

Transfer Learning for Biomedical Relation Extraction

Introduction to Deep Learning for NLP

(Slides partially taken from Ulf Leser)

Mario Sänger (WBI, HU Berlin)

saengema@informatik.hu-berlin.de

Outline

• Classification methods

- Nearest Neighbour
- Support vector machine
- Introduction to Deep Learning
 - Motivation
 - Feed forward networks
 - Outlook (RNNs, CNNs)
- Topic presentation

Classification Methods

Nearest Neighbour Support Vector Machine

Mario Sänger: Transfer Learning for Biomedical Relation Extraction (Seminar WS-2019/20)

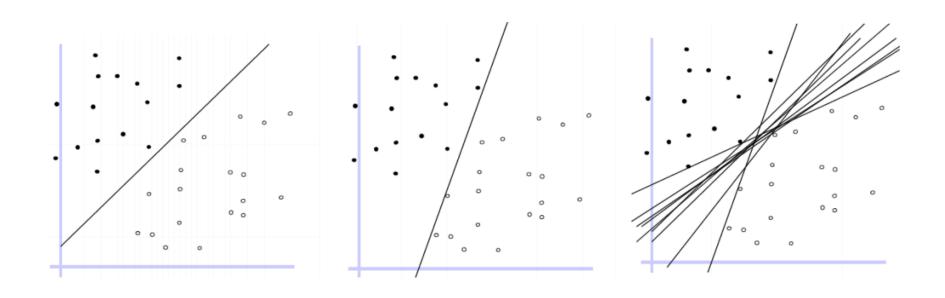
Linear Classifiers

- Many common classifiers are (log-)linear classifiers
 - Naïve Bayes, Perceptron, Linear and Logistic Regression, Maximum Entropy, Support Vector Machines
- If applied on a binary classification problem, all these methods somehow compute a hyperplane which (hopefully) separates the two classes
 - Despite similarity, noticeable performance differences exist Which feature space is used?
 - Which of the infinite number of possible hyperplanes is chosen?
 - How are non-linear-separable data sets handled?

- High dimensionality: 100k+ features
- Sparsity: Feature values are almost all zero
- Most documents are very far apart (i.e., not strictly orthogonal, but only share very common words)
- Consequence: Most document sets are well separable
 - This is part of why linear classifiers are quite successful in this domain
- The trick is more of finding the "right" separating hyperplane instead of just finding (any) one

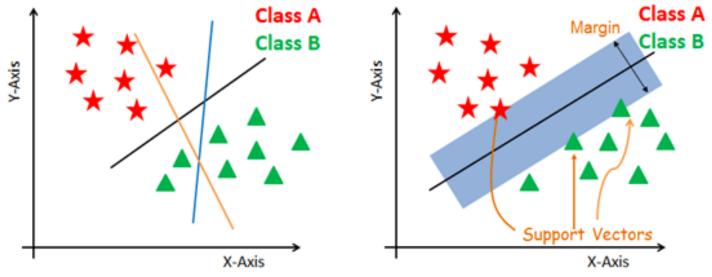
Example: Linear Classifiers – 2D

- Hyperplane separating classes in high dimensional space
- But which?



Support Vector Machine (SVM) - Idea

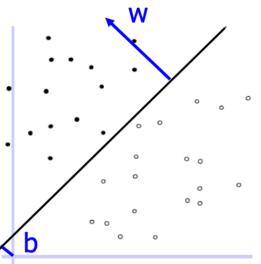
- SVMs: Hyperplane which maximizes the margin
 - I.e., is as far away from any data point as possible
 - Cast in a linear optimization problem and solved efficiently
 - Classification only depends on support vectors efficient
 - Points most closest to hyperplane



http://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1526288454/index2_ub1uzd.png

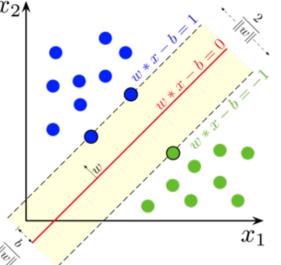
Mario Sänger: Transfer Learning for Biomedical Relation Extraction (Seminar WS-2019/20)

- Assume a set of training samples x_i with labels $y_i \subseteq \{-1,+1\}$
 - Training samples xi are real-valued vectors
- Assume, for now, that the classes are linearly separable
 - There exists a hyperplane h such that all instances above h have label +1, all instances below h have label -1
- A hyperplane h can be characterized by ortho-normal vector w and a bias b: All points v with <w*v>+ b=0
 - - <> is the dot product, i.e. $\Sigma w_i * v_i$
- Thus, we seek a pair w,b such that $\forall i: y_i = sgn(+b)$



• Problem: If one such hyperplane exists, then there are infinitely many (infinitesimally different)

- SVM seeks the one which maximizes the margin, i.e., find h=(w,b) such that m = min_i |<w*x_i>+b| is maximal
 - Compute distance between h and all x_i ; the minimal distance is the width of the margin; find h such that this margin m is maximal
- The margin is actually defined by two parallel hyperplanes h1, h2; one defined by the closest points with y=1, one by the closest negative points. Thus, there are x' and x" with
 - h1: <w*x'>+b=1 and
 - h2: <w*x">+b=-1
- The distance between h1 and h2 is 2/|w|
- Thus: A minimal ||w|| gives maximal margin



https://upload.wikimedia.or g/wikipedia/commons/thu mb/7/72/SVM_margin.png/ 600px-SVM_margin.png

- Of course, h must also separate the two classes
- This gives the following constrained optimization problem:

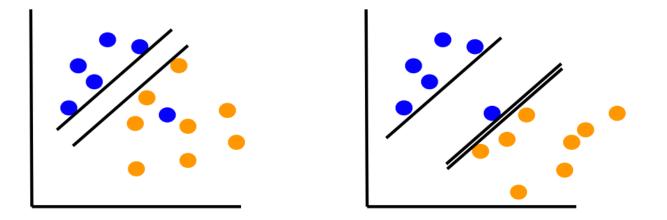
Minimize ||w||

under the constraint: $\forall i: y_i (\langle w^*x_i \rangle + b) \geq 1$

• Not yet done: Most data sets are not linearly separable

Misclassification

- We need to account for instances that are misclassified
 - There should not be many, though
 - Might even be useful if the data set is linearly separable
 - We need a parameter defining how hard to "punish" training instances that are misclassified



