
Ulf Leser

Datenbanksysteme II:
Overview and General Architecture

Ulf Leser: Implementation of Database Systems 2

Table of Content

• Storage Hierarchy
• 5-Layer Architecture
• Overview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems 3

2010: Price versus speed

Really expensive Register 1-10 ns/byte

Very expensive Cache 10-60 ns/cache
line

~ 200 € / GB Main Memory 100-300 ns/block

~ 1 € / GB Disk 10-20 ms/block

< 1€/GB Tape sec – min
Difference

~104

Difference
~105

Ulf Leser: Implementation of Database Systems 4

2010: Storage Hierarchy

Really expensive Register 1-4 byte

Very expensive Cache 1-4 MB

~ 200 € / GB Main Memory 1-16 GB

~ 1 € / GB Disk 512GB – 1TB
discs

< 1€/GB Tape “Infinite”
tape robots

Ulf Leser: Implementation of Database Systems 5

2016: Storage Hierarchy

Really expensive Register 1 – 32 byte

Very expensive Cache 1-16 MB

~ 7 € / GB Main Memory 16-256 GB

~ 0,04 € / GB Disk 1-16 TB

Tape “Infinite”
tape robots

Ulf Leser: Implementation of Database Systems 6

Costs Drop Faster than you Think

Source: http://analystfundamentals.com/?p=88

Ulf Leser: Implementation of Database Systems 7

New Players

Really expensive Reg-
ister

1-10ns /
byte

Very expensive Cache 10-100ns /
cache line

~ 7 € / GB Main Memory 60-300ns /
block

~ 1 € / GB Solid-State Disks (SSD) 1 ms /
block

~ 0,04 € / GB Disk 10-20 ms /
block

Tape sec – min

Ulf Leser: Implementation of Database Systems 8

New Players

Source: http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html
https://www.pcworld.com/article/3011441/

Ulf Leser: Implementation of Database Systems 9

Characteristics

Quelle: http://blog.laptopmag.com/faster-than-an-ssd-how-to-turn-extra-memory-into-a-ram-disk

read != write

random access != sequential

Ulf Leser: Implementation of Database Systems 10

Prize of Main Memory

• 2014: 1TB DRAM ~ 5000€
• 2016: Laptops with 16GB,

desktops with 32GB,
servers with 128GB

• 2019: Mobiles with 32GB,
servers with >1TB

• My Guess: 99% of all
commercial databases are
smaller than 100GB
– Research: Main memory

databases

$0

$300

$600

$900

$1.200

2000 2005 2010 2013 2015Av
er

ag
e

Co
st

 P
er

G

B

Year

Ulf Leser: Implementation of Database Systems 11

Consequences

• Dealing with memory hierarchy is core concern of DBMS
– Another issue is multi-core

• This lecture will mostly focus on disk versus RAM
• Similar problems for cache-RAM, disk-SSD, …
• Many differences between storage media

– Speed, durability, size, cost
– Block sizes
– Read/write, random-access/sequential
– Error rates, longevity
– …

Ulf Leser: Implementation of Database Systems 12

Table of Content

• Storage Hierarchy
• 5-Layer Architecture
• Overview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems 13

Five Layer Architecture

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Schema, SQL, data types

Disks, disc blocks

Records, transactions

Arrays, locks

Memory blocks (pages)

Conceptual

Logical

Physical

Ulf Leser: Implementation of Database Systems 14

Tasks

Query optimization
Access control
Integrity constraints

Physical record manager
Index manager
Lock manager
Log / Recovery

Sort
Transaction processing

Cursor management

Block management
Caching

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 15

Operations

SQL: select ... from ... Where
Grant access to ...
Create index on ...

RECORDs in pages
access paths, indexes

OPEN – FETCH –CLOSE
STORE Record

READ page
WRITE page

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 16

Note: Idealized Representation

• Layers may be merged
– E.g. logical and internal record-based layers

• Not all functionality can be assigned to exactly one layer
– E.g. recovery, optimization

• Layers sometimes must access non-neighboring layers
– Prefetching needs to know the query

• Layer 4 to Layer 1/2
– Optimizer needs to know about physical data layout

• Layer 1 to layer 4/5
– Breaks information hiding principle

Ulf Leser: Implementation of Database Systems 17

Table of Content

• Storage Hierarchy
• 5-Layer Architecture
• Overview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems 18

Bottom-Up

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 19

Classical Discs

• Durable, slow, cheap, large, robust (compared to …)
• In principle: Same read/write speed
• Much difference between random-access / scan

Ulf Leser: Implementation of Database Systems 20

• Redundancy: Fail-safety and access speed
– Increased read performance, write perf. not affected (parallel write)
– Disc crash (one) can be tolerated
– Be careful about dependent components (controller, power, …)

• Drawbacks
– Which value is correct in case of divergence in the two copies?
– Space consumption doubles

