

Datenbanksysteme II: B / B+ / Prefix Trees

Ulf Leser

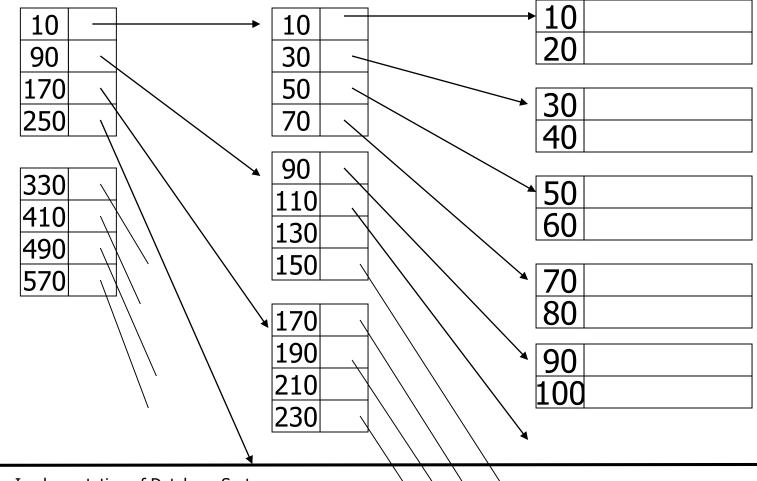
Content of this Lecture

- B Trees
- B+ Trees
- Index Structures for Strings

Recall: Multi-Level Index Files

Sparse 2nd level Sparse 1st level

Sorted File



B-Trees (≠ binary tree)

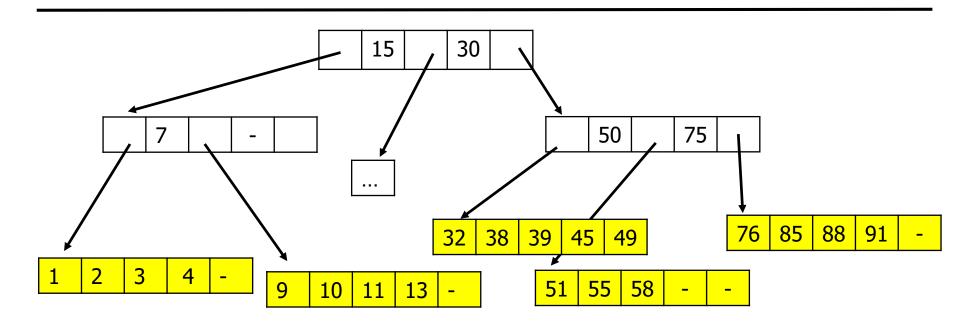
- B-Tree is a multi-level index with variable number of levels

 Many variations: B/B+/B*/B++/BB...
- Root node Height adapts to table size Designed for block-wise access 15 30 >50% space usage guaranteed Internal Always balanced nodes R. Bayer, E. McCreight: Organization and 75 50 Maintenance of Large Ordered Indexes. Acta 16 23 Informatica, 1972 85 88 76 91 Leaves 51 55 38 39 45 58 32 49

- Assume index on primary key (no duplicates)
- Internal nodes contain pairs (key, TID) and pointers
- Leaf nodes only contain (key, TID)
- Block can hold 2k triples (pointer, key, TID) plus 1 ptr
- Each internal node contains between k and 2k (key, TID)
 - And between k+1 and 2k+1 pointers to subtrees
 - Subtree left of pair (v,TID) contains only and all keys y<v
 - Subtree right of pair (v,TID) contains only and all keys y>v
 - Pairs are sorted: v_i < v_{i+1}
 - Exception: Root node
- Thus, B-trees use always at least 50% of allocated space

 $p_0 \quad (v_0,t_0) \quad p_1 \quad (v_1,t_1) \quad p_2 \quad (v_2,t_2) \quad p_3 \quad \dots \quad (v_{2k-1},t_{2k-1}) \quad p_{2k}$

Searching B-Trees



Find 9

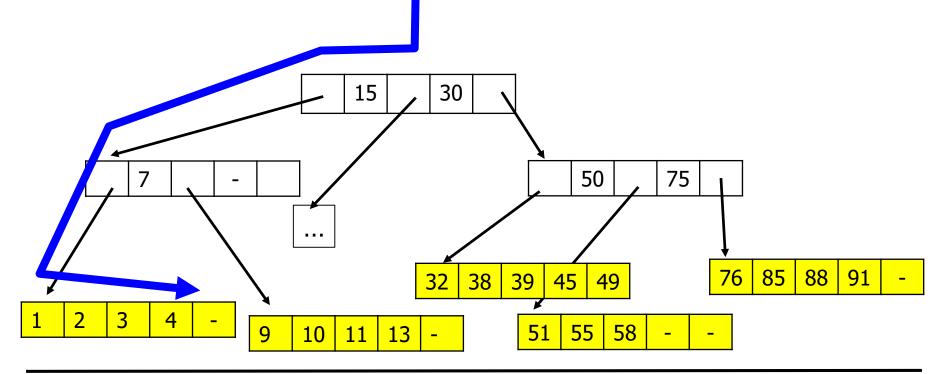
- 1. Start with root node
- 2. Follow p₀
- 3. Follow p₁
- 4. Scan block found

- Find 60
- 1. Start with root node
- 2. Follow p₂
- 3. Follow p₁
- 4. Scan block not found

- B-trees are always balanced (how? Wait)
 - All paths from root to a leaves are of equal length
- Assume n keys; let r=|key|+|TID|+|pointer|
- Best case: All nodes are full (2k keys)
 - We have b~n/2k blocks
 - Actually a little less, since leaves contain no pointers
 - Height of the tree $h \sim \log_{2k}(b)$
 - Search requires between 1 and log_{2k}(b) IO
- Worst case: All nodes contain only k keys
 - We need b~n/k blocks
 - Height of the tree $h \sim \log_k(b)$
 - Search requires between 1 and log_k(b) IO