- For each training instance (x_i, y_i) , we introduce a slack variable ξ_i which measures the error wrt. the correct side of the hyperplane
 - i.e.: $\forall i: y_i (\langle w^*x_i \rangle + b) + \xi_i \ge 1$
 - Ideally, ξ_i is zero for all instances i
- New constraint: The sum of all errors ξ_i should be minimal
- New constrained optimization problem:

Minimize $||w|| + C^*\Sigma\xi_i$ under the constraint: ∀i: y_i (+b)+ $\xi_i \ge 1$

C-Parameter

• New constrained optimization problem:

Minimize $||w|| + C^*\Sigma\xi_i$ under the constraint: ∀i: y_i (+b)+ $\xi_i \ge 1$

- C controls the influence of misclassification
 - Large C: leads to few misclassifications and small margins
 - Small C: lead to more misclassifications and larger margins

Solutions

- Fortunately, this is a convex optimization problem and usually can be solved efficiently
 - But training with millions of dimensions and thousands of training instances still may take considerable time
- Classification (a new x) is fast: Compute sgn(<w*x>+b)
- "Support Vector" machine: The hyperplane only depends on the instances at the border of the margin; these are called "support vectors"
 - Original Paper: History: Victor Vapnik, "The Nature of Statistical Learning Theory", 1995

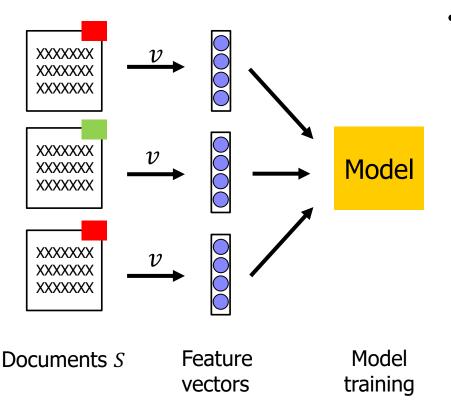
Properties of SVM

- SVMs provide a strong baseline for many NLP problems
 - State-of-the-art for long time in text classification
- Can cope with millions of dimensions
 - Might require long training time
- Classification is rather fast
- Quite robust to overfitting
- SVM are quite good "as is", but tuning possible
- Several free implementations exist: SVMlight, libSVM, ...

Deep Learning for NLP Motivation Feed forward networks Outlook

Recall: Supervised Learning

• Given a set *D* of documents and a set of classes *C*. A classifier is a function $f: D \rightarrow C$



• Problems

- Finding enough training data
- Finding the best pre-processing (tokenization, case, POS tag set ...)
- Finding the best features
- Finding a good classifier (~ assigning as many docs as possible to their correct class)

- Many AI tasks can be solved by designing the right set of features to extract and apply a (simple) ML approach
 - However, for many tasks is difficult to know what features should be extracted
 - Can take decades for an entire community of researchers
- Example: Identify cars in photographs
 - We know cars have wheels presence of a wheel maybe a good feature
 - Unfortunately it is hard to describe a wheel in terms of pixels
 - Simple geometric shape but it's image may be complicated by shadows falling on it, the sun glaring off the metal parts, ...

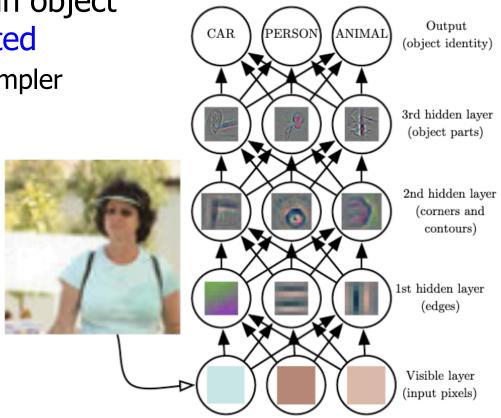
- Our goal usually is to separate the factors of variation that explain the observed data
 - Factors refer to separate sources of influence in this context
 - Such factors are often not quantities that are directly observed
- Example: Photographs of cars
 - Plethora of factors exists: the position of the car, its color, the angle or brightness of the sun, ...
 - Many factors influence every single piece of data (pixel) we have
 - E.g. Individual pixels in an image of a red car might be very close to black at night
- Most applications require to disentangle these factors
 - Discard the factors we don't care about

Representation Learning / Deep Learning

- Of course, it is very difficult to extract such high-level features / factors from raw data
 - Need very sophisticated (nearly human-level) understanding of the raw data
- One solution to the problem: representation learning (RL)
 - Use machine learning to discover not only the mapping from representation to output but also the representation itself
 - Representation learning ~ feature learning
- Deep Learning: A RL technique that learns representations that are expressed by simpler representations
 - Build more complex concepts out of simpler concepts

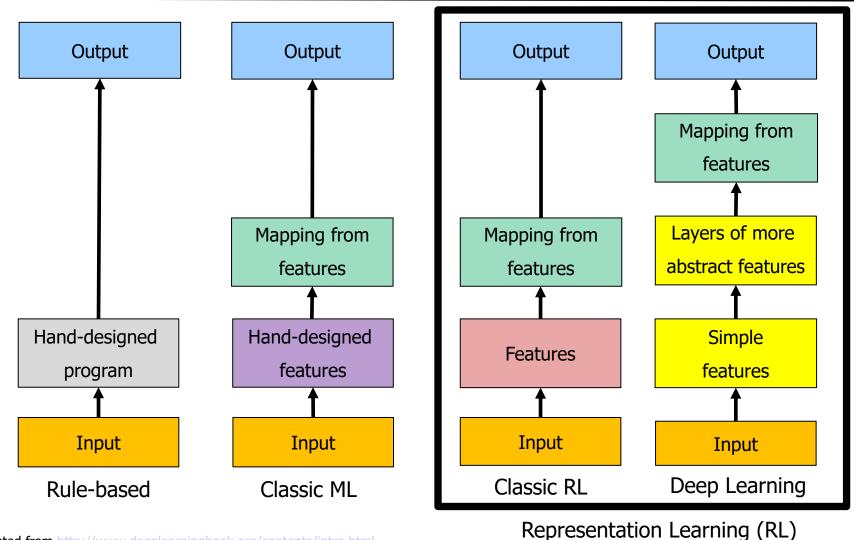
Example: image classification

- Mapping from pixels to an object identity is very complicated
 - Instead, use a series of simpler nested mappings
- Every layer builds a higher abstractions based on the former layer's output
- Final layer uses most abstract representations to make the prediction



