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Content of this Lecture

• Information Retrieval Models
– Boolean Model
– Vector Space Model

• Inverted Files
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Information Retrieval Core

• The core question in IR: 
Which of a given set of (normalized) documents is relevant 
for a given query?

• Ranking: How relevant for a given query is each 
document?

Query Normalization

NormalizationDocument base

Match / 
Relevance 

Scoring
Result
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How can Relevance be Judged?

Non-Overlapping Lists
Proximal Nodes

Structured Models

Retrieval: 
Adhoc
Filtering

Browsing
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Vector-Space
Probabilistic

Set Theoretic

Fuzzy
Extended Boolean

Probabilistic

Inference Network 
Belief Network

Algebraic

Generalized Vector
Lat. Semantic Index
Neural Networks

Browsing

Flat
Structure Guided
Hypertext [BYRN99]
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Notation

• Most of the models we discuss use the “Bag of Words”
• Definition

– Let D be the set of all normalized documents, d∈D is a document
– Let K be the set of all terms in D, ki∈K is a term
– Let w be the function that maps a given document d to its multiset 

of distinct terms in K (its bag-of-words)
– The bag of words of d is a vector vd of size |K| with

• vd[i]=0 iff ki ∉ w(d)
• vd[i]=1 iff ki ∈ w(d)

– Often, we use weights instead of a Boolean membership
• vd[i]=0 iff ki ∉ w(d)
• vd[i]=wij iff ki ∈ w(d)
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Boolean Model

• Simple model based on set theory
• Queries are specified as Boolean expressions over terms

– Terms connected by AND, OR, NOT, (XOR, ...)
– Parenthesis are possible (but ignored here)

• Relevance of a document is either 0 or 1
– Let q contain the atoms (terms) <k1, k2, …>
– An atom ki evaluates to true for a document d iff vd[ki]=1
– Compute truth values of all atoms for each d
– Compute truth of q for each d as the logical expression over atoms

• Example: “(kaufen AND rad) OR NOT wir”
– “wir kaufen ein rad” – <(T AND T) OR NOT T> = T
– “sei kaufen ein auto” - <(T AND F) OR NOT F> = T
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Properties

• Simple, clear semantics, widely used in early systems
• Disadvantages

– No partial matching
• Suppose query k1∧k2∧… ∧k9
• A doc d with k1∧k2…k8 is as irrelevant as one with none of the terms

– No ranking
– Terms cannot be weighted 
– No synonyms, homonyms, semantically close words
– Lay users don’t understand Boolean expressions

• Results: Often unsatisfactory
– Too many documents (too few restrictions, many OR) 
– Too few documents (too many restrictions, many AND)
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Content of this Lecture

• Information Retrieval Models
– Boolean Model
– Vector Space Model

• Inverted Files
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Vector Space Model

• Salton, G., Wong, A. and Yang, C. S. (1975). "A Vector 
Space Model for Automatic Indexing." Communications of 
the ACM 18(11): 613-620.
– A breakthrough in IR

• General idea
– Fix vocabulary K (the dictionary)
– View each doc (and the query) as point in a |K|-dimensional space
– Rank docs according to distance from the query in that space

• Main advantages
– Inherent ranking (according to distance)
– Naturally supports partial matching (increases distance)
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Vector Space

• Each term is one dimension
– Different suggestions for 

determining co-ordinates, i.e., 
term weights

• The closest docs are the 
most relevant ones
– Rationale: Vectors correspond 

to themes which are loosely 
related to sets of terms

– Set of terms interpreted as 
vector/point in |K|-dim space

– Distance between vectors ~ 
distance between themes

– Different “distances”

Star

Diet

Astronomy Movie stars

Mammals
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The Angle between Two Vectors

• Recall: The scalar product between two vectors v and w of 
equal dimension is defined as

• This gives us the angle

– With
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Distance as Angle 

Distance = cosine of the angle between doc d and query q
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Can be dropped 
for rankingLength 

normalization
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Example

Text verkauf haus italien gart miet blüh woll
1 Wir verkaufen Häuser in 

Italien
1 1 1

2 Häuser mit Gärten zu 
vermieten

1 1 1

3 Häuser: In Italien, um 
Italien, um Italien herum

1 1

4 Die italienschen Gärtner 
sind im Garten

1 1

5 Der Garten in unserem 
italienschen Haus blüht

1 1 1 1

Q Wir wollen ein Haus mit 
Garten in Italien mieten

1 1 1 1 1

• Assume stop word removal, stemming, Boolean weights
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Ranking