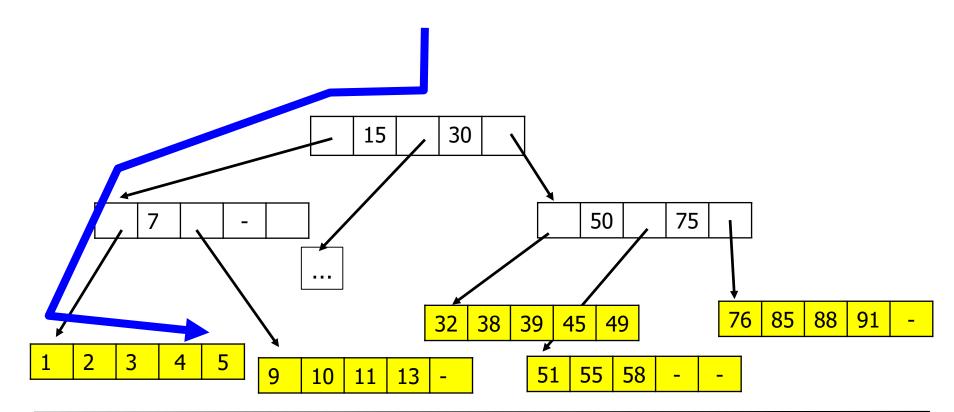
- Assume |key|=20, |TID|=16, |pointer|=8, block size=4096
 r=44
- Assume n=1.000.000.000 (1E9) records
- Gives between 46 and 92 index records per block
- Hence, we need 5 or 6 IO
 - Essentially all data is in the leaves
 - Very small changes to find key earlier
- Caching the first two levels (between 1+46 and 1+92 blocks), this reduces to 3 or 4 IO

- In B-Trees, we always insert into a leaf
- We insert 5 (assume: 2*k=2)
 - For ease of exposition, we assume 2-5 keys in leaves and 1-2 keys in inner nodes



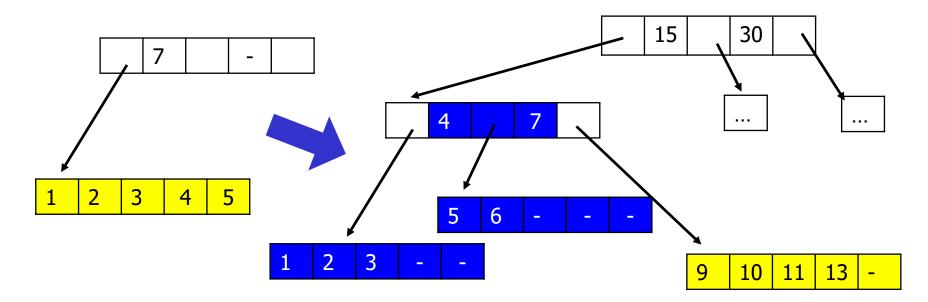
Inserting into B-Trees

- We insert 6
- Block is full we need to split



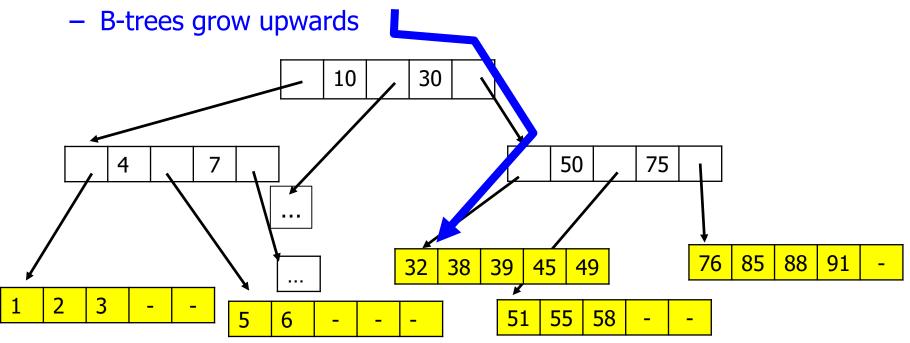
Inserting into B-Trees

- Split overflow block and propagate median upwards
 - All values from old node plus new value minus median are evenly split between two new nodes
 - Thus, each has ~k keys
 - Median is pushed up to parent node and inserted there

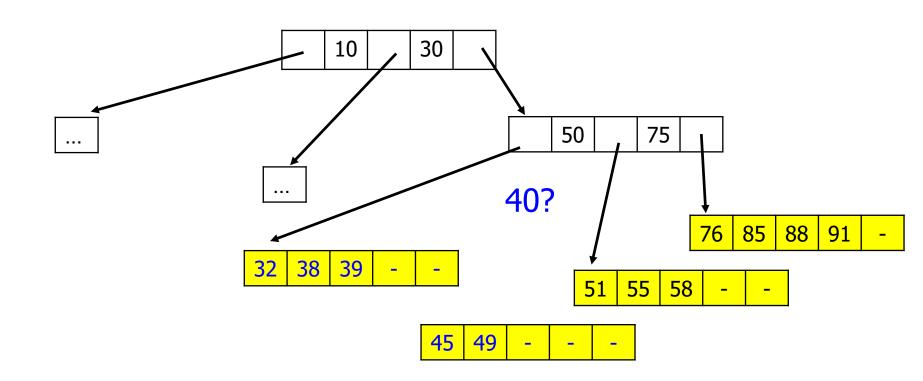


Inserting into B-Trees

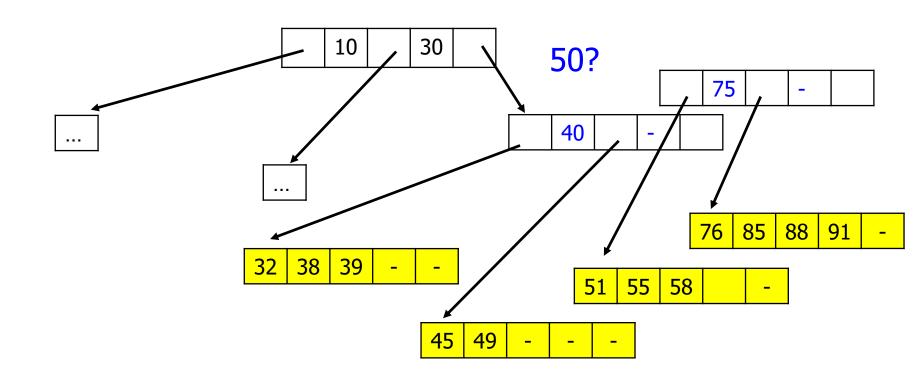
- We insert 40
- Block is full split and propagate 40, the median
- Propagating upwards leads to overflow in parent(s)
- Finally, the root note overflows



