translate in relational algebra expression
 \[\pi_{\text{name,adr}}(\sigma_{O.C_name=C_name \land O_product='coffee'}(C \times O)) \]

• Interpret query „from inner to outer“
 – No optimization yet

• Assume materialization of intermediate results
 – No caching, no pipelining
Cost

- Compute cross-product (block-nested-loop)
 - Reads: $b(C) \times b(O) = 20,000$
 - Writes: $100 \times 10,000 / 3 \approx 333,000$

- Compute selections
 - Reads: 333,000
 - Writes: $50 / 3 \approx 17$

- Compute projection
 - Reads: 17
 - Writes: $50 / 50 \approx 1$

- Altogether: $\sim 686,000$ IO
 - and 333,000 blocks temp space required on disk
Query Rewriting

- Rewrite into: \[\pi_{\text{name, adr}} (C \bowtie_{O.c_name=C.name} (\sigma_{O.product='coffee'}(O))) \]
- Compute selection on \(O \)
 - Reads: 1,000, writes: \(50/10 = 5 \)
- **Compute join** using BNL
 - Reads: \(5 + b(C) \times 5 = 105 \)
 - Writes: \(50/3 \approx 17 \)
- Compute projection
 - Reads: 17, writes: \(50/50 \approx 1 \)
- **Altogether**: 1.145
 - 17 blocks temp space
- Maybe there is an ever better way?
Better Plan

• **Push projection**
 - \(\pi_{\text{name,adr}}(\pi_{\text{name,adr}}(C) \bowtie_{O.c_name=C.name}(\sigma_{O.product='coffee'}(O))) \)

• **Compute selection on O**
 - Reads: 1,000, writes: 50/10 = 5

• **Compute projection on C**
 - Reads b(C)=20, writes 100 / 50 = 2

• **Compute join using nested loop**
 - Reads: 2 + 2*5 = 12, writes: 50/3 ~ 17

• **Compute projection**
 - Reads: 17, writes: 50/50 ~ 1

• **Altogether:** 1.080
 - 17 blocks temp space
Even Better – Use Indexes

- Assume indexes on \((O.\text{product}, O.\text{C_name})\) and on \((\text{C_name}, \text{C_address})\)

- Compute **selection on O using index**
 - Reads: Roughly between 5 and 10 blocks
 - Height of index plus consecutive blocks for 50 TIDs with product='coffee'
 - Number of blocks depends on fill degree of B-tree
 - Assume 10 pointer in an index node: height = 4
 - Writes: \(50/10 = 5\)

- **Sort** intermediate result
 - Read and writes: \(\sim 5*\log(5) \sim 15\)
 - Very conservative estimation
 - Result has 5 blocks
Even Better – Use Indexes

- ...
- Compute join
 - Reads: 20 + 5 = 25
 - Using sort-merge – read C.name in sorted order using index
 - No access to data blocks necessary
 - Writes: 50/3 ~ 17
- Compute projection
 - Reads: 17, writes: 50/50 ~ 1
- Altogether: between 85 and 90
 (requiring 17 blocks on disk)
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Read/Write</th>
<th>Temp space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>687.000</td>
<td>333.000</td>
</tr>
<tr>
<td>Optimized, no index</td>
<td>1.080</td>
<td>17</td>
</tr>
<tr>
<td>With index</td>
<td>85-90</td>
<td>17</td>
</tr>
</tbody>
</table>

- Reduction by a factor of ~ 8.000
- DB should invest some time in optimization
Steps in Optimization

- Parsing, view expansion, **subquery rewriting**
- **Query minimization** (maybe)
- Generation of query tree
- Plan optimization
 - **Algebraic query rewriting** (logic optimization)
 - **Cost estimation** (cost-based optimization)
 - Plan instantiation (physical optimization)
 - Plan enumeration and pruning
 - Note: These steps are executed in an **interleaved fashion**
- Selection of best plan
- Code generation (compilation or interpretation)
Content of this Lecture

- Introduction
- Rewriting Subqueries
- Query Minimization
- Algebraic Term Rewriting
- Optimizing Join Order
- Plan Enumeration
- A counter-example
Subquery Rewriting

- No equivalent in relational algebra: IN, EXISTS, ALL, MINUS, INTERSECT, UNION ...
 - Generate subtrees with non-relational root node
 - For optimization, a fully relational tree is easier to handle
 - But: Transformation not always easy, not always advantageous

- We look at four cases of IN
 - A subquery \(p \) is called correlated if it refers to a variable declared in the outer query
 - Uncorrelated without aggregation
 - Uncorrelated with aggregation
 - Correlated without aggregation
 - Correlated with aggregation

