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2010: Price versus speed

Really expensive Register 1-10 ns/byte

Very expensive Cache 10-60 ns/cache 
line

~ 200 € / GB Main Memory 100-300 ns/block

~ 1 € / GB Disk 10-20 ms/block

< 1€/GB Tape sec – min
Difference

~104

Difference
~105
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2010: Storage Hierarchy

Really expensive Register 1-4 byte

Very expensive Cache 1-4 MB

~ 200 € / GB Main Memory 1-16 GB

~ 1 € / GB Disk 512GB – 1TB
discs

< 1€/GB Tape “Infinite”
tape robots
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2016: Storage Hierarchy

Really expensive Register 1 – 32 byte

Very expensive Cache 1-16 MB

~ 7 € / GB Main Memory 16-256 GB

~ 0,04 € / GB Disk 1-16 TB

Tape “Infinite”
tape robots
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Costs Drop Faster than you Think

Source: http://analystfundamentals.com/?p=88
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New Players

Really expensive Reg-
ister

1-10ns / 
byte

Very expensive Cache 10-100ns / 
cache line

~ 7 € / GB Main Memory 60-300ns / 
block

~ 1 € / GB Solid-State Disks (SSD) 1 ms /
block

~ 0,04 € / GB Disk 10-20 ms / 
block

Tape sec – min
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New Players

Source: http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html
https://www.pcworld.com/article/3011441/
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Characteristics

Quelle: http://blog.laptopmag.com/faster-than-an-ssd-how-to-turn-extra-memory-into-a-ram-disk

read != write

random access != sequential
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Prize of Main Memory

• 2014: 1TB DRAM ~ 5000€
• 2016: Laptops with 16GB, 

desktops with 32GB, 
servers with 128GB

• 2019: Mobiles with 32GB,
servers with >1TB

• My Guess: 99% of all 
commercial databases are 
smaller than 100GB
– Research: Main memory 

databases
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Consequences

• Dealing with memory hierarchy is core concern of DBMS
– Another issue is multi-core

• This lecture will mostly focus on disk versus RAM
• Similar problems for cache-RAM, disk-SSD, …
• Many differences between storage media

– Speed, durability, size, cost
– Block sizes
– Read/write, random-access/sequential
– Error rates, longevity
– …
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Five Layer Architecture

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Schema, SQL, data types

Disks, disc blocks

Records, transactions

Arrays, locks

Memory blocks (pages)

Conceptual

Logical

Physical
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Tasks

Query optimization
Access control 
Integrity constraints

Physical record manager 
Index manager 
Lock manager
Log / Recovery

Sort
Transaction processing

Cursor management

Block management
Caching

Data Model

Logical Access

Data Structures

Buffer Management

Operating System
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Operations

SQL: select ... from ... Where
Grant access to ... 
Create index on ...

RECORDs in pages 
access paths, indexes

OPEN – FETCH –CLOSE 
STORE Record

READ page
WRITE page

Data Model

Logical Access

Data Structures

Buffer Management

Operating System
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Note: Idealized Representation

• Layers may be merged
– E.g. logical and internal record-based layers

• Not all functionality can be assigned to exactly one layer
– E.g. recovery, optimization

• Layers sometimes must access non-neighboring layers
– Prefetching needs to know the query

• Layer 4 to Layer 1/2
– Optimizer needs to know about physical data layout

• Layer 1 to layer 4/5
– Breaks information hiding principle
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Bottom-Up

Data Model

Logical Access

Data Structures

Buffer Management

Operating System
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Classical Discs

• Durable, slow, cheap, large, robust (compared to …)
• In principle: Same read/write speed
• Much difference between random-access / scan
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• Redundancy: Fail-safety and access speed 
– Increased read performance, write perf. not affected (parallel write)
– Disc crash (one) can be tolerated
– Be careful about dependent components (controller, power, …)

• Drawbacks
– Which value is correct in case of divergence in the two copies? 
– Space consumption doubles