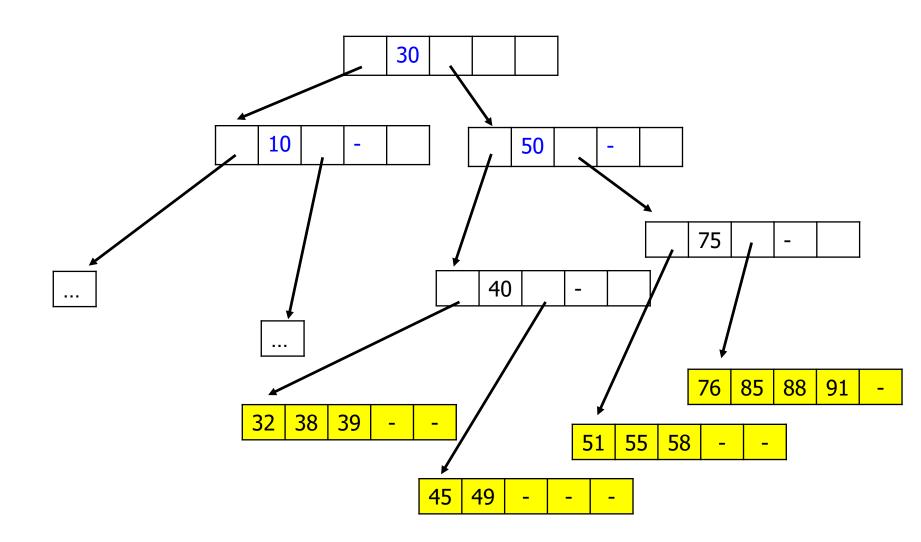
Intermediate 1



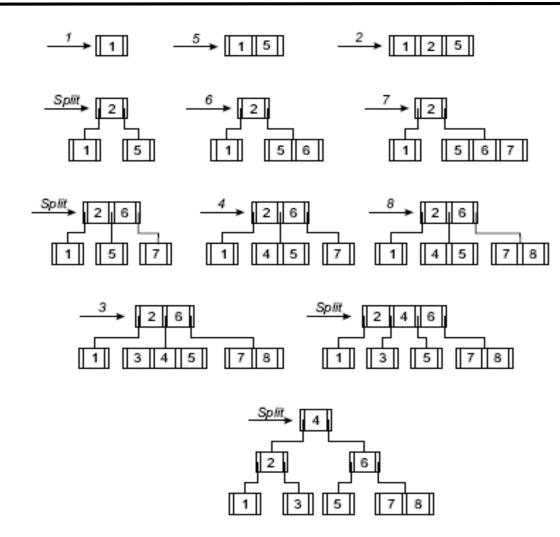
Intermediate 2



Final Tree



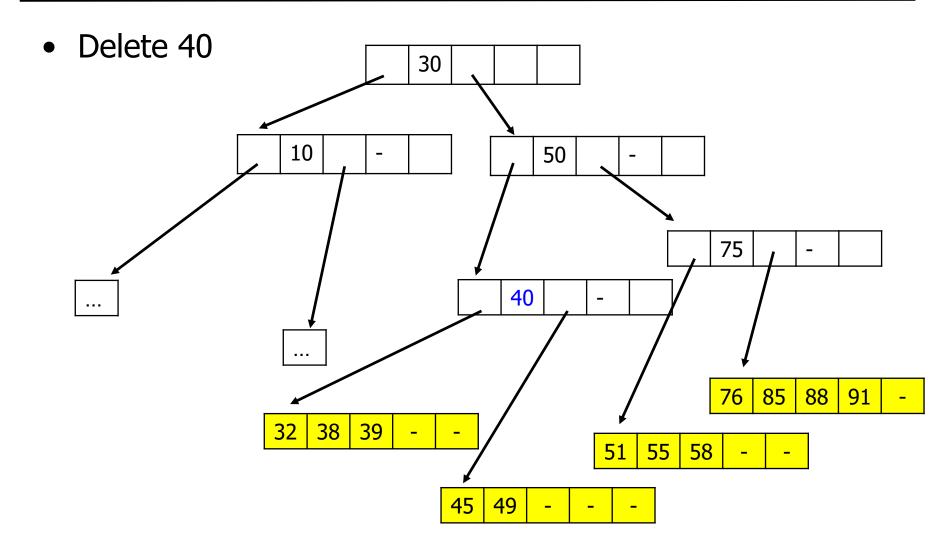
Longer Sequence of Insertions

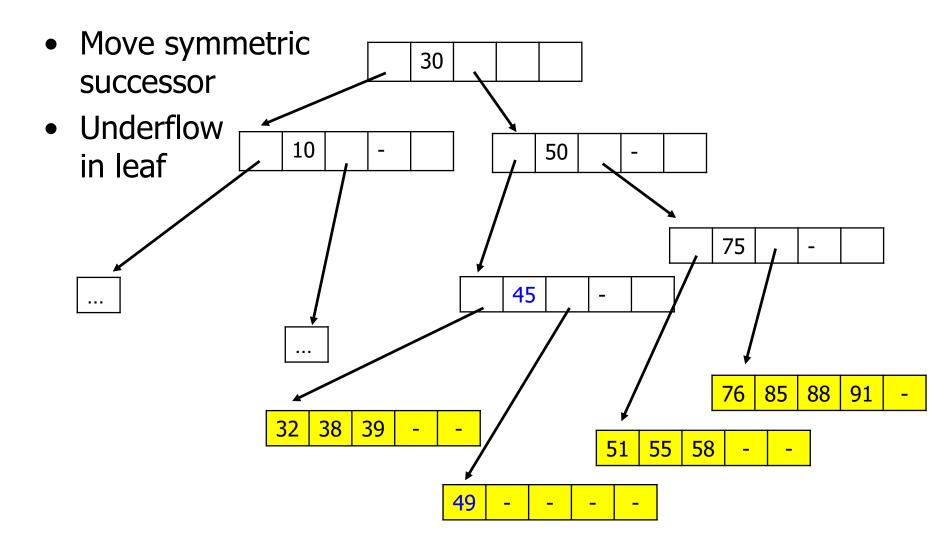


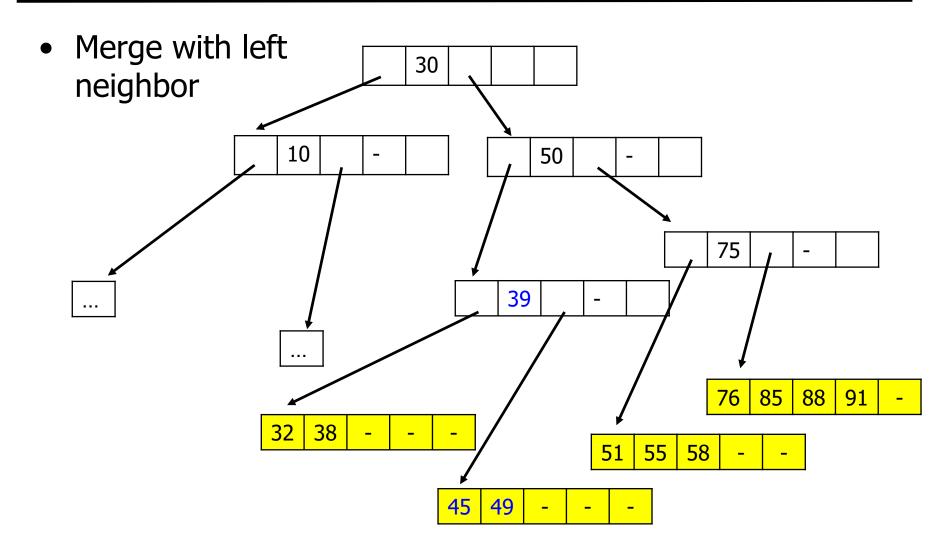
- Let h be height of B-tree
- Cost for searching leaf node: h IO
- If no split necessary: Total IO cost = h+1 (writing)
- If split is necessary
 - Worst case up to the root
 - We assume we cached ancestor blocks during traversal
 - We thus need to read them once and write them once
 - Total cost: (h+2)+2(h-1)+1 = 3h+1
 - Split on all levels and create new root node

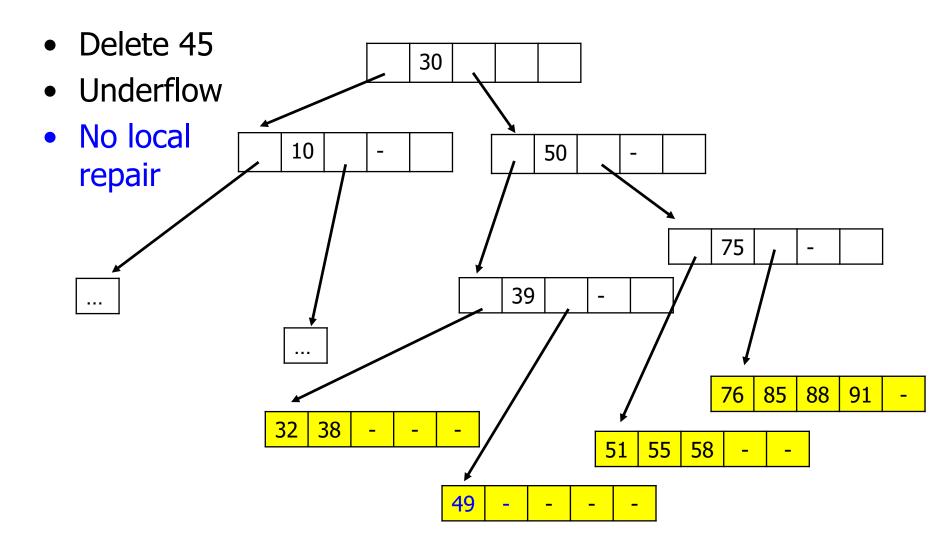
Deleting Keys

