Maschinelle Sprachverarbeitung
Case Report

- Patient with pneumonia and cough
- Normal dosage of codeine
- Patient not responding any more at day 4
- What’s going on?
 - PubMed „Codeine intoxication“ -> 170 abstracts
 - Aren’t there better ways?

Case report from Univ. Hospital Geneva, thanks to Christian Meisel, Roche
Codeine intoxication is associated with ultrarapid CYP2D6 metabolism.

Codeine is bioactivated by CYP2D6 into morphine, which then undergoes further glucuronidation.
What we Need to do

Z-100 is an arabinomannan extracted from Mycobacterium tuberculosis that has various immunomodulatory activities, such as the induction of interleukin 12, interferon gamma (IFN-gamma) and beta-chemokines. The effects of Z-100 on human immunodeficiency virus type 1 (HIV-1) replication in human monocyte-derived macrophages (MDMs) are investigated in this paper. In MDMs, Z-100 markedly suppressed the replication of not only macrophage-tropic (M-tropic) HIV-1 strain (HIV-1JR-CSF), but also HIV-1 pseudotypes that possessed amphotropic Moloney murine leukemia virus or vesicular stomatitis virus G envelopes. Z-100 was found to inhibit HIV-1 expression, even when added 24 h after infection. In addition, it substantially inhibited the expression of the pNL43lucDeltaenv vector (in which the env gene is defective and the nef gene is replaced with the firefly luciferase gene) when this vector was transfected directly into MDMs. These findings suggest that Z-100 inhibits virus replication, mainly at HIV-1 transcription. However, Z-100 also downregulated expression of the cell surface receptors CD4 and CCR5 in MDMs, suggesting some inhibitory effect on HIV-1 entry. Further experiments revealed that Z-100 induced IFN-beta production in these cells, resulting in induction of the 16-kDa CCAAT/enhancer binding protein (C/EBP) beta transcription factor that represses HIV-1 long terminal repeat transcription. These effects were alleviated by SB 203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), indicating that the p38 MAPK signalling pathway was involved in Z-100-induced repression of HIV-1 replication in MDMs. These findings suggest that Z-100 might be a useful immunomodulator for control of HIV-1 infection.
Z-100 is an arabinomannan extracted from Mycobacterium tuberculosis that has various immunomodulatory activities, such as the induction of interleukin 12, interferon gamma (IFN-gamma) and beta-chemokines. The effects of Z-100 on human immunodeficiency virus type 1 (HIV-1) replication in human monocyte-derived macrophages (MDMs) are investigated in this paper. In MDMs, Z-100 markedly suppressed the replication of not only macrophage-tropic (M-tropic) HIV-1 strain (HIV-1JR-CSF), but also HIV-1 pseudotypes that possessed amphotropic Moloney murine leukemia virus or vesicular stomatitis virus G envelopes. Z-100 was found to inhibit HIV-1 expression, even when added 24 h after infection. In addition, it substantially inhibited the expression of the pNL43lucDeltaenv vector (in which the env gene is defective and the nef gene is replaced with the firefly luciferase gene) when this vector was transfected directly into MDMs. These findings suggest that Z-100 inhibits virus replication, mainly at HIV-1 transcription. However, Z-100 also downregulated expression of the cell surface receptors CD4 and CCR5 in MDMs, suggesting some inhibitory effect on HIV-1 entry. Further experiments revealed that Z-100 induced IFN-beta production in these cells, resulting in induction of the 16-kDa CCAAT/enhancer binding protein (C/EBP) beta transcription factor that represses HIV-1 long terminal repeat transcription. These effects were alleviated by SB 203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), indicating that the p38 MAPK signalling pathway was involved in Z-100-induced repression of HIV-1 replication in MDMs. These findings suggest that Z-100 might be a useful immunomodulator for control of HIV-1 infection.
Z-100 is an arabinomannan extracted from Mycobacterium tuberculosis that has various immunomodulatory activities, such as the induction of interleukin 12, interferon gamma (IFN-gamma) and beta-chemokines. The effects of Z-100 on human immunodeficiency virus type 1 (HIV-1) replication in human monocyte-derived macrophages (MDMs) are investigated in this paper. In MDMs, Z-100 markedly suppressed the replication of not only macrophage-tropic (M-tropic) HIV-1 strain (HIV-1JR-CSF), but also HIV-1 pseudotypes that possessed amphotropic (M-tropic) Moloney murine leukemia virus or vesicular stomatitis virus G envelopes. Z-100 was found to inhibit HIV-1 expression, even when added 24 h after infection. In addition, Z-100 substantially inhibited the expression of the pNL43lucDeltaenv vector (in which the env gene is defective and the nef gene is replaced with the firefly luciferase gene) when this vector was transfected directly into MDMs. These findings suggest that Z-100 inhibits virus replication, mainly at HIV-1 transcription. However, Z-100 also downregulated expression of the cell surface receptors CD4 and CCR5 in MDMs, suggesting some inhibitory effect on HIV-1 entry. Experiments revealed that induction of the 16-kDa CCAAT/enhancer binding protein (C/EBP) beta transcription factor that represses HIV-1 long terminal repeat transcription. These effects were alleviated by SB 203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), indicating that the p38 MAPK signalling pathway was involved in Z-100-induced repression of HIV-1 replication in MDMs. These findings suggest that Z-100 might be a useful immunomodulator for control of HIV-1 infection.
Detecting Gene Names

