
Ulf Leser

Maschinelle Sprachverarbeitung
Retrieval Models and Implementation

Ulf Leser: Maschinelle Sprachverarbeitung 2

Content of this Lecture

• Information Retrieval Models
– Boolean Model
– Vector Space Model

• Inverted Files

Ulf Leser: Maschinelle Sprachverarbeitung 3

Information Retrieval Core

• The core question in IR:
Which of a given set of (normalized) documents is relevant
for a given query?

• Ranking: How relevant for a given query is each
document?

Query Normalization

NormalizationDocument base

Match /
Relevance

Scoring
Result

Ulf Leser: Maschinelle Sprachverarbeitung 4

How can Relevance be Judged?

Non-Overlapping Lists
Proximal Nodes

Structured Models

Retrieval:
Adhoc
Filtering

Browsing

U
s
e
r

T
a
s
k

Classic Models

Boolean
Vector-Space
Probabilistic

Set Theoretic

Fuzzy
Extended Boolean

Probabilistic

Inference Network
Belief Network

Algebraic

Generalized Vector
Lat. Semantic Index
Neural Networks

Browsing

Flat
Structure Guided
Hypertext [BYRN99]

Ulf Leser: Maschinelle Sprachverarbeitung 5

Notation

• Most of the models we discuss use the “Bag of Words”
• Definition

– Let D be the set of all normalized documents, d∈D is a document
– Let K be the set of all terms in D, ki∈K is a term
– Let w be the function that maps a given document d to its multiset

of distinct terms in K (its bag-of-words)
– The bag of words of d is a vector vd of size |K| with

• vd[i]=0 iff ki ∉ w(d)
• vd[i]=1 iff ki ∈ w(d)

– Often, we use weights instead of a Boolean membership
• vd[i]=0 iff ki ∉ w(d)
• vd[i]=wij iff ki ∈ w(d)

Ulf Leser: Maschinelle Sprachverarbeitung 6

Boolean Model

• Simple model based on set theory
• Queries are specified as Boolean expressions over terms

– Terms connected by AND, OR, NOT, (XOR, ...)
– Parenthesis are possible (but ignored here)

• Relevance of a document is either 0 or 1
– Let q contain the atoms (terms) <k1, k2, …>
– An atom ki evaluates to true for a document d iff vd[ki]=1
– Compute truth values of all atoms for each d
– Compute truth of q for each d as the logical expression over atoms

• Example: “(kaufen AND rad) OR NOT wir”
– “wir kaufen ein rad” – <(T AND T) OR NOT T> = T
– “sei kaufen ein auto” - <(T AND F) OR NOT F> = T

Ulf Leser: Maschinelle Sprachverarbeitung 7

Properties

• Simple, clear semantics, widely used in early systems
• Disadvantages

– No partial matching
• Suppose query k1∧k2∧… ∧k9
• A doc d with k1∧k2…k8 is as irrelevant as one with none of the terms

– No ranking
– Terms cannot be weighted
– No synonyms, homonyms, semantically close words
– Lay users don’t understand Boolean expressions

• Results: Often unsatisfactory
– Too many documents (too few restrictions, many OR)
– Too few documents (too many restrictions, many AND)

Ulf Leser: Maschinelle Sprachverarbeitung 8

Content of this Lecture

• Information Retrieval Models
– Boolean Model
– Vector Space Model

• Inverted Files

Ulf Leser: Maschinelle Sprachverarbeitung 9

Vector Space Model

• Salton, G., Wong, A. and Yang, C. S. (1975). "A Vector
Space Model for Automatic Indexing." Communications of
the ACM 18(11): 613-620.
– A breakthrough in IR

• General idea
– Fix vocabulary K (the dictionary)
– View each doc (and the query) as point in a |K|-dimensional space
– Rank docs according to distance from the query in that space

• Main advantages
– Inherent ranking (according to distance)
– Naturally supports partial matching (increases distance)

Ulf Leser: Maschinelle Sprachverarbeitung 10

Vector Space

• Each term is one dimension
– Different suggestions for

determining co-ordinates, i.e.,
term weights

• The closest docs are the
most relevant ones
– Rationale: Vectors correspond

to themes which are loosely
related to sets of terms

– Set of terms interpreted as
vector/point in |K|-dim space

– Distance between vectors ~
distance between themes

– Different “distances”