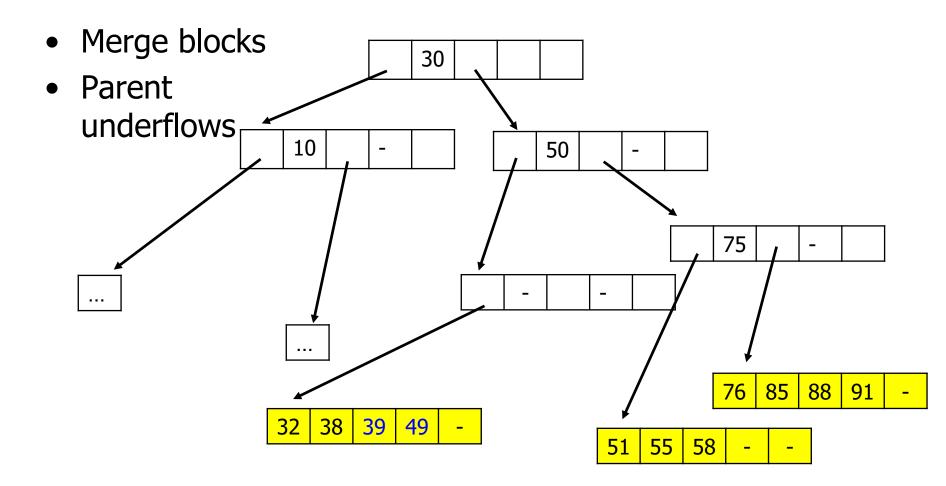
- If found in internal node
 - Choose smallest value from right subtree and replace deleted value
 - This value must be in a leaf
 - Recall search trees: symmetric predecessor (or successor)
 - Delete value in leaf and progress
- If found in leaf
 - Delete value
 - If blocks underflows (<k keys), choose one of neighboring blocks
 - Must have the same parent node
 - If both blocks together have more than 2k records: Distribute values evenly; adapt between-key in parent node
 - Otherwise merge blocks
 - One block with all leaf-records plus the median in parent
 - Remove middle value in parent block which now might underflow
 - Might work recursively up the tree