- See literature for other predicates
Uncorrelated Subquery without Aggregation

SELECT o_id
FROM order
WHERE p_id IN (SELECT id
 FROM product
 WHERE price<1)

• Option 1: Compute subquery and **materialize result**
 – Advantageous if subquery appears more than once

• Option 2: Rewrite into join
 – Allows global optimization (i.e. index join)
 – Be careful with **duplicates**
 • Assuming id is PK of P (hence order:product is 1:n), example is fine
 • Otherwise, we need to **introduce a DISTINCT**

```sql
SELECT o.o_id
FROM order o, product p
WHERE o.p_id = p.id AND
  p.price < 1
```
Uncorrelated Subquery with Aggregation

```
SELECT o_id
FROM order
WHERE p_id IN (SELECT max(id)
                FROM product)
```

- (Only) option: Compute subquery and materialize result
- Rewriting not possible
- Other way of expressing such functionality: User-defined table functions
 - This would allow formulation as join
 - But even harder to optimize
- Third way: Use view (two queries)
 - Optimization problem does not change
Correlated Subquery without Aggregation

\[
\begin{align*}
&\text{SELECT } o.o_id \\
&\text{FROM } \text{order } o \\
&\text{WHERE } o.o_id \text{ IN (SELECT } d.o_id \\
&\quad \text{FROM } \text{delivery } d \\
&\quad \text{WHERE } d.o_id = o.o_id \text{ AND} \\
&\quad \quad d.date-o.date<5) \\
\end{align*}
\]

- For correlated sqs, isolated materialization is impossible
- Naïve computation requires one execution of subquery for each tuple of outer query
- Solution: Rewrite into join
 - Again: Caution with duplicates (if o:d is not 1:n, DISTINCT required)
Correlated Subquery with Aggregation

```
SELECT o.o_id
FROM order o
WHERE o.total_price != (SELECT sum(price*quantity)
    FROM delivery d
    WHERE d.o_id = o.o_id)
```

- Materialization not possible (correlation)
- Rewrite into join not possible (aggregation)
- Naïve computation requires one execution of subquery for each tuple of outer query
- Solution: Rewrite into two queries
 - That are optimized in isolation
Correlated Subquery with Aggregation

```
SELECT o.o_id
FROM order o
WHERE o.total_price != (SELECT sum(price*quantity)
                      FROM delivery d
                      WHERE d.o_id = o.o_id)
```

• Query 1
 - Computes inner query result for all tuples of o
 - Can be materialized

CREATE VIEW all_sums AS
SELECT o_id, sum(price*quant) as tp
FROM delivery
GROUP BY o_id

• Query 2

```
SELECT o.o_id
FROM order o, all_sums
WHERE o.total_price != all_sums.tp
```
Subquery rewriting Wrap-Up

- Some subqueries with IN can be rewritten in single SPJ queries, some not
 - A syntactical rewrite is always possible using views
 - This doesn’t help the optimizer, but the developer
- Same holds true for other “unusual” predicates: EXISTS, NOT IN, INTERSECT, UNION
 - Many detailed rules; see, e.g., Seshadri et al. (1996). Complex query decorrelation. ICDE; Elhemali et al. (2007). Execution strategies for SQL subqueries. SIGMOD
- Special problems occur, when subqueries appear multiple times in a single query
 - Syntax: Use “WITH” predicate
 - Optimization: Detection of redundant query fragments
Content of this Lecture

- Introduction
- Rewriting Subqueries
- Query Minimization
- Algebraic Term Rewriting
- Optimizing Join Order
- Plan Enumeration
- A counter-example
Query Minimization 1

- Especially important when views are involved or queries are created programmatically

```
CREATE VIEW good_business
SELECT C.name, O.O_id, O.revenue
FROM customer C, order O
WHERE C.name = O.name AND O.revenue > 1.000

-- Find very good customers using view as first filter
SELECT name
FROM good_business
WHERE revenue > 5.000

SELECT C.name
FROM customer C, order O
WHERE C.name = O.name AND O.revenue > 1.000 AND O.revenue > 5.000

-- Optimization: Remove redundant condition
```
Query Minimization 2

• Especially important when views are involved or queries are created programmatically

```
CREATE VIEW good_business
SELECT C.name, O.O_id, O.revenue
FROM customer C, order O
WHERE C.name = O.name AND O.revenue > 1.000
```

– Find goods from good businesses

```
SELECT G.name, O.good
FROM good_busi G, order O
WHERE G.o_id = O.o_id
```

```
SELECT C.name, o2.good
FROM custom C, ord O1, ord O2
WHERE C.name = O1.name AND O1.revenue > 1000 AND O1.o_id = O2.o_id
```