A

C

B

D

A

C

B

D

RAID 1: Mirroring
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Bottom-Up

Records, Blocks, 
Files

Data Model

Logical Access

Data Structures

Buffer Management

Operating System
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Access Methods: Sequential Unsorted Files

1522 Bond ...
123 Mason ...
... ... ...
1754 Miller ...

• Access to records by record/tuple identifier (RID or TID)

• Operations
– INSERT( Record): Move to end of file and add, O(1)
– SEEK( TID): Sequential scan, O(n)

• FIRST ( File): O(1)
• NEXT( File):  O(1)
• EOF ( File): O(1)

– DELETE( TID): Seek TID; flag as deleted, O(n)
– REPLACE( TID, Record): Seek TID; write record, O(n)

• What happens if records have variable size?



Ulf Leser: Implementation of Database Systems 23

Access Methods: Sequential sorted Files

123 Mason ...
1522 Bond ...
... ... ...
1754 Miller ...

• Operations
– SEEK( TID): Bin search, O(log(n)) 

• But a lot of random access 
• Might be slower than scanning the file

– INSERT( Record): Seek(TID), move records by one, O(n)
• This is terribly expensive

– …
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• Operations
– SEEK( TID): Using order in TIDs: O(log(n))

• Only if tree is balanced
• Only if tree is ordered by the right attribute

– INSERT( TID): Seek TID and insert; possibly restructuring
– …

Root

Internal Node

Leaves

Indexed Files
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Storage in Oracle

• Data files are assigned to 
tablespaces
– May consist of multiple files
– All data from one object (table, 

index) are in one tablespace
• But table and index can be in

different ones
– Backup, quotas, access, …

• Extents: Continuous 
sequences of blocks on disc

• Space is allocated in extents (min, next, max, …)
• Segments logically group all extents of an object

Database

Tablespace

Segment

Extent

OracleBlock OS Block

Data file

Logical
Physical
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Managing space in Oracle 
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Bottom-Up

Virtual – physical blocks, 
access paths

Data Model

Logical Access

Data Structures

Buffer Management

Operating System
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Caching = Buffer Management

Buffer Manager

Main Memory
Buffer (Cache) Disc

P0 P1 P2

Page XYZ

• Which blocks should be cached – for how long?
• Caching data blocks? Index blocks? 
• Competition: Intermediate data, data buffers, sort buffer, …
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• Absolute addressing: TID = <PageId, Offset, ID>

• Absolute addressing + search:  TID = <PageId,ID>

From Buffers to Records

ID, X, Y, …
Page Id

Offset

Page Id -- Search --

ID, X, Y, …

• Pro: Fast access
• Con: Records cannot 

be moved

• Pro: Records can be 
moved within page

• Con: Slower access
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Free Space, TX, and Concurrent Processes

• Oracle procedure for 
finding free space

• Free space managed at 
the level of segments
– Logical database objects

• Explanation
– TFL: transaction free list
– PFL: process free list
– MFL: master free list
– HWM: High water mark

Database

Tablespace

Segment

Extent

OracleBlock
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Bottom-Up

Query optimization
Data Model

Logical Access

Data Structures

Buffer Management

Operating System
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The ANSI/SPARC Three Layer-Model

Query rewriting, view expansion

Query execution plan generation 
and optimization: Access paths, 
join order, …

Execution of operators, 
pipelining

View View View

Conceptual
Schema

Internal  
Schema
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Query Processing

• Declarative query
SELECT Name, Address, Checking, Balance
FROM customer C, account A
WHERE Name = “Bond” and C.Account# = A.Account#

• Translated in procedural Query Execution Plan (QEP)
FOR EACH c in CUSTOMER DO

IF c.Name = “Bond” THEN
FOR EACH  a IN ACCOUNT DO

IF a.Account# = c.Account# THEN
Output (“Bond”, c.Address, a.Checking, a.Balance)
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One Query – Many QEPs

FOR EACH c in CUSTOMER DO
IF c.Name = “Bond” THEN
FOR EACH  a IN ACCOUNT DO
IF a.Acco# = c.Acco# THEN Output (“Bond”, c.Address, a.Checking, a.Balance) 