http://www.deeplearningbook.org/contents/intro.html

Comparison of different AI systems

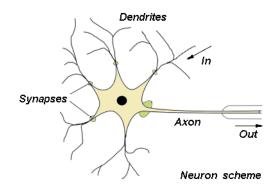


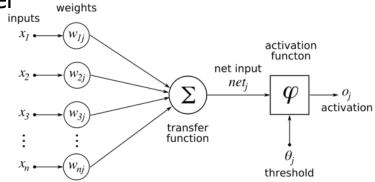
Adapted from http://www.deeplearningbook.org/contents/intro.html

Mario Sänger: Transfer Learning for Biomedical Relation Extraction (Seminar WS-2019/20)

Deep Learning / neural networks

- A method for non-linear classification
 - Long history but also forgotten for a long time
 - First works range back to the 1950s / 60s
 - Extremely hyped since about 2005
 - Basic concepts inspired by biological networks
 - But, it isn't the goal to simulate / model these networks
- Today: state-of-the-art in machine translation, image recognition, gaming, machine reading, ...

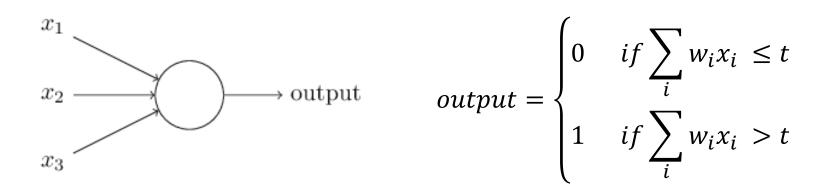




Deep learning / neural networks

- Two trends have contributed to the breakthrough
 - Build deeper networks more and wider hidden layers capture more signals
 - It is not true that "more is always better"
 - Still much art (not science) in tuning hyper-parameters
 - Learn on much more data
 - Deep learning is only good if a lot training data is available
 - Include unsupervised data pre-training to obtain good initial weights
 - Both require much longer training times prohibitive in the past
- Today: Optimized algorithms, stronger machines, accelerators (GPU), distributed learning, pre-trained models, ...

- A perceptron takes a sequence of binary inputs $x_1, x_2, ...$ and produces a single binary output
 - Weights: for each input x_i there is associated weight w_i representing the importance of x_i to the output
 - Output (~ activation): Determine whether the weighted sum $\sum_i w_i x_i$ is over a threshold value t
 - Basic idea: weighing up evidence to make a decision



First start: Perceptron

- Example: Go to a music festival or not?
 - Input variables
 - $x_1 =$ Is the weather good? (No=0 / Yes=1)
 - x₂ = Do your friends want to accompany you? (No=0 / Yes=1)
 - x_3 = Is the venue near public transport? (No=0 / Yes=1)
 - Suppose:
 - You love music so much that you're happy to go to the festival even if your friends are uninterested and the festival is hard to get to
 - But you really loathe bad weather, and there's no way you'd go to the festival if the weather is bad
 - You can use a perceptron to model this kind of decision-making
 - For example: $w_1 = 6$, $w_2 = 2$, $w_3 = 2$ and a threshold t = 5
 - Models exact this decision-making process

- By varying the weights w_1, w_2, w_3 and the threshold t, we can get different models of decision-making
 - For example, suppose we instead chose a threshold of t = 3
 - Now: you should go to the festival whenever the weather was good ...
 - ... *or* when both the festival was near public transit *and* your friends are willing to join you
- Conclusion: perceptron can weigh up different kinds of evidence in order to make decisions

First start: perceptron

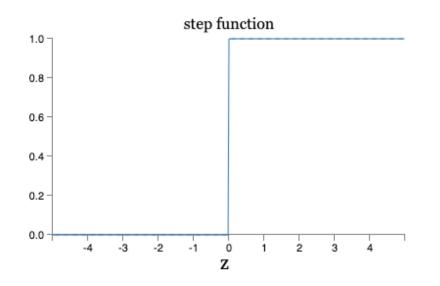
- We can simplify the perceptions description
 - Write $\sum_i w_i x_i$ as a dot product, $\mathbf{w} \cdot \mathbf{x} = \sum_i w_i x_i$
 - *w* and *x* are vectors whose components are the weights and inputs respectively
 - Move threshold to other side known as bias *b*
 - We set b = -t
 - We can now calculate the output

$$output = \begin{cases} 0 & if \mathbf{w} \cdot x + b \leq 0\\ 1 & if \mathbf{w} \cdot x + b > 0 \end{cases}$$

• Can be modelled via sign-function: $sgn(w \cdot x + b)$

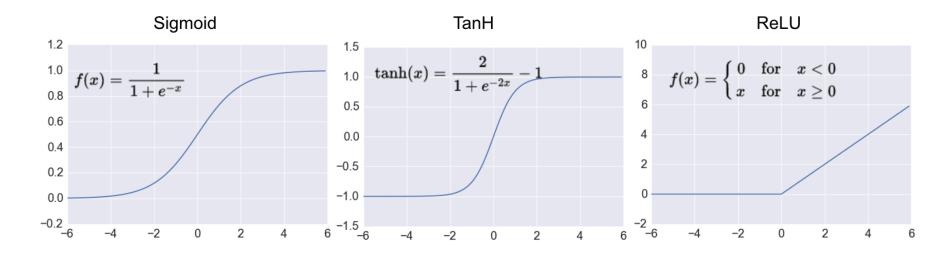
Activation functions

- So far, we modelled the output of our perceptron using the step function sgn(z)
 - Small changes of some weights w_i can lead to great changes in the output (i.e. flip from 0 to 1)
 - This makes it difficult to learn the weights