A

C

B

D

A

C

B

D

RAID 1: Mirroring

Ulf Leser: Implementation of Database Systems 21

Bottom-Up

Records, Blocks,
Files

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 22

Access Methods: Sequential Unsorted Files

1522 Bond ...
123 Mason ...
...
1754 Miller ...

• Access to records by record/tuple identifier (RID or TID)

• Operations
– INSERT(Record): Move to end of file and add, O(1)
– SEEK(TID): Sequential scan, O(n)

• FIRST (File): O(1)
• NEXT(File): O(1)
• EOF (File): O(1)

– DELETE(TID): Seek TID; flag as deleted, O(n)
– REPLACE(TID, Record): Seek TID; write record, O(n)

• What happens if records have variable size?

Ulf Leser: Implementation of Database Systems 23

Access Methods: Sequential sorted Files

123 Mason ...
1522 Bond ...
...
1754 Miller ...

• Operations
– SEEK(TID): Bin search, O(log(n))

• But a lot of random access
• Might be slower than scanning the file

– INSERT(Record): Seek(TID), move records by one, O(n)
• This is terribly expensive

– …

Ulf Leser: Implementation of Database Systems 24

• Operations
– SEEK(TID): Using order in TIDs: O(log(n))

• Only if tree is balanced
• Only if tree is ordered by the right attribute

– INSERT(TID): Seek TID and insert; possibly restructuring
– …

Root

Internal Node

Leaves

Indexed Files

Ulf Leser: Implementation of Database Systems 25

Storage in Oracle

• Data files are assigned to
tablespaces
– May consist of multiple files
– All data from one object (table,

index) are in one tablespace
• But table and index can be in

different ones
– Backup, quotas, access, …

• Extents: Continuous
sequences of blocks on disc

• Space is allocated in extents (min, next, max, …)
• Segments logically group all extents of an object

Database

Tablespace

Segment

Extent

OracleBlock OS Block

Data file

Logical
Physical

Ulf Leser: Implementation of Database Systems 26

Managing space in Oracle

Ulf Leser: Implementation of Database Systems 27

Bottom-Up

Virtual – physical blocks,
access paths

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 28

Caching = Buffer Management

Buffer Manager

Main Memory
Buffer (Cache) Disc

P0 P1 P2

Page XYZ

• Which blocks should be cached – for how long?
• Caching data blocks? Index blocks?
• Competition: Intermediate data, data buffers, sort buffer, …

Ulf Leser: Implementation of Database Systems 29

• Absolute addressing: TID = <PageId, Offset, ID>

• Absolute addressing + search: TID = <PageId,ID>

From Buffers to Records

ID, X, Y, …
Page Id

Offset

Page Id -- Search --

ID, X, Y, …

• Pro: Fast access
• Con: Records cannot

be moved

• Pro: Records can be
moved within page

• Con: Slower access

Ulf Leser: Implementation of Database Systems 30

Free Space, TX, and Concurrent Processes

• Oracle procedure for
finding free space

• Free space managed at
the level of segments
– Logical database objects

• Explanation
– TFL: transaction free list
– PFL: process free list
– MFL: master free list
– HWM: High water mark

Database

Tablespace

Segment

Extent

OracleBlock

Ulf Leser: Implementation of Database Systems 31

Bottom-Up

Query optimization
Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 32

The ANSI/SPARC Three Layer-Model

Query rewriting, view expansion

Query execution plan generation
and optimization: Access paths,
join order, …

Execution of operators,
pipelining

View View View

Conceptual
Schema

Internal
Schema

Ulf Leser: Implementation of Database Systems 33

Query Processing

• Declarative query
SELECT Name, Address, Checking, Balance
FROM customer C, account A
WHERE Name = “Bond” and C.Account# = A.Account#

• Translated in procedural Query Execution Plan (QEP)
FOR EACH c in CUSTOMER DO

IF c.Name = “Bond” THEN
FOR EACH a IN ACCOUNT DO

IF a.Account# = c.Account# THEN
Output (“Bond”, c.Address, a.Checking, a.Balance)

Ulf Leser: Implementation of Database Systems 34

One Query – Many QEPs

FOR EACH c in CUSTOMER DO
IF c.Name = “Bond” THEN
FOR EACH a IN ACCOUNT DO
IF a.Acco# = c.Acco# THEN Output (“Bond”, c.Address, a.Checking, a.Balance)

FOR EACH a in ACCOUNT DO
FOR EACH c IN CUSTOMER DO
IF a.Acco# = c.Acco# THEN
IF c.Name = “BOND” THEN Output (“Bond”, c.Address, a.Checking, a. Balance)

FOR EACH c in CUSTOMER WITH Name=“Bond” BY INDEX DO
FOR EACH a IN ACCOUNT DO

IF a.Acco# = c.Acco# THEN Output (“Bond”, c.Address, a.Checking, a. Balance)