FOR EACH a in ACCOUNT DO
FOR EACH  c IN CUSTOMER DO
IF a.Acco# = c.Acco# THEN
IF c.Name = “BOND” THEN Output (“Bond”, c.Address, a.Checking, a. Balance)

FOR EACH c in CUSTOMER WITH Name=“Bond” BY INDEX DO
FOR EACH  a IN ACCOUNT DO

IF a.Acco# = c.Acco# THEN Output (“Bond”, c.Address, a.Checking, a. Balance)

FOR EACH c in CUSTOMER WITH Name=“Bond” BY INDEX DO
FOR EACH  a IN ACCOUNT with a.Acco#=c.Acco# BY INDEX DO

Output (“Bond”, c.Address, a.Checking, a. Balance)

…

SELECT     Name, Address, Checking, Balance
FROM customer C, account A
WHERE     Name = “Bond” and C.Acco# = A.Acco#
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Query optimization

• Task: Find the (hopefully) fastest QEP
• Two interdependent levels: Best plan, best implementation

– Different QEPs by algebraic rewriting
• P1: σName=Bond(Account ⋈ Customer)
• P2: Account ⋈ σName=Bond(Customer)

– Different QEPs by different operator implementations
• P1’:    Access by scan, hash-join
• P1’’: Access by index, nested-loop-join 

• Plan space: Enumerate and evaluate (some? all?) QEPs
• Optimization goal: Minimize size of intermediate results

– Might miss optimality in terms of runtime
• Expansive subplan with sorted result 
• Cheap subplan with unsorted result
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Cost-Based Optimizer

• Use statistics on current state of relations
– Size, value distribution, fragmentation, cluster factors, …

FOR EACH a in ACCOUNT DO
FOR EACH  c IN CUSTOMER DO

IF a.Account# = c.Account# THEN
IF c.Name = “BOND” THEN …

– Let selectivity of σName=Bond be 1%, |Customer|=10.000, 
|Account|=12.000, Customer/Account evenly distributed

– Performs …
• Join: 10.000 * 12.000 = 120M comparisons
• Produces ~12.000 intermediate result tuples
• Filters down to ~120 results
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Join methods

• Suppose the previous query would contain no selection
• Can‘t we do better than “Join: 120M comparisons” 
• Join methods

– Nested loop join: O(m*n) key comparisons
– Sort-merge join

• First sort relations in O(n*log(n)+m*log(m))
• Merge results in O(m+n)
• Sometimes better, sometimes worse

– Hash join, index-join, grace-join, zig-zag join, …
• Note: Complexity here measures number of comparisons

– This is a “main-memory” viewpoint
– Must not be used for IO tasks
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Bottom-Up

Transactions, 
serializability, recovery

Data Model

Logical Access

Data Structures

Buffer Management

Operating System
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Transactions (TX)

• Transaction: “Logical unit of work”
Begin_Transaction

UPDATE ACCOUNT
SET Savings = Savings + 1M
SET Checking = Checking - 1M

WHERE Account# = 007;
INSERT JOURNAL <007, NNN, “Transfer”, ...>

End_Transaction

• ACID properties
– Atomic execution
– Consistent DB state after commits
– Isolation: No influence on result by concurrent TX
– Durability: After commit, changes are reflected in the database
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5,000

6,000

7,000

Read account value

Deposit $ 2,000Deposit $ 1,000

Add $1,000

Write back

5,000

6,000

Read account value

Add $ 2,000

Write back

5,000

7,000

Lost Update Problem
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Synchronization and schedules

?
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Synchronization and locks

• When is a schedule „fine“?
– When it is serializable
– I.e., when it is equivalent to a serial schedule
– Proof serializability of schedules

• Strategy: Blocking everything is dreadful
• Strategy: Checking after execution is wasteful
• Synchronization protocols

– Guarantee to produce only serializable schedules
– Require certain well-behavior of transactions 

• Two phase locking, multi-version synchronization, timestamp 
synchronization, …

• Be careful with deadlocks
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