• Optimization: Remove redundant joins
Techniques (sketch)

- Group conjunctive conditions with constants per attribute and compute **minimal intervals** (or find contradictions)
 - Different techniques for OR, XOR, NOT
- Equi-Joins: Build join graph, compute transitive closure, and find **minimal spanning tree**
 - Be careful with join attributes – must all be the same
 - “Minimal” already assumes a cost estimate (later)
 - Different MST’s – different logical plans – different optimized plans – different runtimes
- **Theta-Joins**: Translate into propositional logical formula and test for soundness
- ...
- [I don’t think that real systems do much of this]
Content of this Lecture

- Introduction
- Rewriting Subqueries
- Query Minimization
- **Algebraic Term Rewriting**
- Optimizing Join Order
- Plan Enumeration
- A counter-example
Equivalence of Relational Algebra Expressions

• Definition

 Let E_1 und E_2 be two relational algebra expressions over a schema S. E_1 and E_2 are called equivalent iff

 – E_1 and E_2 contain the same relations R_1 . . . R_n

 – For any instances of S, E_1 and E_2 compute the same result

• Optimizers generate equivalent expressions by applying provably correct rewrite rules

 – Testing if two query are equivalent is a different topic

• We look at a dozen of such rules

 – There exist more (see literature)
Rules for Joins and Products

- Assume
 - E_1, E_2, E_3 are relational expressions (queries)
 - $Cond$, $Cond1$, $Cond2$ are (equi-)join conditions

- Rule 1: Joins and Cartesian-products are **commutative**
 \[
 E_1 \bowtie_{Cond} E_2 \equiv E_2 \bowtie_{Cond} E_1 \\
 E_1 \times E_2 \equiv E_2 \times E_1
 \]

- Rule 2: Joins and Cartesian-products are **associative**
 \[
 (E_1 \bowtie_{Cond1} E_2) \bowtie_{Cond2} E_3 \equiv E_1 \bowtie_{Cond1} (E_2 \bowtie_{Cond2} E_3)
 \]
 Requirement: E_3 joins with E_2 (and not with E_1)
 \[
 (E_1 \times E_2) \times E_3 \equiv E_1 \times (E_2 \times E_3)
 \]
Projections and Selections

• Assume
 – A_1, \ldots, A_n and B_1, \ldots, B_m are attributes of E
 – $Cond1$ and $Cond2$ are conditions on E

• Rule 3: Cascading projections
 If $A_1, \ldots, A_n \supseteq B_1, \ldots, B_m$, then
 $$\Pi \{ \ {B_1, \ldots, B_m}\} (\Pi \{\ {A_1, \ldots, A_n}\} (E)) \equiv \Pi \{ \ {B_1, \ldots, B_m}\} (E)$$

• Rule 4: Cascading selections
 $$\sigma_{\text{Cond1}} (\sigma_{\text{Cond2}} (E)) \equiv \sigma_{\text{Cond2}} (\sigma_{\text{Cond1}} (E))$$
 $$\equiv \sigma_{\text{Cond1 and Cond2}} (E)$$
Projections and Selections Part 2

• Assume
 – A_1, \ldots, A_n and B_1, \ldots, B_m are attributes of E
 – Cond1 and Cond2 are conditions on E

• Rule 5a. **Exchange** of projection and selection

$$
\pi_{\{A_1, \ldots, A_n\}} (\sigma_{\text{Cond}}(E)) \equiv \sigma_{\text{Cond}} (\pi_{\{A_1, \ldots, A_n\}}(E))
$$

Requirement: Cond contains only attributes A_1, \ldots, A_n

• Rule 5b. **Injection** of projection

$$
\pi_{\{A_1 \ldots A_n\}} (\sigma_{\text{Cond}}(E)) \equiv \pi_{\{A_1 \ldots A_n\}} (\sigma_{\text{Cond}} (\pi_{\{A_1 \ldots A_n, B_1 \ldots B_m\}}(E)))
$$

Requirement: Cond contains only attributes $A_1 \ldots A_n$ and $B_1 \ldots B_m$
Joins and Projection/Selection

- Rule 6. Exchange of selection and join
 \[\sigma_{\text{Cond}} (E_1 \bowtie_{\text{Cond}_1} E_2) \equiv \sigma_{\text{Cond}} (E_1) \bowtie_{\text{Cond}_1} E_2 \]
 Requirement: \text{Cond} contains only attributes of \(E_1 \)