Activation functions

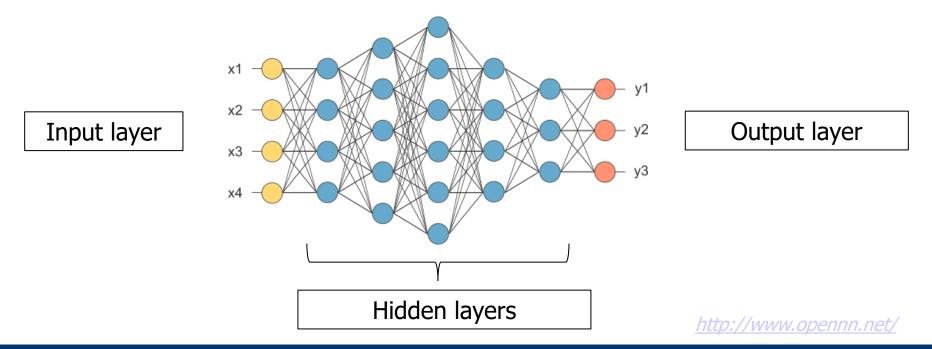
- Use activation functions with a continuous value range
 - Small changes in the weights and biases cause only a small change in their output
 - Often: activations saturate for very large and/or small values



http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

Structure of neural networks

- Neurons are organized and stacked in layers
 - The neurons of each layer work on the activations from the former layer
 - Each layer learns more complex abstractions (~ decisions) of the input based on the former layer's abstractions



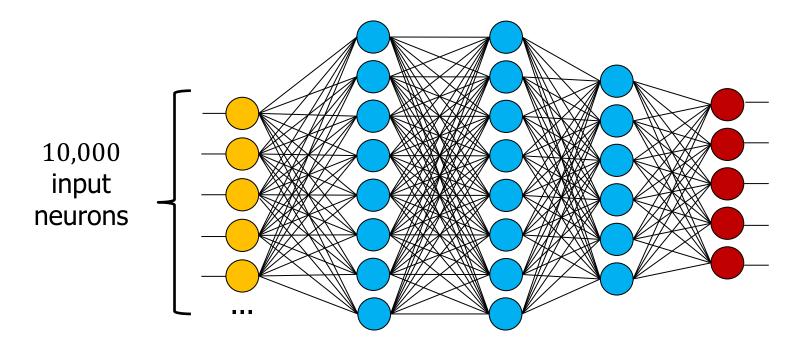
Mario Sänger: Transfer Learning for Biomedical Relation Extraction (Seminar WS-2019/20)

- Let's suppose, we have a corpus of news articles and we want to perform automatic categorization of these articles
 - We want to distinguish articles from five different categories: politics, economy, culture, lifestyle, sport
- Assume we have a set S of labelled examples (x_i, y_i)
 - *x_i* : TF-IDF vector of text from article *i* (details next slide)
 - y_i : The gold standard label for article *i*
 - In following we will often refer to the label as one-hot encoded vector

Example	politics	economy	culture	lifestyle	sport
$y(x_1) = economy$	0	1	0	0	0
$y(x_2) = science$	0	0	0	1	0

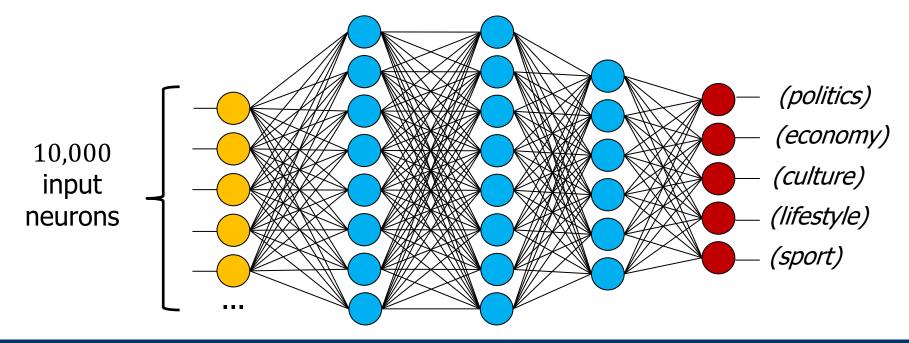
Example: Text classification

- Input: TF-IDF vectors of the articles
 - Let's say we have a vocabulary with 10.000 terms
 - Each component of the vector is modelled as separate input neuron



Example: Text classification

- Output: One of the five classes politics, economy, culture, lifestyle, sport
 - Each class gets one dedicated neuron in the output layer
 - We select the output neuron which fires resp. has the highest activation as prediction



Cost function

- We want to find weights and biases so that the output from the network approximates y_i for all training inputs x_i as good as possible
- To quantify how well we're achieving this goal we define a cost function (loss / objective):

$$C(w,b) = \frac{1}{2n} \sum_{i} ||y_i - a_i||^2$$

- *w* and *b* all weights and biases of the network
- n = |S| is number of training examples
- || || is the length of the vector

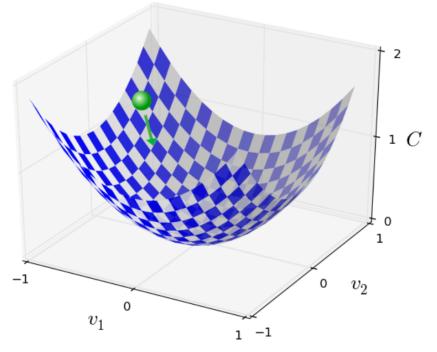
Cost function

• Quadratic cost function (mean squared error)

$$C(w,b) = \frac{1}{2n} \sum_{i} ||y_i| - a_i||^2$$

- Properties
 - The costs are always non-negative
 - C(w, b) becomes small $C(w, b) \approx 0$ when y_i is approximately equal to the network output a_i for all instances
 - In contrast, a large *C*(*w*, *b*) means that output *a_i* is not close to *y_i* for many instances
- Training objective: minimizing the cost C(w, b)
 - But, how to achieve this?