Star

Diet

Astronomy Movie stars

Mammals

Ulf Leser: Maschinelle Sprachverarbeitung 11

The Angle between Two Vectors

• Recall: The scalar product between two vectors v and w of
equal dimension is defined as

• This gives us the angle

– With

),cos(** wvwvwv =

∑
=

=
ni

ii wvwv
..1

*∑= 2
ivv

wv
wvwv

*
),cos(
=

Ulf Leser: Maschinelle Sprachverarbeitung 12

Distance as Angle

Distance = cosine of the angle between doc d and query q

()
22][*][

][*][
*

),cos(),(
∑∑

∑===
iviv

iviv
vv
vv

vvqdsim
qd

dq

qd

qd
qd

Can be dropped
for rankingLength

normalization

Ulf Leser: Maschinelle Sprachverarbeitung 13

Example

Text verkauf haus italien gart miet blüh woll
1 Wir verkaufen Häuser in

Italien
1 1 1

2 Häuser mit Gärten zu
vermieten

1 1 1

3 Häuser: In Italien, um
Italien, um Italien herum

1 1

4 Die italienschen Gärtner
sind im Garten

1 1

5 Der Garten in unserem
italienschen Haus blüht

1 1 1 1

Q Wir wollen ein Haus mit
Garten in Italien mieten

1 1 1 1 1

• Assume stop word removal, stemming, Boolean weights

Ulf Leser: Maschinelle Sprachverarbeitung 14

Ranking

• sim(d1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / √3 ~ 1.15
• sim(d2,q) = (1+1+1) / √3 ~ 1.73
• sim(d3,q) = (1+1) / √2 ~ 1.41
• sim(d4,q) = (1+1) / √2 ~ 1.41
• sim(d5,q) = (1+1+1) / √4 ~ 1.5

1 1 1 1
2 1 1 1
3 1 1
4 1 1
5 1 1 1 1
Q 1 1 1 1 1

Rg Q: Wir wollen ein Haus mit Garten in Italien mieten
1 d2: Häuser mit Gärten zu vermieten
2 d5: Der Garten in unserem italienschen Haus blüht

3
d4: Die italienschen Gärtner sind im Garten
d3: Häuser: In Italien, um Italien, um Italien herum

5 d1: Wir verkaufen Häuser in Italien

()
2][

][*][
),(

∑
∑=

iv

iviv
qdsim

d

dq

Ulf Leser: Maschinelle Sprachverarbeitung 15

Term Weights

• Definition
Let D be a document collection, K be the set of all terms in D,
d∈D and k∈K
– The relative term frequency tfdk is the relative frequency of k in d
– The document frequency dfk is the frequency of docs in D containing k

• May also be defined as the frequency of occurrences of k in D
– The inverse document frequency is defined as idfk = |D| / dfk

• In practice, one usually uses idfk = log(|D| / (1+dfk))
– The tf*idf score wdk of a term k in document d is defined as

kdkdk idftfw *=

Ulf Leser: Maschinelle Sprachverarbeitung 16

Example TF*IDF

• sim(d1,q)=(5/4*1/3 +5/4*1/3) / √3.13 ~ 1.51
• sim(d2,q)=(5/4*1/3 +5/3*1/3+5*1/3) / √3.26 ~ 4,80
• sim(d3,q)=(5/4*1/4+5/4*3/4) / √0.98 ~ 1,57
• sim(d4,q)=(5/4*1/3 +5/3*2/3) / √1.41 ~ 2,08
• sim(d5,q)=(5/4*1/4 +5/4*1/4+5/3*1/4) / √1.93 ~ 2,08

IDF 5 5/4 5/4 5/3 5 5 DIV-0
1 (tf) 1/3 1/3 1/3
2 (tf) 1/3 1/3 1/3
3 (tf) 1/4 3/4
4 (tf) 1/3 2/3
5 (tf) 1/4 1/4 1/4 1/4
Q 1 1 1 1 1

wollen ein Haus mit Garten in Italien mieten
Häuser mit Gärten zu vermieten

Der Garten in unserem italienschen Haus blüht
Die italienschen Gärtner sind im Garten