- Rule 7. Exchange of selection and union/difference
 \[\sigma_{\text{Cond}} (E_1 \cup E_2) \equiv \sigma_{\text{Cond}} (E_1) \cup \sigma_{\text{Cond}} (E_2) \]
 \[\sigma_{\text{Cond}} (E_1 - E_2) \equiv \sigma_{\text{Cond}} (E_1) - \sigma_{\text{Cond}} (E_2) \]
Joins and Projection/Selection

- Rule 9. Exchange of projection and join:

$$\Pi_{\{A_1, \ldots, A_n, B_1, \ldots, B_m\}}(E_1 \bowtie_{\text{Cond}} E_2) \equiv \Pi_{\{A_1, \ldots, A_n\}}(E_1) \bowtie_{\text{Cond}} \Pi_{\{B_1, \ldots, B_m\}}(E_2)$$

Requirement: Cond contains only attributes $A_1 \ldots A_n$, $B_1 \ldots B_m$ and $A_1 \ldots A_n$ appear in E_1 and $B_1 \ldots B_m$ appear in E_2

- Rule 10. Exchange of projection and union:

$$\Pi_{\{A_1, \ldots, A_n\}}(E_1 \cup E_2) \equiv \Pi_{\{A_1, \ldots, A_n\}}(E_1) \cup \Pi_{\{A_1, \ldots, A_n\}}(E_2)$$
Special Case: Cartesian Product versus Joins

- “Pure” relational algebra has no joins
- The merge of a Cartesian Product and a join condition into a join operator actually is a physical optimization
 - Replace implementation of two operators by one
 - But so common that it is applied on the logical level
- Trick: Define join operator and define a rewrite rule

Rule 11: Turn Cartesian Products and \(cond \) into join

\[
\sigma_{cond} \left(E_1 \times E_2 \right) \equiv E_1 \bowtie_{cond} E_2
\]
Example

- Query on a CUSTOMER database

```
SELECT Name, Account#, Savings
FROM customer C, account A, journal J
WHERE "Bond" ≤ Name ≤ "Carter"  and
    Address = "World"         and
    Transaction = "Withdraw"  and
    Amount > 1,000,000        and
    C.Account# = A.Account#   and
    C.Account# = J.Account#
```
Initial Operator Tree

Name, Account#, Savings

π

σ

×

"Bond" ≤ Name
Name ≤ "Carter"
Address = "World"
Transaction = "Withdraw"
Amount > $1,000,000
C.Account# = A.Account#
C.Account# = J.Account#

×

customer

account

journal
Breaking and Pushing Selections

\[\Pi_{\text{Name, Account#, Savings}} \]
\[\sigma_{\text{C.Account#=J.Account#}} \]
\[\times_{\text{C.Account#=A.Account#}} \]
\[\sigma_{\text{"Bond"\leq\text{Name}, Name\leq\"Carter", Address=\"World"}} \]
\[\times_{\text{\sigma}} \]
\[\Pi \]
\[\sigma_{\text{Transac=\"Withdraw\", Amount>1000000}} \]
\[\times_{\text{ACCOUNT}} \]
\[\sigma_{\text{CUSTOMER}} \]
\[\times_{\text{Journal}} \]
Introduce Joins

\[\Pi \sigma \sigma \bowtie \sigma \bowtie \Pi \]
Pushing Projections

CUSTOMER

ACCOUNT

Journal

Name,Account#, Savings

Name,Account#

Name,Account#, Address

Ulf Leser: Implementation of Database Systems
Caution

- Sometimes, **pushing up selections temporarily** is beneficial
 - Especially for conditions on join attributes
- **Example** (assume both actsin and movie have a year attribute)

\[
\text{CREATE VIEW movies99 AS SELECT title, year, studio FROM movie WHERE year=1999 JOIN movie ON σ(year=99)} \]

\[
\text{SELECT m.title, a.name FROM movies99 m, actsin a WHERE m.title=a.title AND m.year=a.year} \]

- If this tree is generated in first place ...
Term Rewriting: Algebraic Optimization

• Usually there are infinitely many rewrite steps
 – But not infinitely many different plans
 – Rewritings may go back and forth

• General heuristic: **Minimize intermediate results**
 – Less IO if materialization is necessary
 – Less work for operations that are higher in the plan

• Option 1: **Rule-based**
 – Old school, simple

• Option 2: **Cost-Based**
 – State-of-the-art, more complex
Rule Based Query Optimization (RBO)

- Goal: Find a finite order in which rewrite steps are applied such that the final plan is faster than the original plan

