
Ulf Leser

Datenbanksysteme II:
File Structures

Ulf Leser: Implementation of Database Systems 2

Content of this Lecture

• File structure
– Heap files
– Sorted files
– Index Files
– Hierarchical Index Files
– B*-Trees

Ulf Leser: Implementation of Database Systems 3

5 Layer Architecture

We are here

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 4

Files and Storage Structures

• We have
– Records are stored in blocks without particular order

• Makes INSERTs and DELETEs faster
– Blocks are managed/cached by the buffer manager
– Access records by TID through cache manager with adr-translation

• DBs mainly search records with certain properties
– SELECT * FROM COSTUMER

WHERE Name = “Bond”
– SELECT * FROM ACCOUNT

WHERE Account# < 1000

• This is not “access by TID”
• Do we always need to scan all records in all blocks?

Ulf Leser: Implementation of Database Systems 5

• Records are stored sequentially in the order of inserts

• Insert always add to end of file
• “Holes” occur if records are deleted

– And can be reused by clever free-space management
• Minimal number of blocks : b = ⌈n / R⌉

– n = number of records, R = number of records per block
• Better to keep some space free for growing records

– Fraction depends on expected read/write ratio

Sequential (Heap) File

End of File

Ulf Leser: Implementation of Database Systems 6

Operations on Heap Files

• In the following: We assume highly selective searches
– Only a few records qualify
– If most records are selected, scanning is hard to beat – see later

• Search by value of any attribute
– b/2 block IO in case of successful searching a PK (on average)
– b block IO in case of failure or searching non-unique values

• Insert record without duplicate checking
– Remember: relational model is per-se duplicate–free
– Simple case: read last block, add, write last block: 2 IO

• Free list management makes things more complicated

• Insert record with duplicate checking / delete record
– b/2: for successful search and no insert (on average)
– b+1: in case of search without success and insert

Ulf Leser: Implementation of Database Systems 7

Content of this Lecture

• File structure
– Heap files
– Sorted files
– Index Files
– Hierarchical Index Files

Ulf Leser: Implementation of Database Systems 8

Sorted Files

• Sort records in file according to some attribute
– Fast searching when this attribute is search key
– More complex management – order must be preserved

• Operations and associated costs
– Search (using binsearch on blocks)

• log(b) IO; searching in block is free (as always)
– But: That’s mostly random-access IO

– Change / delete record based on value
• First search in log(b)
• Write changes / mark space as free

– Insert record
• First search correct position in log(b)
• Then do what?

Ulf Leser: Implementation of Database Systems 9

Inserting in a Sorted File

• General: Reserve free space in every new blocks
– Don’t fill blocks to 100% when allocated first time
– Chances increase that later insertions can be handled in the block

• Option 1: Use space available in block
– 1 additional IO for writing

• Option 2: Check neighbors
– See X blocks down and X blocks up in the file (usually X=1)
– When space is found, in-between records need to be moved

• Add change block translation table
– Cost: depends on how far we need/want to look
– Typical: +4 IO if X=1

• Option 3: …

Ulf Leser: Implementation of Database Systems 10

Overflow Blocks

• Option 3: Generate overflow blocks
– Create a new, “orthogonal” overflow block and insert record
– When blocks are connected by pointers

• Sorted table scan still possible as blocks are chained in correct order
• New block will not be in sequential physical order

– When block is added at end of file
• Sequential table scan still possible, but not in order of attribute

Block A-C Block D-K Block S-ZBlock L-R Block2 A-C

Insertion Overflow block

Ulf Leser: Implementation of Database Systems 11

Disadvantages Sorted Files

• Additional cost for keeping order
– INSERT requires log(b) search first, management of overflow

blocks, more random-access IO …
• We can sort by only one search key

– Searching on other attributes requires linear scans
• With more random-access

– Many ideas: See multi-dimensional indexes
• Search time grows only logarithmically with b

– For 10.000.000 blocks, we need ~23 IO
• Can we do better?

Ulf Leser: Implementation of Database Systems 12

Idea 1: Interpolated search; Build Histograms

• Partition key value range into buckets
• Count number of keys in each bucket
• Searching: Start at estimated position of search key

– Example: Search “Immel”, [A-C]=7500, [D-F]=6200, [G-I]=3300
– Estimated position: 7500+6200+(3300/3)*2 + …
– Continue with local search around estimated position

• Advantages
– Very little IO if data is uniformly distributed – exact estimates
– Small space consumption when few buckets are used

• But: the more buckets (higher granularity), the better the estimates
• Disadvantages (see later for ideas)

– Histograms (statistics) need to be maintained
• Potential bottleneck for concurrent update operations in same bucket

– Choosing optimal bucket number and range is difficult

Ulf Leser: Implementation of Database Systems 13

Content of this Lecture

• File structure
– Heap files
– Sorted files
– Index Files
– Hierarchical Index Files

Ulf Leser: Implementation of Database Systems 14

Idea 2: Decrease b

• Keep only Essential Info in less Blocks
• Use additional file (index) storing only keys and TIDs
• Searching: (Bin-)search index, then access data by TID
• Advantages

– Data file need not be sorted any more:
• Faster inserts in data file, but additional cost for updating index

– Integer keys: Fixed-length index entries; strings: Use fixed-length prefix
– Faster search due to smaller records and less blocks: bindex < brecords
– Several indexes can be build for different attributes

• More flexibility, more update cost

• Disadvantages
– More files to manage, lock, recover, …
– But no more fast sorted scans of entire table

Ulf Leser: Implementation of Database Systems 15

Further Decrease b: Index Sequential Files

• Data file has records sorted on key
• Index stores pairs (first key, pointer) for each data block