Häuser: In Italien, um Italien, um Italien herum

Wir verkaufen Häuser in Italien

()
2][

][*][
),(

∑
∑=

iv

iviv
qdsim

d

dq

Ulf Leser: Maschinelle Sprachverarbeitung 17

TF*IDF in Short

• Give terms in a doc d high weights which are …
– frequent in d and
– infrequent in D

• IDF deals with the consequences of Zipf’s law
– The few very frequent (and unspecific) terms get lower scores
– The many infrequent (and specific) terms get higher scores

• Interferes with stop word removal
– If stop words are removed, IDF might not be necessary any more
– If IDF is used, stop word removal might not be necessary any more

Ulf Leser: Maschinelle Sprachverarbeitung 18

Shortcomings

• No treatment of synonyms (query expansion, …)
• No treatment of homonyms

– Different senses = different dimensions
– We would need to disambiguate terms into their senses (later)

• No consideration of term order
– But order carries semantic meaning

• Assumes that all terms are independent
– Clearly wrong: some terms are semantically closer than others

• Their co-appearance doesn’t mean more than only one appearance
• The appearance of “red” in a doc with “wine” doesn’t mean much

– Extension: Topic-based Vector Space Model
• Latent Semantic Indexing (see IR lecture)

Ulf Leser: Maschinelle Sprachverarbeitung 19

Content of this Lecture

• Information Retrieval Models
– Boolean Model
– Vector Space Model

• Inverted Files

Ulf Leser: Maschinelle Sprachverarbeitung 20

Full-Text Indexing

• Fundamental operation for all IR models: find(k, D)
– Given a query term k, find all docs from D containing it

• Can be implemented using online search
– Search all occurrence of k in all docs from D
– Algorithms: Boyer-Moore, Knuth-Morris-Pratt, etc.

• But
– We generally assume that D is stable (compared to k)
– We only search for discrete terms (after tokenization)

• Consequence: Better to pre-compute a term index over D
– Also called “full-text index”

Ulf Leser: Maschinelle Sprachverarbeitung 21

Inverted Files (or Inverted Index)

• Simple and effective index structure for terms
• Builds on the Bag of words approach

– We give up the order of terms in docs (see positional index later)
• Start from “docs containing terms” (~ “docs”) and invert to

“terms appearing in docs” (~ “inverted docs”)

t1: d1,d2,d4,d5,d6
t2: d3,d5,d6,d7,d8
t3: d1,d3,d5

d1: t1,t3
d2: t1
d3: t2,t3
d4: t1
d5: t1,t2,t3
d6: t1,t2
d7: t2
d8: t2

Ulf Leser: Maschinelle Sprachverarbeitung 22

Building an Inverted File [Andreas Nürnberger, IR-2007]

Doc1:
Now is the time
for all good men
to come to the aid
of their country.

Doc2:
It was a dark and
stormy night in
the country
manor. The time
was past midnight.

Term Doc ID
now 1
is 1
the 1
time 1
for 1
all 1
good 1
men 1
to 1
come 1
to 1
the 1
aid 1
of 1
their 1
country 1
it 2
was 2
a 2
dark 2
and 2
stormy 2
night 2
in 2
the 2
country 2
manor 2
the 2
time 2
was 2
past 2
midnight 2

Term Doc ID
a 2
aid 1
all 1
and 2
come 1
country 1
country 2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1
the 1
the 2
the 2
their 1
time 1
time 2
to 1
to 1
was 2
was 2