- Rule-based optimization
 - Consider all rules regardless of the concrete database instance
 - Use heuristics for prioritizing rewrite rule
 - Based on experience – rules that are beneficial in most cases
 - Simple to implement, fast optimization
 - But: Most real instances lead to non-optimal plans
 - Though hopefully still better than the original plan
A Simple Rule-Based Optimizer

• First down: Break and push down conditions
 – Break conjunctive selections into sets of atomic selections
 – Break combined projections into atomic projections
 – Push selects/projects as deep down the tree as possible

• Then up: Merge operations
 – Replace selection and Cartesian product with join
 – Merge neighboring atomic selections into combined selections
 – Merge neighboring atomic projections into combined projections

• Avoid Cartesian Products (if possible)
 – Choose other join order, start optimization again

• Finally physical: Choose concrete implementations
 – If there is a condition on an indexed attribute – use the index
 – For a join over PK-FK relationships: Use sort-merge
 – Other joins: Use hash join
Example

```
SELECT s.Semester
FROM   student s, hoeren h
       vorlesung v, professor p
WHERE  p.name = "Sokrates" and
       v.gelesenvon = p.persnr and
       v.vorlnr = h.vorlnr and
       h.matrnr = s.matrnr
```
Break Up Selections

\[\pi_{s.\text{Semester}} \]

\[\sigma_{p.\text{Name} = 'Sokrates'} \text{ and } \ldots \]

\[\times \]

\[\times \]

\[p \]

\[v \]

\[h \]

\[\sigma_{p.\text{PersNr} = v.\text{gelesenVon}} \]

\[\sigma_{v.\text{VorlNr} = h.\text{VorlNr}} \]

\[\sigma_{s.\text{MatrNr} = h.\text{MatrNr}} \]

\[\sigma_{p.\text{Name} = 'Sokrates'} \]
Push Selections

\[
\pi_s.\text{Semester} \quad \sigma_p.\text{PersNr}=v.\text{gelesenVon} \quad \sigma_v.\text{VorlNr}=h.\text{VorlNr} \quad \sigma_s.\text{MatrNr}=h.\text{MatrNr} \quad \sigma_p.\text{Name} = '\text{Sokrates}'
\]

\[
\pi_s.\text{Semester} \quad \sigma_p.\text{PersNr}=v.\text{gelesenVon} \quad \sigma_v.\text{VorlNr}=h.\text{VorlNr} \quad \sigma_p.\text{Name} = '\text{Sokrates}'
\]

\[
\sigma_s.\text{MatrNr}=h.\text{MatrNr}
\]
Rewrite Product+Selection into Joins

\[\pi_{s.\text{Semester}} \]
\[\sigma_{p.\text{PersNr}=v.\text{gelesenVon}} \]
\[\sigma_{v.\text{VorlNr}=h.\text{VorlNr}} \]
\[\sigma_{s.\text{MatrNr}=h.\text{MatrNr}} \]
\[\sigma_{p.\text{Name} = 'Sokrates'} \]
\[\sigma_{v.\text{VorlNr}=h.\text{VorlNr}} \]
\[\sigma_{s.\text{MatrNr}=h.\text{MatrNr}} \]
\[\pi_{s.\text{Semester}} \]
Break and Push Projections

\[\pi_{s.\text{Semester}} \]
\[\sigma_{p.\text{Name} = 'Sokrates'} \]
\[\bowtie_{s.\text{MatrNr}=h.\text{MatrNr}} \]
\[\bowtie_{v.\text{VorlNr}=h.\text{VorlNr}} \]

\[\pi_{\text{MatrNr,semester}} \]
\[\pi_{\text{MatrNr,vorlNr}} \]
Limitations

- RBO is **data-independent**
- Optimal selection of **operators** impossible without estimates about size of results (cardinality, width)
 - Best index, best join method, best join order – all depend on the concrete input and output of an operation
- No rules for order of **join processing**
- Rules are partly contradictory
 - E.g. Conjunctive selections and composite indexes
Order of Joins: Indistinguishable

\[
\pi_{s.\text{Semester}} \leftarrow p.\text{PersNr}=v.\text{gelesenVon} \\
\sigma_{p.\text{Name} = 'Sokrates'} \\
\pi_{s.\text{Semester}} \leftarrow s.\text{MatrNr}=h.\text{MatrNr} \\
\sigma_{v.\text{VorlNr}=h.\text{VorlNr}} \\
\pi_{s.\text{Semester}} \leftarrow v.\text{VorlNr}=h.\text{VorlNr} \\
\pi_{s.\text{Semester}} \leftarrow v.\text{VorlNr}=h.\text{VorlNr} \\
\pi_{s.\text{Semester}} \leftarrow p.\text{PersNr}=v.\text{gelesenVon} \\
\sigma_{p.\text{Name} = 'Sokrates'} \\
\pi_{s.\text{Semester}} \leftarrow s.\text{MatrNr}=h.\text{MatrNr} \\
\pi_{s.\text{Semester}} \leftarrow v.\text{VorlNr}=h.\text{VorlNr} \\
\pi_{s.\text{Semester}} \leftarrow p.\text{PersNr}=v.\text{gelesenVon} \\
\sigma_{p.\text{Name} = 'Sokrates'}
\]
Join Order – Does it Matter?