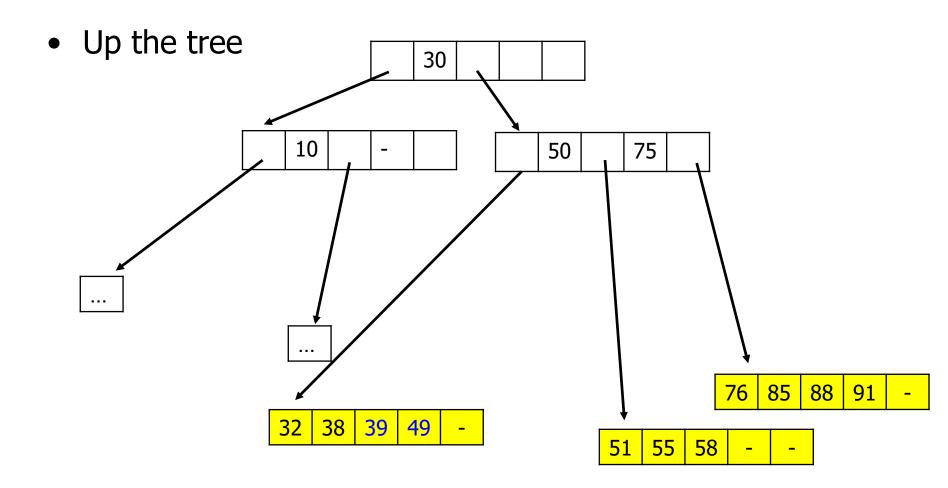












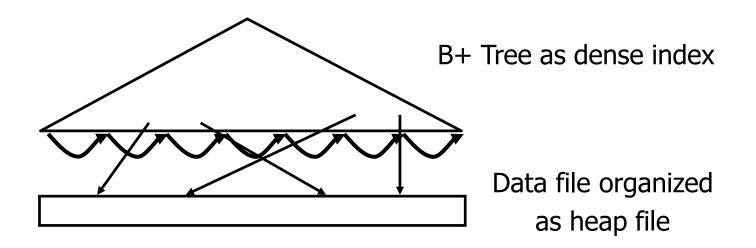
- Going down costs h IO
 - If key found in leaf, it costs h to read and 1 to write
 - If found in internal node, we still have to read h blocks to choose replacement value from leaf
- If no underflow, total cost is h+1
- If local underflow (with merge), total cost is ~h+4
 - Checking left and right neighbor, writing block and chosen neighbor, writing parent
- If blocks underflow bottom-up, total cost is at most 4h-2
 - If left and right neighbors have to be checked at each level

- If duplicates exist
- Option 1: Compact representation
 - Store (value, TID₁, TID₂, ... TID_n)
 - Difficult– internal nodes don't have fixed number of pairs any more
 - Requires internal overflow blocks
- Option 2: Verbose representation
 - Treat duplicates as different values
 - Constraints on keys change from "<" to " \leq "
 - Extreme case: Generates a tree although a list would suffice
- Better: B+ trees

Content of this Lecture

- B Trees
- B+ Trees
- Index Structures for Strings

- Dense index on heap-structured data file
- Internal nodes contain only values and pointers
 - Values demark borders between subtrees
 - Concrete values need not exist as keys only signposts
- Leaves are chained for faster range queries



Operations

- Searching
 - Essentially the same as for B trees
 - But will always go down to leaf marginally worse IO complexity
- Insertion
 - Essentially the same as for B trees
 - When block is split, no value moves upwards
 - Parent block still changes new signpost
 - Typical choice: avg(v_{median-1}, v_{median+1})
- Deletion
 - Deletion in internal node cannot occur
 - When blocks are merged, no values are moved up
 - But signposts in parent node are deleted as well

- Simpler operations
- Higher fan-out, lower IO complexity
 - No TIDs in internal nodes more pointers in internal nodes
 - Much reduced height (base of log() changes)
- Smoother balancing: Chose signposts carefully
 - Choose such that future inserts are evenly distributed
- Linked leaves
 - Faster range queries traversal need not go up/down the tree
 - Optimally, leaves are in sequential order on disk

- Can we increase space usage guarantee beyond 50%?
- Don't split upon overflow: Move values to neighbor blocks as long as possible
 - More complex operations, need to look into neighbors
 - We only split when all neighbors and the current block is full
- When splitting, make three out of two
 - We only split when all neighbors are full choose one
 - Generate three new blocks from the two full old ones
 - Each new block has 4/3k keys: Guaranteed 66% space usage
- Knuth, D. E.: *The Art of Computer Programming, Volume III: Sorting and Searching Addison-Wesley*, 1973

B+ Trees and Hashing

- Hashing faster for some applications
 - Can lead to O(1) IO
 - Assumes good hash function
 - Requires domain knowledge
- B+ trees
 - Very few IO if upper levels are cached
 - Adapts to skewed (non-uniformly distributed) data
 - Domain-independent
 - Also supports range queries

Loading a B+ Tree

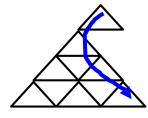
• What happens in case of create index myidx on LARGETABLE(id);

Loading a B+ Tree

- What happens in case of create index myidx on LARGETABLE(id);
- Naïve: Record-by-record insertion
 - Each insertion has $3h+1 = O(\log_k(b))$ block IO
 - Altogether: $O(n*log_k(b))$
- Blocks are read and written in arbitrary order
 - Very likely: bad cache-hit ratio
- Space usage will be anywhere between 50 and 100%
- Can't we do better?

Bulk-Loading a B+ Tree

- First sort records
 - $O(n*log_m(n))$, where m is number of records fitting into memory
 - Clearly, m>>k
- Insert in sorted order using normal insertion
 - Tree builds from lower left to upper right
 - Caching will work very well
 - But space usage will be only around 50%
- Alternative
 - Compute structure in advance
 - Every 2k'th record we need a separating key
 - Every 2k'th separating key we need a next-level separating key
 - ...
 - Can be generated and written in linear time

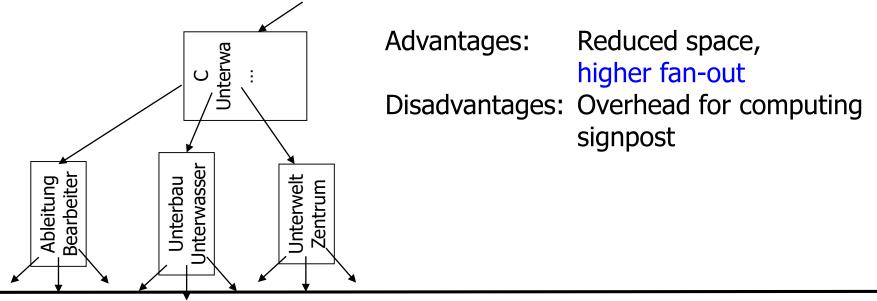


Content of this Lecture

- B Trees
- B+ Trees
- Index Structures for Strings
 - Prefix B+ Tree
 - Prefix Tree
 - PETER
 - PEARL