– Sparse index: Only put first key per block in index
• Constraint (ki, ptr): For all k in ptr↑: ki ≤ k ≤ ki+1

Index file

Block bi Block bi+1

Data files

… (ki , bi) (ki+1 , bi+1) …

R R R … R R R …

Ulf Leser: Implementation of Database Systems 16

Searching in Index-Sequential Files

• Search key in index using binsearch, then access by TID
• Advantages

– Index has only few keys: bindex << brecords
• Assume 10.000.000 records of size 200, |blockID|=10,

|search key|=20, block size=4096
• Number of blocks b= 10.000.000*200/4096 = 500.000
• Access if kept sorted: log(500.000) ~ 19 IO
• Index-seq file: log(500.000*(10+20)/4096) ~ 12 IO +1 for data

– Chances that index fits into main memory
• Disadvantages

– Only possible for one attribute (data file must be sorted)
– More administration (compared to heap file)

Ulf Leser: Implementation of Database Systems 17

Index-Sequential Files: Other Operations

• Insert record r with key k
– Search for block bi with ki ≤ k ≤ ki+1
– Free space in block? Insert r; done
– Else, either check neighbors

• Index needs to be updated, as block’s first keys change
– … or create overflow blocks

• Option 1: New block not represented in index; index not updated
– More IO when searching data, as overflow blocks need to be followed

• Option 2: Index is updated (more IO at time of insertion)
– We need to insert into the index – leave free space in index blocks!

• Ideas for improving search further?

Ulf Leser: Implementation of Database Systems 18

Sorted File

20
10

40
30

60
50

80
70

100
90

Sparse
2nd level

10
30
50
70
90
110
130
150

170
190
210
230

10
90
170
250

330
410
490
570

Sparse
1st level

Multi-Level Index Files

Ulf Leser: Implementation of Database Systems 19

Hierarchical Index-Sequential files

• Build a sparse, second-level index on the first-level index
– First level may be spare or dense
– All but the first level are sparse

• Advantages
– Access time is reduced further

• Assume 10.000.000 records of size 200, |blockID|=10,
|search key|=20, block size=4096, b = 500.000

• Index-seq file: log(500.000*(10+20)/4096) = 12+1 block IO
• With second level: log(3662*(10+20)/4096) = 5+2 blocks IO
• With three levels: log(28*(10+20)/4096) = 1+3

– Higher levels are very small – cache permanently
• With more than one level, inserting becomes tricky

– Either degradation (overflows) or costly reorganizations
– Alternative: B-trees (later)

Ulf Leser: Implementation of Database Systems 20

Index Files and Duplicates

• What happens if search key is not unique?
• Index file may

– Store duplicates: one pointer for each record
– Ignore duplicates: one pointer for each distinct value

• Smaller index file
• Requires sorted data file
• “Semi-sparse” index

• Index degradation
– If only few distinct values exist, every search selects many TID

• E.g. index on Boolean attributes – index has only two different entries
– Semi-sparse index leads to less IO
– But selects blocks in random IO – scan might be cheaper

Ulf Leser: Implementation of Database Systems 21

Secondary Index Files

• Primary ind.: Index on attribute on which data file is sorted
• Secondary index: Index on any other attribute

– Cannot exploit order in data file
– Must be dense at first level

• Improvement:
Use intermediate
buckets only for TIDs
– Buckets hold TIDs

sorted by index key
– Buckets don’t store

key values
– Advantageous

for low cardinality attributes

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

buckets

Ulf Leser: Implementation of Database Systems 22

Indexes in Oracle

• Data files are heap files
– Exception: Index-organized tables (IOT)

• Recommended only for “read-only” tables
– Every primary key is indexed
– Every UNIQUE attribute is indexed
– Default: B* tree

• Alternatives: Multidim index, hash index, bitmap index, …

• Join index: Index on attribute of foreign table with FK/PK
• Cluster index – cluster two tables and index common key

– Example: Cluster department and employee on common depNum
– Tuples with same depNum will go into same data block
– Cluster index: Create index on depNum (~ persistent join)
– Oracle has no clustered indexes – use index-organized tables

Ulf Leser: Implementation of Database Systems 23

Content of this Lecture

• File structure
– Heap files
– Sorted files
– Index Files
– Hierarchical Index Files
– Excursion: Indexing texts

Ulf Leser: Implementation of Database Systems 24

Excursion: Indexing Text

• Information retrieval
– Searching documents with keywords
– Typically, each document is represented as “bag of words”
– Queries search for documents containing a set of words

• Naïve relational database way fails
– Indexed varchar2(64KB) attribute containing text
– Not efficient for keyword queries (INSTR())
– We cannot store each word in an extra column

• Alternatives?

Ulf Leser: Implementation of Database Systems 25

Inverted Lists

• Build a secondary, bucketed index on the words
• Find documents by intersecting buckets

– Enables AND, NOT or OR

...the cat is fat ...

...was raining cats
and dogs...

...Fido the
dog ...

Inverted lists

cat

dog

Documents

	Foliennummer 1
	Content of this Lecture
	5 Layer Architecture
	Files and Storage Structures
	Sequential (Heap) File
	Operations on Heap Files
	Content of this Lecture
	Sorted Files
	Inserting in a Sorted File
	Overflow Blocks
	Disadvantages Sorted Files
	Idea 1: Interpolated search; Build Histograms
	Content of this Lecture
	Idea 2: Decrease b
	Further Decrease b: Index Sequential Files
	Searching in Index-Sequential Files
	Index-Sequential Files: Other Operations
	Multi-Level Index Files
	Hierarchical Index-Sequential files
	Index Files and Duplicates
	Secondary Index Files
	Indexes in Oracle
	Content of this Lecture
	Excursion: Indexing Text
	Inverted Lists