• Assume uniform distributions
 – There are 1,000 students, 20 professors, 80 courses
 – Each professor gives 4 courses
 – Each student listens to 4 courses
 – Each course is followed by 50 students (4,000 “hören” tuples)
Join Order – Does it Matter?

- **Compute** $\sigma_{\text{Sokrates}}(P) \bowtie (V \bowtie (S \bowtie H))$
 - Inner join: $1000 \times 4 = 4000$ tuples
 - Next join: Again 4000 tuples
 - Last join selects only $1/20$ of intermediate results = 200
 - Intermediate result sizes: $4000 + 4000 + 200 = 8200$

- **Compute** $S \bowtie (H \bowtie (\sigma_{\text{Sokrates}}(P) \bowtie V))$
 - Inner join selects 4 tuples
 - Next join generates $50 \times 4 = 200$ tuples
 - Last join: No change
 - Intermediate result sizes: $4 + 200 + 200 = 404$
Cost-Based Query Optimization (CBO)

- **Goal**: Find the plan that is **cheapest among all possible plans** given a **cost model**
 - “Possible” – Created by a finite sequence of applying rewrite rules
- **Cost-based optimization**
 - Use a clever algorithm to enumerate all possible plans
 - Estimate effect of all individual rewritings regarding your cost model
 - Use this to compute a cost per plan
 - Prune parts of the search space wherever possible
 - Choose cheapest
- **Variations: Other optimization goals**
 - Global: Chose plan with smallest sum of intermediate results
 - Bound: Chose plan with **smallest maximal** intermediate result
Enumerating Query Plans

- Assume a plan P of size $p = |P|$ with j joins
 - Size: Number of predicates in the plan
- Rewritings may ...
 - Merge / break predicates
 - Creates $p \pm c$ plans for some constant c
 - Move predicates up/down the tree
 - Creates p different plans per predicate
 - Change order of joins (or Cartesian products)
 - Need to consider concrete join predicates
 - Creates in worst case more than $j!$ different plans (see later)
- Typical plan enumeration strategy
 - Push predicates as deep as possible
 - Find best join order
Content of this Lecture

- Introduction
- Rewriting Subqueries
- Query Minimization
- Algebraic Term Rewriting
- **Optimizing Join Order**
- Plan Enumeration
- A counter-example
Optimizing Join Order

- From the relation algebra perspective, join is associative and commutative - reordering doesn’t change result
- But execution times of different orders differ tremendously
- Join versus Cartesian Product
 - Depending on join conditions, many orders involve intermediate cross-products
 - Most join-order algorithms disregard any plan containing a cross-product – which heavily reduces the search space
 - In the following, we assume that no order involves a Cartesian Product
Query Types

- **Star join**
 - \(((S \bowtie R) \bowtie T) \bowtie L\)
 - \(((S \bowtie L) \bowtie R) \bowtie T\)
 - ...

- **Chain join**
 - \(((P \bowtie G) \bowtie T) \bowtie B\)
 - \((P \bowtie G) \bowtie (T \bowtie B)\)
 - ...

Ulf Leser: Implementation of Database Systems 57
Left/Right-deep versus Bushy Join Trees

- There is one left-deep tree topology, but still $O(n!)$ orders
- There are $(2n-3)!/(2^{n-2}*(n-2)!) \text{ unordered binary trees with } n \text{ leaves, and for each } O(n!) \text{ orders}$
 - Some are equivalent
Choosing a Join Order

• Typical first heuristic: Consider only left-deep trees
 – Used, for instance, in Oracle
 – Can be pipelined efficiently
 – Usually generates among the best plans
 – But suboptimal if parallel execution is possible
• But there are still O(n!) possible orders
• Second Heuristic: Use dynamic programming with pruning
 – Generate plans bottom up: Plans for pairs, triples, ...
 – For each join group, keep only best plan
 – Use these to enumerate possibilities for larger join groups
 – Prune all subplans containing a Cartesian Product
 – Still is a heuristic - later
Join Groups