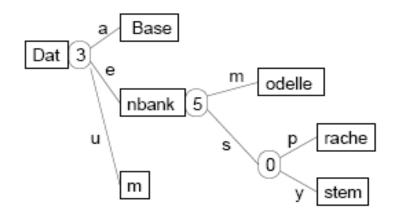
Prefix B+ Trees

- Consider string values as keys
- Keys for int. nodes: Smallest key from right-hand subtree
 Leads to internal signposts as large as keys
- Prefix B+ trees Shortest string separating largest key in left-hand subtree from smallest key in right-hand subtree



Prefix Tree / Patricia tree / Trie

- If we index many strings with many common prefixes
 - ... as in Information Retrieval ...
 - Why store common prefixes multiple times?
- Prefix trees
 - Store common prefix / substring in internal nodes
 - Searching a key k requires at most |k| character comparisons



- Prefix trees traditionally are main memory structures
 - How to optimally layout internal nodes on blocks?
 - Not balanced no guaranteed worst-case IO
- More index structures for strings
 - Keyword trees searching for many patterns simultaneously
 - Necessary for joins on strings
 - Persistent keyword trees challenge
 - Suffix trees indexing all substrings of a string
 - Necessary e.g. to search genomic sequences
 - Persistent suffix trees challenge in advancement

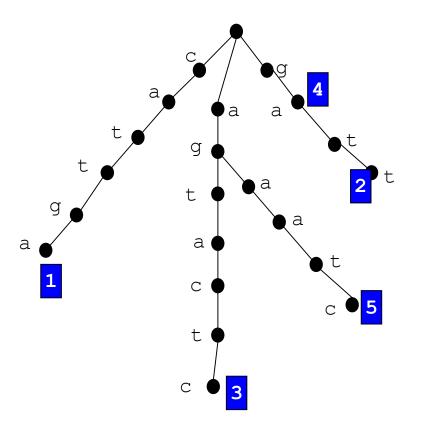
PETER

- Computes joins / search on large collections of long strings much faster than traditional DB technology
- Also handles similarity search / similarity joins
- Open source
 - Rheinländer, A., Knobloch, M., Hochmuth, N. and Leser, U. (2010).
 "Prefix Tree Indexing for Similarity Search and Similarity Join on Genomic Data". SSDBM 2010
- There are many similar index structures
 - PRETTY, PRETTY+, MASSJoin, ...

Prefix-Trees

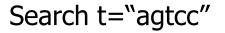
- Given a set S of strings
- Build a tree with
 - Labeled nodes
 - Outgoing edges have different label
 - Every s∈S is spelled on exactly one path from root
 - Mark all nodes where a string ends
- Common prefixes are represented only once

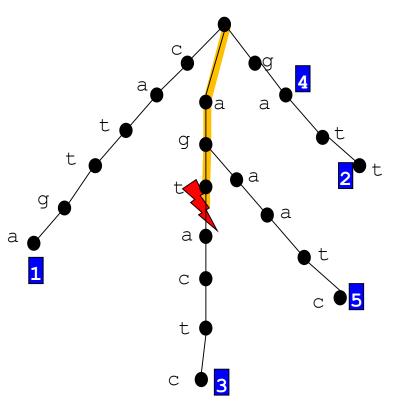
cattga, gatt, agtactc, ga, agaatc



Searching Prefix-Trees

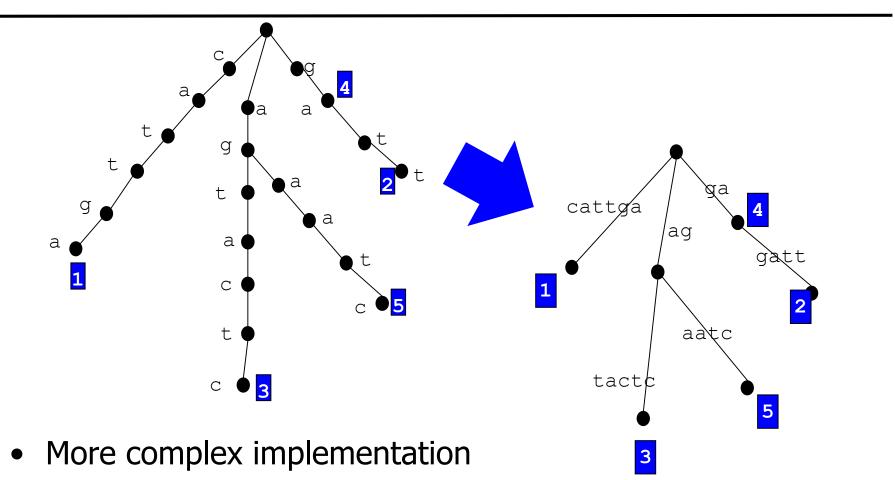
- Search t in S
- Recursively match t with a path starting from root
 - If no further match: $t \notin S$
 - If matched completely: $t \in S$





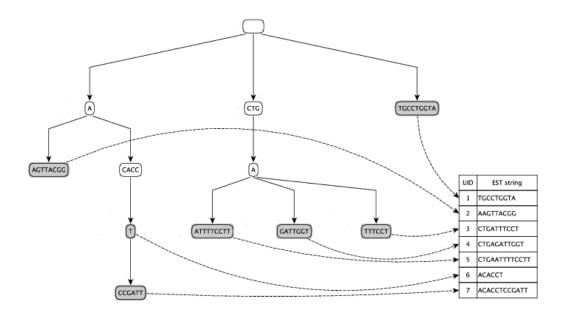
- Search complexity
 - Only depends on depth of S
 - Independent from |S|