• sim(d1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / √3 ~ 1.15
• sim(d2,q) = (1+1+1) / √3 ~ 1.73
• sim(d3,q) = (1+1)  / √2 ~ 1.41
• sim(d4,q) = (1+1)  / √2 ~ 1.41
• sim(d5,q) = (1+1+1)  / √4 ~ 1.5

1 1 1 1
2 1 1 1
3 1 1
4 1 1
5 1 1 1 1
Q 1 1 1 1 1

Rg Q: Wir wollen ein Haus mit Garten in Italien mieten
1 d2: Häuser mit Gärten zu vermieten
2 d5: Der Garten in unserem italienschen Haus blüht

3
d4: Die italienschen Gärtner sind im Garten
d3: Häuser: In Italien, um Italien, um Italien herum

5 d1: Wir verkaufen Häuser in Italien
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Term Weights

• Definition
Let D be a document collection, K be the set of all terms in D, 
d∈D and k∈K
– The relative term frequency tfdk is the relative frequency of k in d
– The document frequency dfk is the frequency of docs in D containing k

• May also be defined as the frequency of occurrences of k in D
– The inverse document frequency is defined as idfk = |D| / dfk

• In practice, one usually uses idfk = log(|D| / (1+dfk))
– The tf*idf score wdk of a term k in document d is defined as

kdkdk idftfw *=
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Example TF*IDF

• sim(d1,q)=(5/4*1/3 +5/4*1/3) / √3.13 ~ 1.51
• sim(d2,q)=(5/4*1/3 +5/3*1/3+5*1/3) / √3.26 ~ 4,80
• sim(d3,q)=(5/4*1/4+5/4*3/4) / √0.98 ~ 1,57
• sim(d4,q)=(5/4*1/3 +5/3*2/3) / √1.41 ~ 2,08
• sim(d5,q)=(5/4*1/4 +5/4*1/4+5/3*1/4) / √1.93 ~ 2,08

IDF 5 5/4 5/4 5/3 5 5 DIV-0
1 (tf) 1/3 1/3 1/3
2 (tf) 1/3 1/3 1/3
3 (tf) 1/4 3/4
4 (tf) 1/3 2/3
5 (tf) 1/4 1/4 1/4 1/4
Q 1 1 1 1 1

wollen ein Haus mit Garten in Italien mieten
Häuser mit Gärten zu vermieten

Der Garten in unserem italienschen Haus blüht
Die italienschen Gärtner sind im Garten

Häuser: In Italien, um Italien, um Italien herum

Wir verkaufen Häuser in Italien
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TF*IDF in Short

• Give terms in a doc d high weights which are …
– frequent in d and
– infrequent in D

• IDF deals with the consequences of Zipf’s law
– The few very frequent (and unspecific) terms get lower scores
– The many infrequent (and specific) terms get higher scores

• Interferes with stop word removal
– If stop words are removed, IDF might not be necessary any more 
– If IDF is used, stop word removal might not be necessary any more 
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Shortcomings

• No treatment of synonyms (query expansion, …)
• No treatment of homonyms

– Different senses = different dimensions
– We would need to disambiguate terms into their senses (later)

• No consideration of term order
– But order carries semantic meaning

• Assumes that all terms are independent
– Clearly wrong: some terms are semantically closer than others

• Their co-appearance doesn’t mean more than only one appearance
• The appearance of “red” in a doc with “wine” doesn’t mean much

– Extension: Topic-based Vector Space Model 
• Latent Semantic Indexing (see IR lecture)
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Content of this Lecture

• Information Retrieval Models
– Boolean Model
– Vector Space Model

• Inverted Files
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Full-Text Indexing

• Fundamental operation for all IR models: find( k, D)
– Given a query term k, find all docs from D containing it

• Can be implemented using online search
– Search all occurrence of k in all docs from D
– Algorithms: Boyer-Moore, Knuth-Morris-Pratt, etc.

• But
– We generally assume that D is stable (compared to k)
– We only search for discrete terms (after tokenization)

• Consequence: Better to pre-compute a term index over D
– Also called “full-text index”
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Inverted Files (or Inverted Index)

• Simple and effective index structure for terms
• Builds on the Bag of words approach

– We give up the order of terms in docs (see positional index later)
• Start from “docs containing terms” (~ “docs”) and invert to 

“terms appearing in docs” (~ “inverted docs”)

t1: d1,d2,d4,d5,d6
t2: d3,d5,d6,d7,d8
t3: d1,d3,d5

d1: t1,t3
d2: t1
d3: t2,t3
d4: t1
d5: t1,t2,t3
d6: t1,t2
d7: t2
d8: t2
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Building an Inverted File [Andreas Nürnberger, IR-2007] 

Doc1:
Now is the time
for all good men
to come to the aid
of their country.