- For simplicity say we have a cost function C(v₁, v₂) only depending on two parameter v₁ and v₂
- Image we start at a random initialization of v_1 and v_2
- We want to find the global minimum of $C(v_1, v_2)$
 - Moving down the slope from the (random) starting point
 - Calculate the gradient and move in the opposite direction

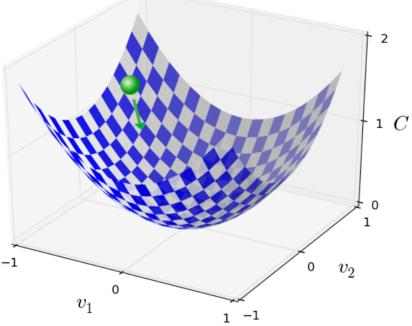


- We move a small amount Δv_1 and Δv_2 in direction of v_1/v_2
 - We can represent Δv_1 and Δv_2 as vector $\Delta v \equiv (\Delta v_1, \Delta v_2)^T$
- According to calculus the costs change are:

$$\Delta C \approx \frac{\partial C}{\partial v_1} \Delta v_1 + \frac{\partial C}{\partial v_2} \Delta v_2$$

• We define the gradient of *C* to be the vector of partial derivates

$$\nabla C \equiv \left(\frac{\partial C}{\partial v_1}, \frac{\partial C}{\partial v_2}\right)^T$$



• We can write the cost changes as:

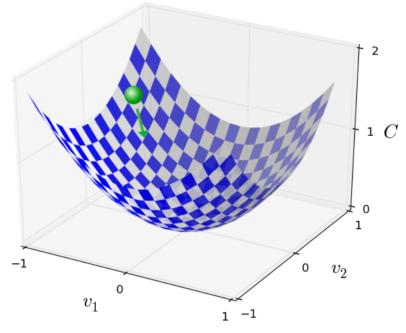
$$\Delta C \approx \nabla C \cdot \Delta v$$

• This helps us to choose Δv so as to make ΔC negative:

$$\Delta v = -\eta \nabla C$$

- -η is a small, positive parameter (learning rate)
- Our cost changes are now:

$$\Delta C \approx -\eta \nabla C \cdot \nabla C = -\eta \| \nabla C \|^2$$

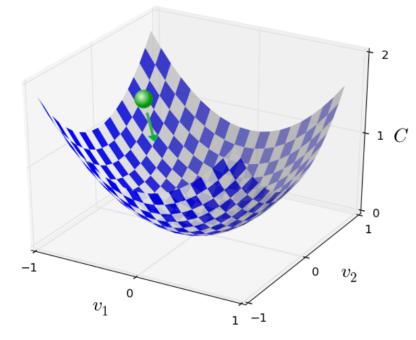


• Our cost changes are now:

 $\Delta C \approx -\eta \nabla C \cdot \nabla C = -\eta \|\nabla C\|^2$

- Because $\|\nabla C\|^2 \ge 0$ this guarantees that $\Delta C \le 0$
 - *C* will always decrease and never increase
- We can describe the update of our variables *v*:

$$v \rightarrow v' = v - \eta \nabla C$$



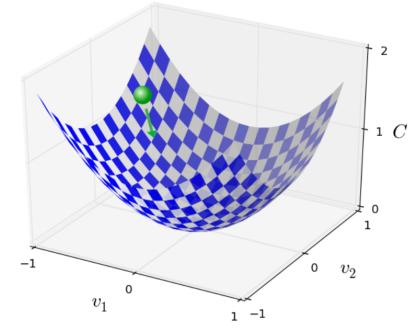
• Our cost changes are now:

 $\Delta C \approx -\eta \nabla C \cdot \nabla C = -\eta \|\nabla C\|^2$

• We can describe the update of our variables *v*:

$$v \rightarrow v' = v - -\eta \nabla C$$

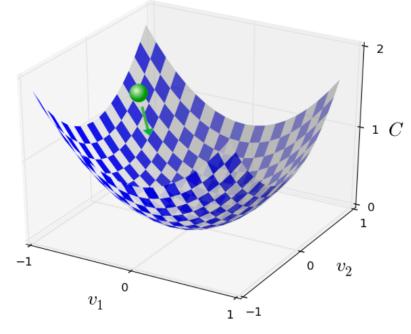
- Good selection of η is important
 - Too small: learns very slow
 - Too big: jumps from valley side to valley side (*C* may increase)



Gradient descent (GD)

- We can easily extend out considerations to cost functions
 C with *m* parameter v₁, v₂, ..., v_m
- Small change in v is given by $\Delta v = (\Delta v_1, \Delta v_2, ..., \Delta v_m)^T$
- Gradient vector is given by $\nabla C \equiv \left(\frac{\partial C}{\partial v_1}, \frac{\partial C}{\partial v_2}, \dots, \frac{\partial C}{\partial v_m}\right)^T$
- Parameter update:

$$\Delta v = -\eta \nabla C$$
$$v \to v' = v - -\eta \nabla C$$



- How can we apply gradient descent to learn in a neural network?
- Idea: Use GD to find the weights *w* and biases *b* which minimize our cost function
 - Minimizing the cost by changing all weights w_k and biases b_l according to:

$$w_k \rightarrow w_k' = w_k - \eta \frac{\partial C}{\partial w_k}$$

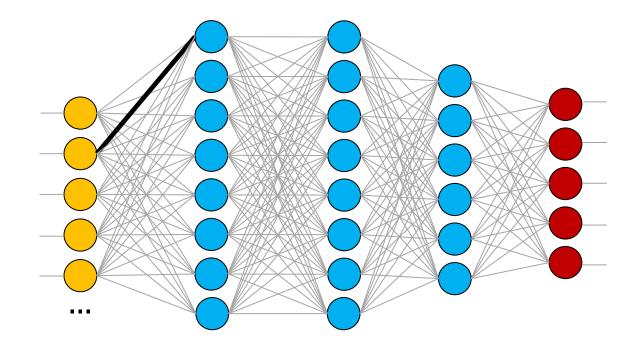
 $b_l \rightarrow b_l' = b_l - \eta \frac{\partial C}{\partial b_l}$