Compressed Prefix Trees



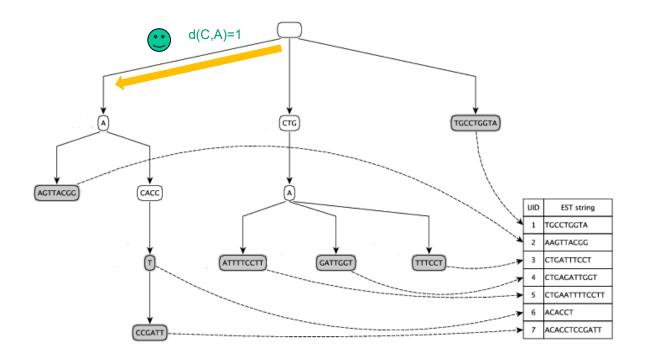
• Different kinds of edges/nodes

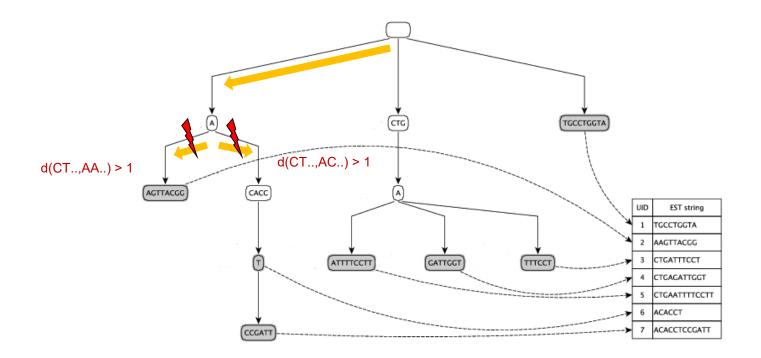
Large Prefix Trees

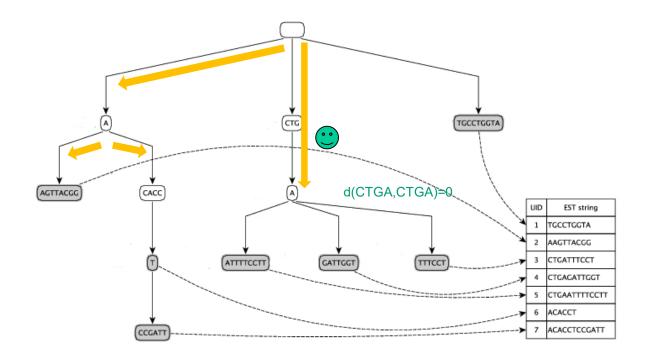


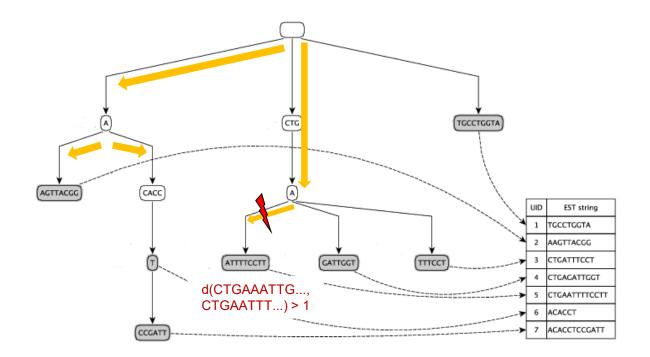
- Unique suffixes are stored (sorted) on disk
- Tree of common prefixes is kept in main memory
 - Most failing searches never access disc
 - At most one disc IO per search
 - [If tree fits in main memory]

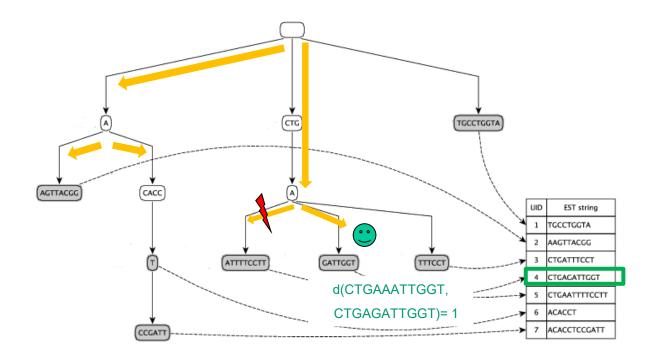
- In similarity search, a mismatch doesn't mean that $t \notin S$
- Several mismatches might be allowed
 - Depending on error threshold
 - Depending on similarity function
- Idea
 - Depth-first search on the tree as usual
 - Keep a counter for the n# of errors occurring in the prefix so far
 - If counter exceeds threshold stop search in this branch
 - Pruning: Try to stop earlier by clever "guessing"

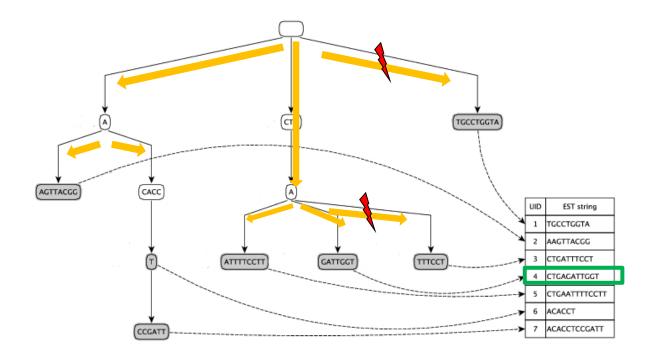






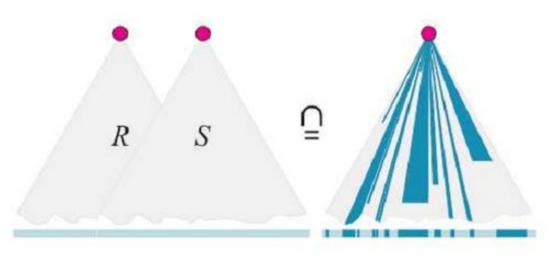






(Similarity) Joins on Prefix Trees

- We compare growing prefixes with growing prefixes
- Exact and similarity join
- Essentially: Compute intersection of two trees
 - Only labeled nodes are interesting
- Traverse both trees in parallel
 - Upon (sufficiently many) mismatches, entire subtrees are pruned



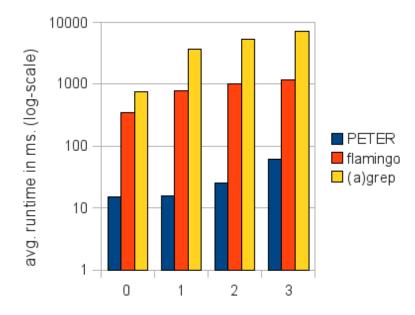
Evaluation

Set	# EST strings	avg. string length	min/max length	# tree nodes	# ext. suffixes
T_1	307,542	348	14/3,615	589,062	293,764
T_2	736,305	387	12/3,707	1,482,709	689,590
T_{2a}	368,152	382	12/2,774	711,632	352,872
T_{2b}	184,076	385	22/2,774	349,329	177,846
T_{2c}	92,038	383	25/2,774	171,964	89,198
T_{2d}	46,019	381	28/2,774	84,954	44,716
T_{2e}	23,009	373	31/ 878	42,375	22,366
T_3	10,000	536	16/3,707	16,310	8,774
TX	5,000,000	359	14/3,247	10,478,214	4,834,231