a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 2
was 2

Sort Merge

Sheet1

		Term		Doc ID

		now		1

		is		1

		the		1

		time		1

		for		1

		all		1

		good		1

		men		1

		to		1

		come		1

		to		1

		the		1

		aid		1

		of		1

		their		1

		country		1

		it		2

		was		2

		a		2

		dark		2

		and		2

		stormy		2

		night		2

		in		2

		the		2

		country		2

		manor		2

		the		2

		time		2

		was		2

		past		2

		midnight		2

Sheet1

		Term		Doc ID

		a		2

		aid		1

		all		1

		and		2

		come		1

		country		1

		country		2

		dark		2

		for		1

		good		1

		in		2

		is		1

		it		2

		manor		2

		men		1

		midnight		2

		night		2

		now		1

		of		1

		past		2

		stormy		2

		the		1

		the		1

		the		2

		the		2

		their		1

		time		1

		time		2

		to		1

		to		1

		was		2

		was		2

Sheet1

		Term		Doc #

		a		2

		aid		1

		all		1

		and		2

		come		1

		country		1.2

		dark		2

		for		1

		good		1

		in		2

		is		1

		it		2

		manor		2

		men		1

		midnight		2

		night		2

		now		1

		of		1

		past		2

		stormy		2

		the		1.2

		their		1

		time		1.2

		to		2

		was		2

Ulf Leser: Maschinelle Sprachverarbeitung 23

Dictionary and Posting List

• Split up inverted file into dictionary and posting list
– Dictionary is not very large – keep in memory
– Each entry maintains a pointer to its posting list
– Posting lists are on disk
– One IO for finding posting list for a given term

Dictionary

Term docIDs
a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
… …
time 1,2
to 1
was 2

Term
a
aid
all
and
come
country
dark
…
time
to
was

Posting
2
1
1
2
1

1,2
2
…
1,2
1
2

Postings

Sheet1

		Term		docIDs

		a		2

		aid		1

		all		1

		and		2

		come		1

		country		1.2

		dark		2

		…		…

		time		1.2

		to		1

		was		2

Sheet1

		Term

		a

		aid

		all

		and

		come

		country

		dark

		…

		time

		to

		was

Sheet1

		Posting

		2

		1

		1

		2

		1

		1.2

		2

		…

		1.2

		1

		2

Ulf Leser: Maschinelle Sprachverarbeitung 24

Adding Term Weighting

• VSM with TF*IDF requires term frequencies
– Dictionary stores IDF per term
– Postings store lists of pairs (docID, tf)

Dictionary Postings

Term DF
a 1
aid 1
all 1
and 1
come 1
country 2
dark 1
… …
time 2
to 1
was 1

Posting
(2,1)
(1,1)
(1,1)
(2,1)
(1,1)

(1,1), (2,1)
(2,1)
…

(1,1), (2,1)
(1,2)
(2,2)

Sheet1

		Term		DF

		a		1

		aid		1

		all		1

		and		1

		come		1

		country		2

		dark		1

		…		…

		time		2

		to		1

		was		1

Sheet1

		Posting

		(2,1)

		(1,1)

		(1,1)

		(2,1)

		(1,1)

		(1,1), (2,1)

		(2,1)

		…

		(1,1), (2,1)

		(1,2)

		(2,2)

Ulf Leser: Maschinelle Sprachverarbeitung 25

Searching in VSM

• Assume we want to retrieve the top-r docs
• Algorithm

– Initialize an empty doc-list S (as hash table or priority queue)
– Iterate through query terms ki

• Walk through posting list of ki (elements (docID, TF))
– If docID∈S: S[docID] =+ IDF[ki]*TF
– else: S = S.append((docID, IDF[ki]*TF))

– Length-normalize values and compute cosine
– Return top-r docs in S

• S contains all and only those docs containing at least one ki

Ulf Leser: Maschinelle Sprachverarbeitung 26

Space

• Size of dictionary: O(|K|)
– Zipf’s law: From a certain corpus size on, new terms appear only

very infrequently
• But there are always new terms, no matter how large D
• Example: 1GB text (TREC-2) generates only 5MB dictionary

– Typically: <1 Million
• Many more in multi-lingual corpora, web corpora, etc.

• Size of posting list
– Theoretic worst case: O(|K|*|D|)
– Practical: A few hundred entries for each doc in D

Ulf Leser: Maschinelle Sprachverarbeitung 27

Storing the Dictionary

• Dictionary as array (keyword, DF, ptr)
• Since keywords have different lengths:

Implementation will be (ptr1, DF, ptr2)
– ptr1: To string (the keyword)
– ptr2: To posting list

• Search: Compute log(|K|) memory
addresses, follow ptr1, compare strings:
O(log(|K|)*|k|)

• Construction: O(|K|*log(|K|))
• Alternatives: Hashing, Keyword Trees

Term DF
a 1 ptr
aid 1 ptr
all 1 ptr
and 1 ptr
come 1 ptr
country 2 ptr
dark 1 ptr
for 1 ptr
good 1 ptr
in 1 ptr
is 1 ptr
it 1 ptr
manor 1 ptr
men 1 ptr
midnight 1 ptr
night 1 ptr
now 1 ptr