- However, there several challenges in applying the gradient descent rule (for neural networks)
- For example: Notice that our cost function averages the costs over all individual training samples

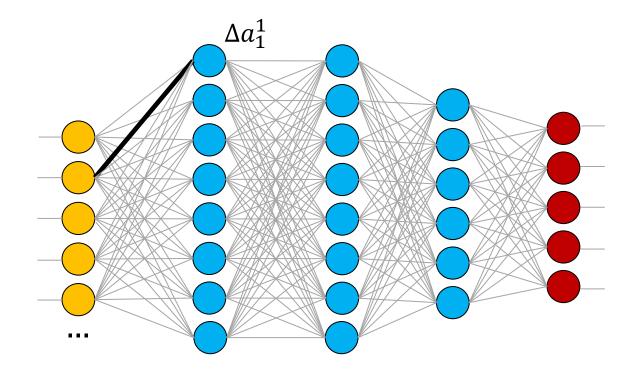
$$C(w,b) = \frac{1}{2n} \sum_{i} ||y_i| - a_i||^2$$

- In practice, we need to compute the gradients ∇*C_i* separately for each training samples *x_i* and then average them
- This can take a long time if the training set is (very) large
- Stochastic gradient descent:
 - Estimate ∇C by computing ∇C_X for a small sample of training instances X (mini-batch)

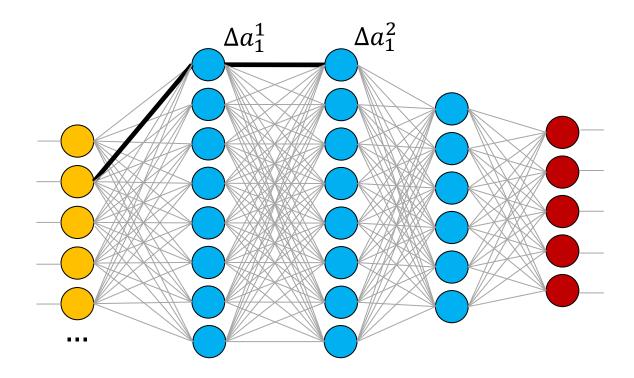
• Let's imagine we make a small change to some weight



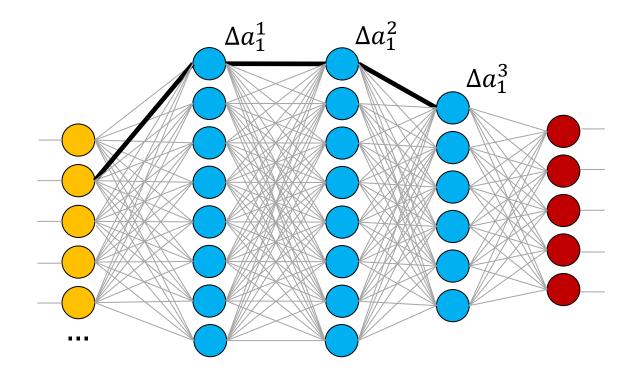
- Let's imagine we make a small change to some weight
 - This leads to a change in the activation of the subsequent neuron



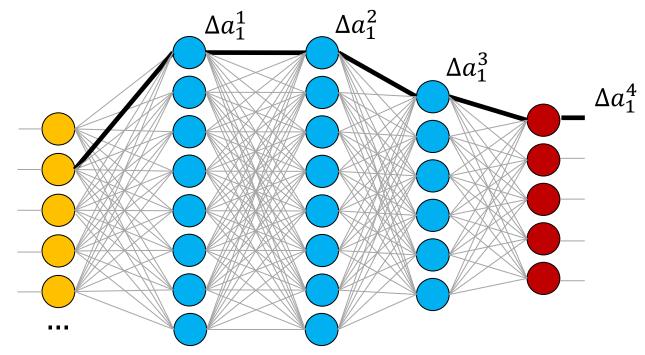
- Let's imagine we make a small change to some weight
 - This leads to a change in the activation of the subsequent neuron
 - ... this triggers updates of all subsequent layers / neurons



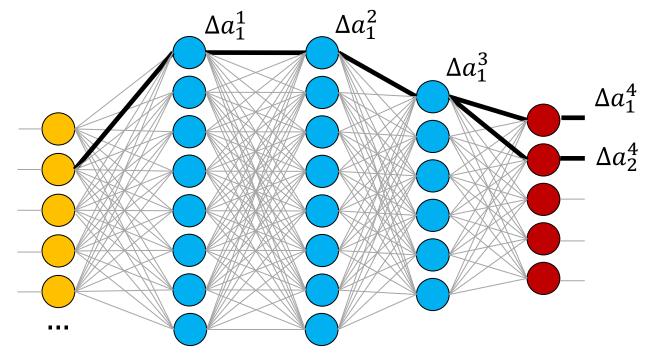
- Let's imagine we make a small change to some weight
 - This leads to a change in the activation of the subsequent neuron
 - ... this triggers updates of all subsequent layers / neurons



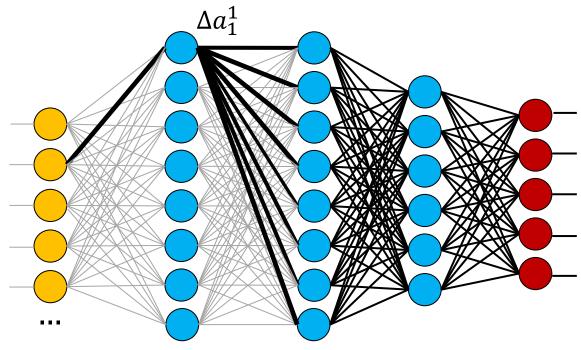
- Let's imagine we make a small change to some weight
 - This leads to a change in the activation of the subsequent neuron
 - ... this triggers updates of all subsequent layers / neurons
 - ... and eventually the result of the cost function changes