- Data: Several EST data sets from dbEST
 - Search: All strings of one data set in another data set
 - Join: One data set against another data set
 - Varying similarity thresholds
- (Linear) Index creation not included in measurements

Search: Comparing to Flamingo (2011)

- Flamingo: Library for approximate string matching
 - http://flamingo.ics.uci.edu/
 - Based on an inverted index on q-grams
 - Uses length and charsum filter

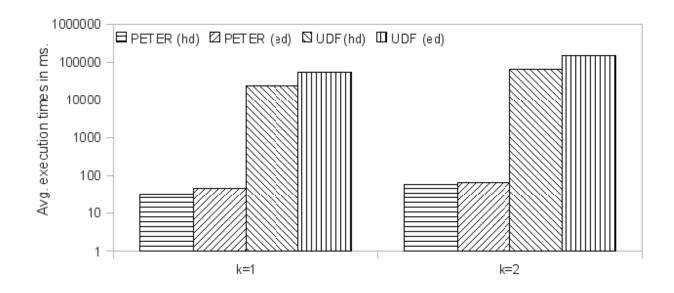


PETER inside a RDBMS

- We integrated PETER into a commercial RDBMS using its extensible indexing interface
 - Joins: table functions
 - Tree stored in separate file, suffixes stored in table
- Hope
 - As search complexity is independent of |S|, ...
 - we might beat B+ trees for exact search on very large |S|
 - we might beat hash/merge for exact join of very large data sets
- First hope not fulfilled
 - API does not allow caching of tree index reload for every search
 - Large penalty for context switch through API
 - Especially for JAVA!

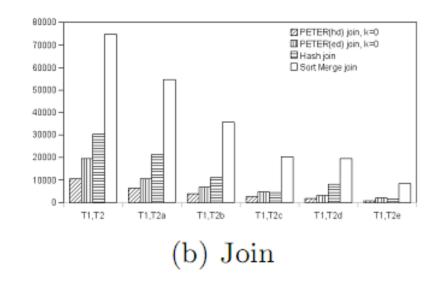
String Similarity Search in a RDBMS

- Peter (behind extensible indexing interface) versus UDF implementing hamming / edit distance calculations
- Difference: 2-3 orders of magnitude, independent of data set, threshold, or search pattern length

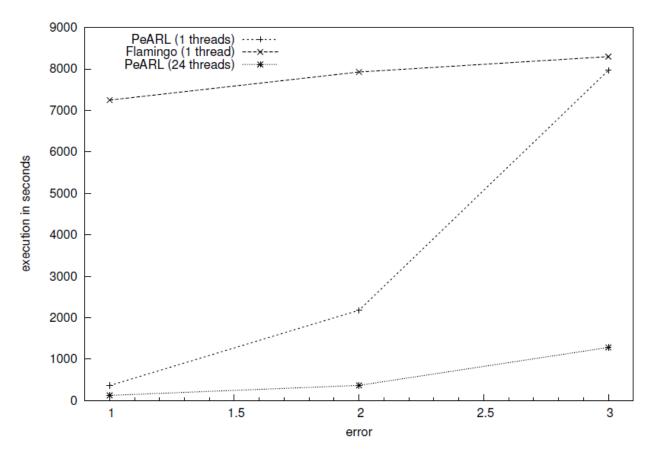


(Similarity) Join inside RDBMS

- PETER (behind extensible indexing interface) versus buildin join (exact join, hash and merge) or UDF
- Similarity join
 - Join T3 with T2e, k=2, inside RDBMS: Stopped after 24 h
 - Same join with PETER: 1 minute
- Exact join
 - For long strings, PETER is significantly faster than commercial join implementations



PEARL: Multi-Threaded PETER



Rheinländer, A. and Leser, U. (2011), "Scalable Sequence Similarity Search and Join in Main Memory on Multi-Cores", HiBB, Bordeaux, France.

Room for Improvement

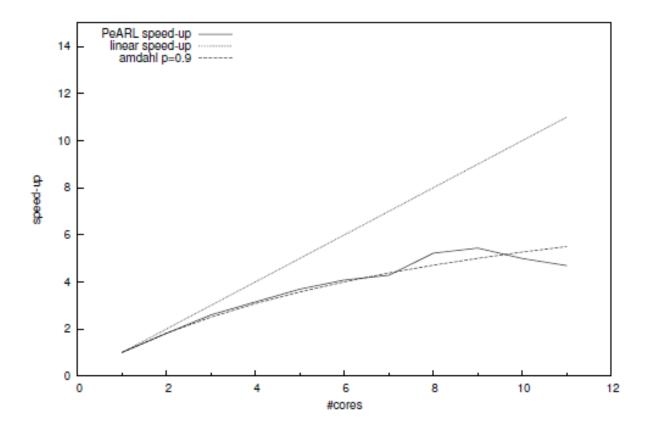


Fig. 7. PeARL speed-up for similarity search on k=2.

Why?

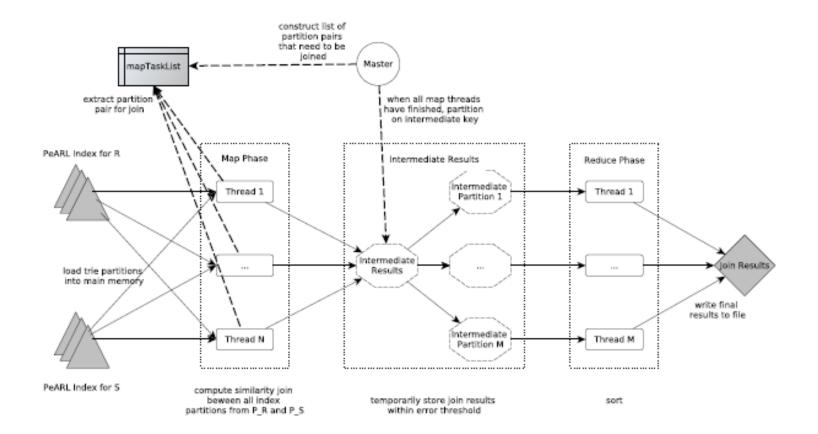


Fig. 2. MapReduce workflow of similarity joins in PeARL.