Doc2:
It was a dark and
stormy night in 
the country 
manor. The time 
was past midnight.

Term Doc ID
now 1
is 1
the 1
time 1
for 1
all 1
good 1
men 1
to 1
come 1
to 1
the 1
aid 1
of 1
their 1
country 1
it 2
was 2
a 2
dark 2
and 2
stormy 2
night 2
in 2
the 2
country 2
manor 2
the 2
time 2
was 2
past 2
midnight 2

Term Doc ID
a 2
aid 1
all 1
and 2
come 1
country 1
country 2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1
the 1
the 2
the 2
their 1
time 1
time 2
to 1
to 1
was 2
was 2

a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 2
was 2

Sort Merge


Sheet1

		Term		Doc ID

		now		1

		is		1

		the		1

		time		1

		for		1

		all		1

		good		1

		men		1

		to		1

		come		1

		to		1

		the		1

		aid		1

		of		1

		their		1

		country		1

		it		2

		was		2

		a		2

		dark		2

		and		2

		stormy		2

		night		2

		in		2

		the		2

		country		2

		manor		2

		the		2

		time		2

		was		2

		past		2

		midnight		2






Sheet1

		Term		Doc ID

		a		2

		aid		1

		all		1

		and		2

		come		1

		country		1

		country		2

		dark		2

		for		1

		good		1

		in		2

		is		1

		it		2

		manor		2

		men		1

		midnight		2

		night		2

		now		1

		of		1

		past		2

		stormy		2

		the		1

		the		1

		the		2

		the		2

		their		1

		time		1

		time		2

		to		1

		to		1

		was		2

		was		2






Sheet1

		Term		Doc #

		a		2

		aid		1

		all		1

		and		2

		come		1

		country		1.2

		dark		2

		for		1

		good		1

		in		2

		is		1

		it		2

		manor		2

		men		1

		midnight		2

		night		2

		now		1

		of		1

		past		2

		stormy		2

		the		1.2

		their		1

		time		1.2

		to		2

		was		2
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Dictionary and Posting List

• Split up inverted file into dictionary and posting list
– Dictionary is not very large – keep in memory
– Each entry maintains a pointer to its posting list
– Posting lists are on disk
– One IO for finding posting list for a given term 

Dictionary

Term docIDs
a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
… …
time 1,2
to 1
was 2

Term
a
aid
all 
and
come
country
dark
…
time
to
was

Posting
2
1
1
2
1

1,2
2
…
1,2
1
2

Postings


Sheet1

		Term		docIDs

		a		2

		aid		1

		all		1

		and		2

		come		1

		country		1.2

		dark		2

		…		…

		time		1.2

		to		1

		was		2






Sheet1

		Term

		a

		aid

		all

		and

		come

		country

		dark

		…

		time

		to

		was






Sheet1

		Posting

		2

		1

		1

		2

		1

		1.2

		2

		…

		1.2

		1

		2
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Adding Term Weighting

• VSM with TF*IDF requires term frequencies
– Dictionary stores IDF per term
– Postings store lists of pairs (docID, tf)

Dictionary          Postings

Term DF
a 1
aid 1
all 1
and 1
come 1
country 2
dark 1
… …
time 2
to 1
was 1

Posting
(2,1)
(1,1)
(1,1)
(2,1)
(1,1)

(1,1), (2,1)
(2,1)
…

(1,1), (2,1)
(1,2)
(2,2)


Sheet1

		Term		DF

		a		1

		aid		1

		all		1

		and		1

		come		1

		country		2

		dark		1

		…		…

		time		2

		to		1

		was		1






Sheet1

		Posting

		(2,1)

		(1,1)

		(1,1)

		(2,1)

		(1,1)

		(1,1), (2,1)

		(2,1)

		…

		(1,1), (2,1)

		(1,2)

		(2,2)
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Searching in VSM

• Assume we want to retrieve the top-r docs
• Algorithm

– Initialize an empty doc-list S (as hash table or priority queue)
– Iterate through query terms ki

• Walk through posting list of ki (elements (docID, TF))
– If docID∈S: S[docID] =+ IDF[ki]*TF
– else: S = S.append( (docID, IDF[ki]*TF))

– Length-normalize values and compute cosine
– Return top-r docs in S

• S contains all and only those docs containing at least one ki



Ulf Leser: Maschinelle Sprachverarbeitung 26

Space

• Size of dictionary: O(|K|)
– Zipf’s law: From a certain corpus size on, new terms appear only 

very infrequently 
• But there are always new terms, no matter how large D
• Example: 1GB text (TREC-2) generates only 5MB dictionary

– Typically: <1 Million
• Many more in multi-lingual corpora, web corpora, etc.