- Let's imagine we make a small change to some weight
 - This leads to a change in the activation of the subsequent neuron
 - ... this triggers updates of all subsequent layers / neurons
 - ... and eventually the result of the cost function changes



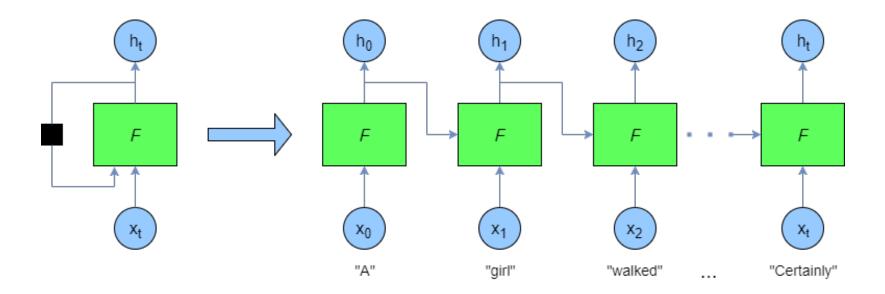
- Let's imagine we make a small change to some weight
 - This leads to a change in the activation of the subsequent neuron
 - ... this triggers updates of all subsequent layers / neurons
 - ... and eventually the result of the cost function changes



- Let's imagine we make a small change to some weight
 - This leads to a change in the activation of the subsequent neuron
 - ... this triggers updates of all subsequent layers / neurons
 - ... and eventually the result of the cost function changes
- We have to consider all paths, if changing some weight, to calculate the impact of the change to the cost function
- Solution: Backpropagation algorithm
 - Got famous 1986 by paper of Rummelhart, Hinton and Williams
 - Efficient algorithm to compute partial derivates $\frac{\partial C}{\partial w_{\mu}}$ and $\frac{\partial C}{\partial b_{\mu}}$
 - Only use one forward and one backward to calculate parameter updates

Recurrent neural networks (RNN)

- RNNs: Class of ANNs with connections between nodes form a directed graph along a temporal sequence
 - Contain feedback loops to explicitly model temporal dynamic behaviour (e.g. the sequence of words in a sentence)

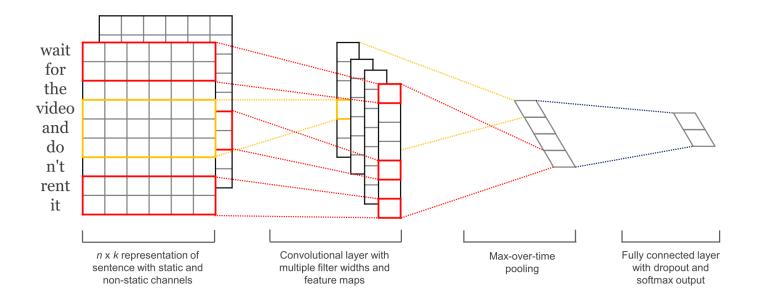


https://adventuresinmachinelearning.com/wp-content/uploads/2017/09/Recurrent-neural-network.png

Mario Sänger: Transfer Learning for Biomedical Relation Extraction (Seminar WS-2019/20)

Convolutional neural networks (CNNs)

- CNNs are regularized versions of multi-layer perceptrons
 - Convolutional layers convolve the input and pass its result to the next layer
 - Advantage: shared-weight architecture and translation invariant



Topic presentation

Mario Sänger: Transfer Learning for Biomedical Relation Extraction (Seminar WS-2019/20)

Overview

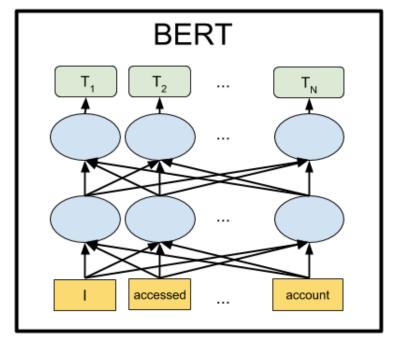
Nr.	Тур	Thema	Schwierigkeit
1	STL	<u>(Bio-) BERT for Relation Extraction</u> Lin, Chen, et al. "A BERT-based Universal Model for Both Within-and Cross-sentence Clinical Temporal Relation Extraction." Proceedings of the 2nd Clinical Natural Language Processing Workshop. 2019.	Niedrig- Mittel
2	STL	<u>(Bio-) ELMO for Relation Extraction</u> Peng, Yifan, Shankai Yan, and Zhiyong Lu. "Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets." arXiv preprint arXiv:1906.05474 (2019).	Mittel
3	STL	<u>CNNs with pre-trained biomedical word embeddings</u> Liu, Shengyu, et al. "Drug-drug interaction extraction via convolutional neural networks." Computational and mathematical methods in medicine 2016 (2016).	Niedrig
4	STL	<u>CNN(+RNN) with biomedical word embeddings</u> <i>Vu, Ngoc Thang, et al. "Combining recurrent and</i> <i>convolutional neural networks for relation classification."</i> <i>arXiv preprint arXiv:1605.07333 (2016).</i>	Niedrig- Mittel

Overview

5	MTL	<u>Hierarchical multi-task learning</u> Sanh, Victor, Thomas Wolf, and Sebastian Ruder. "A hierarchical multi-task approach for learning embeddings from semantic tasks." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019.	Hoch
6	STL	<u>Pre-trained transformer networks for RE</u> Alt, Christoph, Marc Hübner, and Leonhard Hennig. "Improving relation extraction by pre-trained language representations." arXiv preprint arXiv:1906.03088 (2019).	Mittel- Hoch
7	STL	<u>CNN with pre-trained biomedical word embeddings and</u> <u>linguistic features</u> Choi, Sung-Pil. "Extraction of protein–protein interactions (PPIs) from the literature by deep convolutional neural networks with various feature embeddings." Journal of Information Science 44.1 (2018): 60-73.	Hoch