Sheet1

		Term		DF

		a		1		ptr

		aid		1		ptr

		all		1		ptr

		and		1		ptr

		come		1		ptr

		country		2		ptr

		dark		1		ptr

		for		1		ptr

		good		1		ptr

		in		1		ptr

		is		1		ptr

		it		1		ptr

		manor		1		ptr

		men		1		ptr

		midnight		1		ptr

		night		1		ptr

		now		1		ptr

		of		1

		past		1

		stormy		1

		the		4

		their		1

		time		2

		to		2

		was		2

Ulf Leser: Maschinelle Sprachverarbeitung 28

Storing the Posting File

• Posting file is usually kept on disk
• Thus, we need an IO-optimized data structure
• Static

– Store posting lists one after the other in large file
– Posting-ptr is (large) offset in this file

• Prepare for inserts
– Reserve additional space per posting

• Good idea: Large initial posting lists get large extra space
• Many inserts can be handled internally

– Upon overflow, append entire posting list at the end of the file
• Place pointer at old position – at most two access per posting list

– Can lead to many holes – requires regular reorganization

Ulf Leser: Maschinelle Sprachverarbeitung 29

Doc2:
It was a dark and
stormy night in
the country
manor. The time
was past midnight.

Positional Information

• What if we search for phrases: “Bill Clinton”, “Ulf Leser”
– ~10% of web searches are phrase queries

• What if we search by proximity “car AND rent/5”
– “We rent cars”, “cars for rent”, “special care rent”, “if you want to

rent a car, click here”, “Cars and motorcycles for rent”, …
• We need positional information

Doc1:
Now is the time
for all good men
to come to the aid
of their country.

night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 1,2
was 1,2

Doc # TF Pos
2 1 6
1 1 1
1 1 14
2 1 15
1 1 6
1 2 3,12
2 2 9,12
1 1 15
1 1 4
2 1 13
1 2 9,11

Sheet1

		Term		Doc #

		a		2

		aid		1

		all		1

		and		2

		come		1

		country		1.2

		dark		2

		for		1

		good		1

		in		2

		is		1

		it		2

		manor		2

		men		1

		midnight		2

		night		2

		now		1

		of		1

		past		2

		stormy		2

		the		1.2

		their		1

		time		1.2

		to		1.2

		was		1.2

Sheet1

		Doc #		TF		Pos

		2		1		6

		1		1		1

		1		1		14

		2		1		15

		1		1		6

		1		2		3.12

		2		2		9.12

		1		1		15

		1		1		4

		2		1		13

		1		2		9.11

		2		1

		2		1

		1		1

		2		1

		2		1

		1		1

		1		1

		2		1

		2		1

		1		2

		2		2

		1		1

		1		1

		2		1

		1		2

		2		2

Ulf Leser: Maschinelle Sprachverarbeitung 30

Effects

• Dictionary is not affected
• Posting lists get much larger

– Store <docID, TF, <pos>> instead of <docID,TF>
– Index with positional information typically 30-50% larger than the

corpus itself
– Especially frequent words (stop words) require excessive storage

• Use compression or remove stop words

Ulf Leser: Maschinelle Sprachverarbeitung 31

Self Assessment

• Explain the vector space model
• How is the size of K (vocabulary) influenced by pre-

processing?
• Describe some variations of deducing term weights
• How could we extend the VSM to also consider the order of

terms (to a certain degree)?
• Explain idea and structure of inverted files?
• What are possible data structures for the dictionary?

Advantages / disadvantages?
• What decisions influence the size of posting lists?

	Foliennummer 1
	Content of this Lecture
	Information Retrieval Core
	How can Relevance be Judged?
	Notation
	Boolean Model
	Properties
	Content of this Lecture
	Vector Space Model
	Vector Space
	The Angle between Two Vectors
	Distance as Angle
	Example
	Ranking
	Term Weights
	Example TF*IDF
	TF*IDF in Short
	Shortcomings
	Content of this Lecture
	Full-Text Indexing
	Inverted Files (or Inverted Index)
	Building an Inverted File [Andreas Nürnberger, IR-2007]
	Dictionary and Posting List
	Adding Term Weighting
	Searching in VSM
	Space
	Storing the Dictionary
	Storing the Posting File
	Positional Information
	Effects
	Self Assessment