• Size of posting list
– Theoretic worst case: O(|K|*|D|)
– Practical: A few hundred entries for each doc in D
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Storing the Dictionary

• Dictionary as array (keyword, DF, ptr)
• Since keywords have different lengths: 

Implementation will be (ptr1, DF, ptr2)
– ptr1: To string (the keyword)
– ptr2: To posting list

• Search: Compute log(|K|) memory 
addresses, follow ptr1, compare strings: 
O(log(|K|)*|k|)

• Construction: O(|K|*log(|K|))
• Alternatives: Hashing, Keyword Trees

Term DF
a 1 ptr
aid 1 ptr
all 1 ptr
and 1 ptr
come 1 ptr
country 2 ptr
dark 1 ptr
for 1 ptr
good 1 ptr
in 1 ptr
is 1 ptr
it 1 ptr
manor 1 ptr
men 1 ptr
midnight 1 ptr
night 1 ptr
now 1 ptr


Sheet1

		Term		DF

		a		1		ptr

		aid		1		ptr

		all		1		ptr

		and		1		ptr

		come		1		ptr

		country		2		ptr

		dark		1		ptr

		for		1		ptr

		good		1		ptr

		in		1		ptr

		is		1		ptr

		it		1		ptr

		manor		1		ptr

		men		1		ptr

		midnight		1		ptr

		night		1		ptr

		now		1		ptr

		of		1

		past		1

		stormy		1

		the		4

		their		1

		time		2

		to		2

		was		2
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Storing the Posting File

• Posting file is usually kept on disk
• Thus, we need an IO-optimized data structure
• Static

– Store posting lists one after the other in large file
– Posting-ptr is (large) offset in this file

• Prepare for inserts
– Reserve additional space per posting

• Good idea: Large initial posting lists get large extra space
• Many inserts can be handled internally

– Upon overflow, append entire posting list at the end of the file
• Place pointer at old position – at most two access per posting list

– Can lead to many holes – requires regular reorganization 
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Doc2:
It was a dark and
stormy night in 
the country 
manor. The time 
was past midnight.

Positional Information

• What if we search for phrases: “Bill Clinton”, “Ulf Leser”
– ~10% of web searches are phrase queries

• What if we search by proximity “car AND rent/5”
– “We rent cars”, “cars for rent”, “special care rent”, “if you want to 

rent a car, click here”, “Cars and motorcycles for rent”, …
• We need positional information

Doc1:
Now is the time
for all good men
to come to the aid
of their country.

night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 1,2
was 1,2

Doc # TF Pos
2 1 6
1 1 1
1 1 14
2 1 15
1 1 6
1 2 3,12
2 2 9,12
1 1 15
1 1 4
2 1 13
1 2 9,11


Sheet1

		Term		Doc #

		a		2

		aid		1

		all		1

		and		2

		come		1

		country		1.2

		dark		2

		for		1

		good		1

		in		2

		is		1

		it		2

		manor		2

		men		1

		midnight		2

		night		2

		now		1

		of		1

		past		2

		stormy		2

		the		1.2

		their		1

		time		1.2

		to		1.2

		was		1.2






Sheet1

		Doc #		TF		Pos

		2		1		6

		1		1		1

		1		1		14

		2		1		15

		1		1		6

		1		2		3.12

		2		2		9.12

		1		1		15

		1		1		4

		2		1		13

		1		2		9.11

		2		1

		2		1

		1		1

		2		1

		2		1

		1		1

		1		1

		2		1

		2		1

		1		2

		2		2

		1		1

		1		1

		2		1

		1		2

		2		2
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Effects 

• Dictionary is not affected
• Posting lists get much larger

– Store <docID, TF, <pos>> instead of <docID,TF>
– Index with positional information typically 30-50% larger than the 

corpus itself
– Especially frequent words (stop words) require excessive storage

• Use compression or remove stop words 
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Self Assessment

• Explain the vector space model
• How is the size of K (vocabulary) influenced by pre-

processing?
• Describe some variations of deducing term weights
• How could we extend the VSM to also consider the order of 

terms (to a certain degree)?
• Explain idea and structure of inverted files?
• What are possible data structures for the dictionary? 

Advantages / disadvantages?
• What decisions influence the size of posting lists?
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