T1: (Bio-BERT) for Relation Extraction

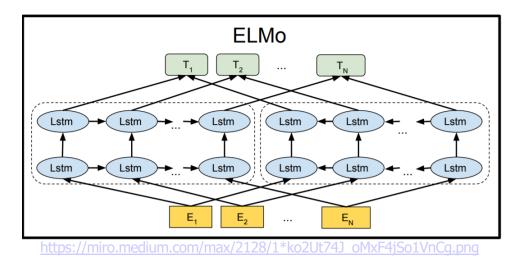
- BERT: State-of-the-art pretrained language model
 - Different models pre-trained on Wikipedia or biomedical text available
- Task and challenges:
 - Evaluate BERT for biomedical RE
 - Compare BERT models pre-trained on different corpora (in- vs. outof-domain)
 - Complex model, but good (easy to adapt) implementations available



https://habrastorage.org/getpro/habr/post_images/2b d/0ba/1c4/2bd0ba1c4fb80fe4d771f555168c9ff0.png

http://www.charliepunk.de/WebRoot/Store19/Shops/6174 7719/5228/9113/D83C/F82D/1BDD/C0A8/28BB/6D9B/kue hlschrankmagnet-bert-sesamstrasse_ml.jpg

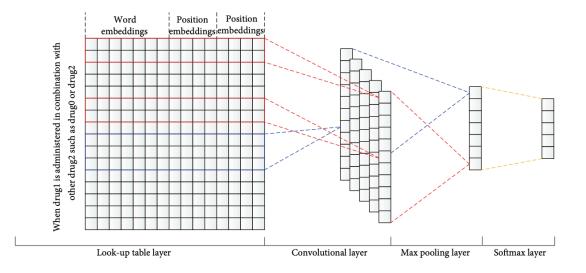
• ELMo: State-of-the-art pre-trained language model



- Task and challenges:
 - Evaluate and compare ELMo models pre-trained on different corpora (in- vs. out-of-domain)
 - Complex model, but good (easy to adapt) implementations available

T3: CNN with pre-trained biomed. embeddings

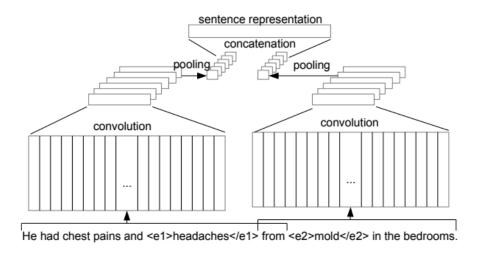
• Liu et al. use CNNs with word and positional embeddings



- Task and challenges
 - Get familiar with CNNs and re-implement the approach
 - Evaluate the benefit of pre-trained biomedical embeddings

T4: CNN with biomedical embeddings

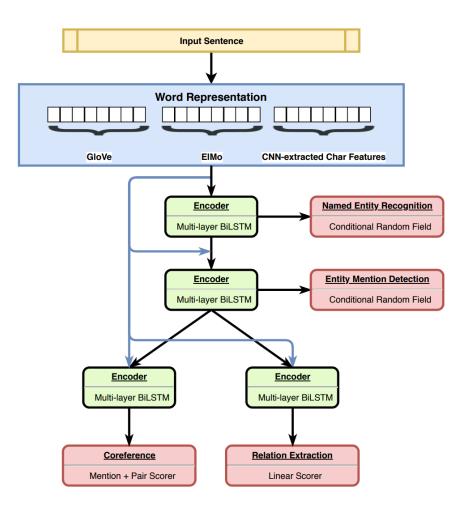
• Vu et al. use separate CNNs for different parts of the sentence



- Task and challenges
 - Get familiar with CNNs and re-implement the approach
 - Evaluate the benefit of pre-trained biomedical embeddings

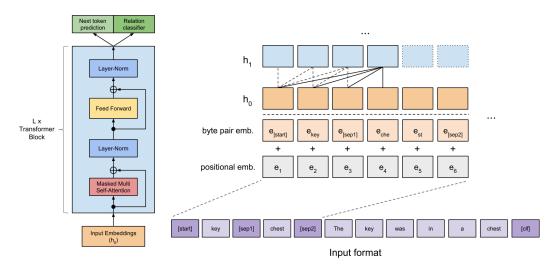
T5: Hierarchical multi-task learning

- Sanh et al. propose a hierarchical multi-task architecture
 - Network learns to perform NER, EMD, CoRef, RE simultaneously
- Task and challenges:
 - Re-implement and adapt approach for biomedical RE
 - Find suitable auxiliary tasks and data



T6: Pre-trained transformer networks for RE

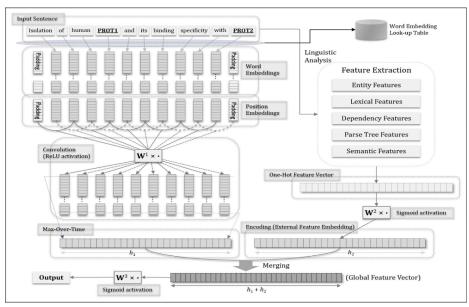
• Alt et al. use a pre-trained transformer model and adapt it to relation extraction



- Task and challenges:
 - Evaluate the transformer model for biomedical RE
 - Complex model, but good (easy to adapt) implementations available

T7: CNN with word embeddings and ling. features

• Choi uses CNNs with word embeddings and hand-crafted linguistic features for RE



- Task and challenges
 - Get familiar with CNNs and re-implement the approach
 - Evaluate the benefit of pre-trained biomedical embeddings

Questions?

Mario Sänger: Transfer Learning for Biomedical Relation Extraction (Seminar WS-2019/20)

Thank you for your attention!

Mario Sänger: Transfer Learning for Biomedical Relation Extraction (Seminar WS-2019/20)