FOR EACH c in CUSTOMER WITH Name=“Bond” BY INDEX DO
FOR EACH a IN ACCOUNT with a.Acco#=c.Acco# BY INDEX DO

Output (“Bond”, c.Address, a.Checking, a. Balance)

…

SELECT Name, Address, Checking, Balance
FROM customer C, account A
WHERE Name = “Bond” and C.Acco# = A.Acco#

Ulf Leser: Implementation of Database Systems 35

Query optimization

• Task: Find the (hopefully) fastest QEP
• Two interdependent levels: Best plan, best implementation

– Different QEPs by algebraic rewriting
• P1: σName=Bond(Account ⋈ Customer)
• P2: Account ⋈ σName=Bond(Customer)

– Different QEPs by different operator implementations
• P1’: Access by scan, hash-join
• P1’’: Access by index, nested-loop-join

• Plan space: Enumerate and evaluate (some? all?) QEPs
• Optimization goal: Minimize size of intermediate results

– Might miss optimality in terms of runtime
• Expansive subplan with sorted result
• Cheap subplan with unsorted result

Ulf Leser: Implementation of Database Systems 36

Cost-Based Optimizer

• Use statistics on current state of relations
– Size, value distribution, fragmentation, cluster factors, …

FOR EACH a in ACCOUNT DO
FOR EACH c IN CUSTOMER DO

IF a.Account# = c.Account# THEN
IF c.Name = “BOND” THEN …

– Let selectivity of σName=Bond be 1%, |Customer|=10.000,
|Account|=12.000, Customer/Account evenly distributed

– Performs …
• Join: 10.000 * 12.000 = 120M comparisons
• Produces ~12.000 intermediate result tuples
• Filters down to ~120 results

Ulf Leser: Implementation of Database Systems 37

Join methods

• Suppose the previous query would contain no selection
• Can‘t we do better than “Join: 120M comparisons”
• Join methods

– Nested loop join: O(m*n) key comparisons
– Sort-merge join

• First sort relations in O(n*log(n)+m*log(m))
• Merge results in O(m+n)
• Sometimes better, sometimes worse

– Hash join, index-join, grace-join, zig-zag join, …
• Note: Complexity here measures number of comparisons

– This is a “main-memory” viewpoint
– Must not be used for IO tasks

Ulf Leser: Implementation of Database Systems 38

Bottom-Up

Transactions,
serializability, recovery

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 39

Transactions (TX)

• Transaction: “Logical unit of work”
Begin_Transaction

UPDATE ACCOUNT
SET Savings = Savings + 1M
SET Checking = Checking - 1M

WHERE Account# = 007;
INSERT JOURNAL <007, NNN, “Transfer”, ...>

End_Transaction

• ACID properties
– Atomic execution
– Consistent DB state after commits
– Isolation: No influence on result by concurrent TX
– Durability: After commit, changes are reflected in the database

Ulf Leser: Implementation of Database Systems 40

5,000

6,000

7,000

Read account value

Deposit $ 2,000Deposit $ 1,000

Add $1,000

Write back

5,000

6,000

Read account value

Add $ 2,000

Write back

5,000

7,000

Lost Update Problem

Ulf Leser: Implementation of Database Systems 41

Synchronization and schedules

?

Ulf Leser: Implementation of Database Systems 42

Synchronization and locks

• When is a schedule „fine“?
– When it is serializable
– I.e., when it is equivalent to a serial schedule
– Proof serializability of schedules

• Strategy: Blocking everything is dreadful
• Strategy: Checking after execution is wasteful
• Synchronization protocols

– Guarantee to produce only serializable schedules
– Require certain well-behavior of transactions

• Two phase locking, multi-version synchronization, timestamp
synchronization, …

• Be careful with deadlocks

	Foliennummer 1
	Table of Content
	2010: Price versus speed
	2010: Storage Hierarchy
	2016: Storage Hierarchy
	Costs Drop Faster than you Think
	New Players
	New Players
	Characteristics
	Prize of Main Memory
	Consequences
	Table of Content
	Five Layer Architecture
	Tasks
	Operations
	Note: Idealized Representation
	Table of Content
	Bottom-Up
	Classical Discs
	RAID 1: Mirroring
	Bottom-Up
	Access Methods: Sequential Unsorted Files
	Access Methods: Sequential sorted Files
	Indexed Files
	Storage in Oracle
	Managing space in Oracle
	Bottom-Up
	Caching = Buffer Management
	From Buffers to Records
	Free Space, TX, and Concurrent Processes
	Bottom-Up
	The ANSI/SPARC Three Layer-Model
	Query Processing
	One Query – Many QEPs
	Query optimization
	Cost-Based Optimizer
	Join methods
	Bottom-Up
	Transactions (TX)
	Lost Update Problem
	Synchronization and schedules
	Synchronization and locks