- There are \((n \over i)\) join groups with \(i\) elements
• Create a table containing for each join group
 – [Prune if this would involve a Cartesian product]
 – Estimated size of result (how: later)
 – **Optimal (minimal) cost** for computing this group
 • For now, we simply take sum of sizes of intermediate results in the subtree representing this group
 – **Optimal plan** for computing this group

• **We here assume that**
 – There are no further selections
 – There are no indexes (and hence no index-join)
Induction

• Induction over sizes of join groups
 – i=1: Consider every relation in isolation
 • Size = Size of relation
 • Cost = 0 (access costs of leaf nodes are identical for all plans)
 – i=2: Consider each pair of relations
 • Remove if there is no join condition
 • Size: Estimated size of join result
 • Cost = 0 (no intermediate result so far due to previous assumption)
 • Fix join method to use (e.g.: BNL with smaller relation as inner relation)
 – This method will never change again
 – i=3: Consider each pair in each triple and join with third relation
 • Consider only optimal methods for all pairs involved
 • ...
Example 1

- We join four relations R, S, T, U
- Four join conditions

<table>
<thead>
<tr>
<th></th>
<th>{R}</th>
<th>{S}</th>
<th>{T}</th>
<th>{U}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kardinalität</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Kosten</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Optimaler Plan</td>
<td>scan(R)</td>
<td>scan(S)</td>
<td>scan(T)</td>
<td>scan(U)</td>
</tr>
</tbody>
</table>
Example 2

<table>
<thead>
<tr>
<th></th>
<th>{R,S}</th>
<th>{R,T}</th>
<th>{R,U}</th>
<th>{S,T}</th>
<th>{S,U}</th>
<th>{T,U}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kardinalität</td>
<td>5000</td>
<td>1M</td>
<td>10000</td>
<td>2000</td>
<td>1M</td>
<td>1000</td>
</tr>
<tr>
<td>Kosten</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>opt. Plan</td>
<td>R ⊙ S</td>
<td>T ⊙ R</td>
<td>R ⊙ U</td>
<td>S ⊙ T</td>
<td>S ⊙ U</td>
<td>T ⊙ U</td>
</tr>
</tbody>
</table>

Prune CPs

Better than \(S \bowtie (T \times R) \) and \((R \bowtie S) \bowtie T \)
Example 3

<table>
<thead>
<tr>
<th></th>
<th>{R,S,T}</th>
<th>{R,S,U}</th>
<th>{R,T,U}</th>
<th>{S,T,U}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kardinalität</td>
<td>10000</td>
<td>50000</td>
<td>10000</td>
<td>2000</td>
</tr>
<tr>
<td>Kosten</td>
<td>2000</td>
<td>5000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>opt. Plan</td>
<td>(S ⊗ T) ⊗ R</td>
<td>(R ⊗ S) ⊗ U</td>
<td>(T ⊗ U) ⊗ R</td>
<td>(T ⊗ U) ⊗ S</td>
</tr>
</tbody>
</table>

Plan and Kosten

<table>
<thead>
<tr>
<th>Plan</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>((S ⊗ T) ⊗ R) ⊗ U</td>
<td>12k</td>
</tr>
<tr>
<td>((R ⊗ S) ⊗ U) ⊗ T</td>
<td>55k</td>
</tr>
<tr>
<td>((T ⊗ U) ⊗ R) ⊗ S</td>
<td>11k</td>
</tr>
<tr>
<td>((T ⊗ U) ⊗ S) ⊗ R</td>
<td>3k</td>
</tr>
</tbody>
</table>

(Hopefully) optimal plan
Algorithm

Input: SPJ query q on relations R_1, \ldots, R_n
Output: A query plan for q

1: for $i = 1$ to n do
2: \hspace{1em} optPlan($\{R_i\}$) = accessPlans(R_i)
3: \hspace{1em} prunePlans(optPlan($\{R_i\}$))
4: }
5: for $i = 2$ to n do
6: \hspace{1em} for all $S \subseteq \{R_1, \ldots, R_n\}$ such that $|S| = i$ do
7: \hspace{2em} optPlan(S) = \emptyset
8: \hspace{2em} for all O such that $S \cup X = O$
9: \hspace{3em} optPlan(S) = optPlan(S) \cup joinPlans(optPlan(O), X)
10: \hspace{2em} prunePlans(optPlan(S))
11: \hspace{1em} }
12: }
13: }
14: return optPlan($\{R_1, \ldots, R_n\}$)
Dynamic Programming

• DP is a heuristic for join order optimization
 – Assumption of DP: Any subplan of an optimal plan is optimal
 – True for computing shortest paths, edit distance, ...

• But not true for join-order
 – Using a sort-merge join early in a plan might not be optimal for this particular join group - but result is sorted
 – Later joins can profit and also use sort-merge without sorting one intermediate relation again
 – Truly optimal plan might involve Cartesian Products (example later)

• Solution (for sort order)
 – Keep different “optimal” plans for each join group
 – System R: One plan per interesting sort order
Content of this Lecture

- Introduction
- Rewriting Subqueries
- Query Minimization
- Algebraic Term Rewriting
- Optimizing Join Order
- Plan Enumeration
- A counter-example
Ingredients

- We can evaluate different access paths for a single relation
- We can generate various equivalent relational algebra terms for computing a query
- We can optimize join order
 - Given selectivity estimates
- Query optimization =
 Search space (space of all possible plans) +
 Search strategy (algorithm to enumerate plans) +
 Cost functions for pruning plans (still missing)
Search Strategies

• Searching a huge search space for a good (optimal) solution is a common computer science problem
 – Exhaustive search
 • Guarantees optimal result, but often too expensive
 – Heuristic method
 • Greedy/Hill-Climbing: only use one alternative for further search
 – Genetic optimization
 • Generate some good plans
 • Build combinations
 – Simulated annealing
 – …

Content of this Lecture

- Introduction
- Rewriting Subqueries
- Query Minimization
- Algebraic Term Rewriting
- Optimizing Join Order
- Plan Enumeration
- A counter-example
Star Join

- Typische Anfrage gegen Star Schema
 - Aggregation und Gruppierung
 - Bedingungen auf den Werten der Dimensionstabellen
 - Joins zwischen Dimensions- und Faktentabelle
Beispielquery


```
SELECT T.year, sum(amount*price)
FROM Sales S, Product P, Time T, Localization L
WHERE P.pg_name='Wasser' AND
    P.product_id = S.product_id AND
    T.day_id = S.day_id AND
    T.month = '1' AND
    L.shop_id = S.shop_id AND
    L.region_name='Berlin'
GROUP BY T.year
```
Anfrageplanung

- Anfrage enthält 3 Joins über 4 Tabellen
- Zunächst 4! left-deep join trees
 - Aber: Nicht alle Tabellen sind mit allen gejoined
- Star-Join: Nur 3! beinhalten kein Kreuzprodukt
Heuristiken

• Typisches Vorgehen
 – Auswahl des Planes nach Größe der Zwischenergebnisse
 – Keine Beachtung von Plänen, die kartesisches Produkt enthalten

```
σ region_name='Berlin'
σ pg_name='Wasser'
```

Kartesisches Produkt

```
σ month=1
```

```
Product
Location
Sales
Time
```
Abschätzung von Zwischenergebnissen

Annahmen
- \(M = |S| = 100.000.000 \)
- 20 Verkaufstage pro Monat
- Daten von 10 Jahren
- 50 Produktgruppen a 20 Produkten
- 15 Regionen a 100 Shops
- Gleichverteilung aller Verkäufe

Größe des Ergebnis
- Selektivität Zeit
 - 60 Tage: \((M / (20*12*10)) * 3*20 \)
- Selektivität 'Wasser'
 - 20 Produkte \((M / (20*50)) * 20 \)
- Selektivität 'Berlin'
 - 100 Shops \((M / (15*100)) * 100 \)
- Gesamt
 - 3.333 Tupel
- Selektivität: 0,00003%

```sql
SELECT T.year, sum(amount*price)
FROM Sales S, Product P, Time T, Localization L
WHERE P.pg_name='Wasser' AND
  P.product_id = S.product_id AND
  T.day_id = S.day_id AND
  T.month = '1' AND
  L.shop_id = S.shop_id AND
  L.region_name='Berlin'
GROUP BY T.year
```
Left-deep Pläne

Zwischenergebnis

1. Join (M / 15) | 6.666.666
2. Join (|J₁|*3/120) | 166.666
3. Join (|J₂|/50) | 3.333

Zwischenergebnis

1. Join (M / 50) | 2.000.000
2. Join (|J₁|*3/120) | 50.000
3. Join (|J₂|/ 15) | 3.333
Plan mit kartesischen Produkten

<table>
<thead>
<tr>
<th></th>
<th>Zwischenergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Time x Location (3*20 * 100)</td>
<td>6.000</td>
</tr>
<tr>
<td>2. ... x Product (</td>
<td>P_1</td>
</tr>
<tr>
<td>3. ... Sales</td>
<td>3.333</td>
</tr>
</tbody>
</table>

- Wie optimiert man Star-Joins?
- Siehe Modul „Data Warehousing“