The human T cell leukemia lymphotrophic virus type 1 Tax protein represses MyoD-dependent transcription by inhibiting MyoD-binding to the KIX domain of p300.
Detecting Gene Names (Leser & Hakenberg, 2005)

The *human T cell leukemia lymphotrophic virus type 1 Tax protein* represses *MyoD*-dependent transcription by inhibiting *MyoD*-binding to the KIX domain of *p300*.

- Also: hedgehog, soul, the, white, ...
- State-of-the-art methods reach ~85% in NEN
 - Plus 10% for less stringent boundary definitions
 - Large dicts, CRF, species classification, large background corpus, ...
 - That’s about as high as inter-annotator agreement
- Different performance for other classes (mutations, diseases, functional terms, cell lines, ...)

Ulf Leser: Maschinelle Sprachverarbeitung
Typical IE-Workflow

Information Retrieval

NLP

Text Mining

Document Retrieval

Text Preprocessing

Linguistic Annotation

Named Entity Recognition

Named Entity Normalization

Relationship Extraction
Applications in Business Intelligence

- **What problems** are most frequently reported by our customers? Which products, product lines, parts etc.?
 - Mails, knowledge bases, repair reports, call centers, ...

- **How does our customer satisfaction change?**
 - Tone in communication?
 - Reports in Blogs, Twitter, ...

- **Can we improve customer self service?**
 - “Entity Search”
 - Precise routing and prioritization of requests

Some Recent Students Work

• Can we predict the results of elections using Twitter?
 – Tweet classification, sentiment detection
• What aspects of mobile apps are good / bad?
 – Aspect extraction, topic modelling, sentiment detection
• Can we find texts talking about the biology of stem cells?
 – Text classification, q-gram models
• Can we predict the success of a drug based on papers?
 – Named entity recognition, time series analysis, classification
• Can we semantically cluster tables from the web / papers?
 – Word similarity, text clustering
• Can active learning help for finding gene relationships?
Modul Maschinelle Sprachverarbeitung

- **Vorlesung**: 2 SWS
- **Übung**: 2 SWS
 - Starts tomorrow, 18.10.2018
- **Slides are English**

Contact

Ulf Leser
Raum: IV.401
Tel: (030) 2093 – 3902
eMail: leser (..) informatik . hu-berlin . de
Literatur

- Highly recommended

- Other
 - Original papers
Anrechnung

Der Kurs (Vorlesung + Praktikum) kann angerechnet werden für
- Diplom-Informatik, Halle, 6 SP
- Master Informatik, 10 SP

Literatur zur Vorlesung

- Schütze, Manning, Raghavan: "Introduction to Information Retrieval", MIT Press, 2008

Weitere Literatur und Links

Themen und Termine im Einzelnen

Folien sind hier jeweils nach der Vorlesung als PDF verfügbar. Änderungen möglich. All slides are English, but the course will be held in German.

- Introduction and overview
- Introduction to Information Retrieval
- Evaluation of IR Systems; document normalization
- IR Models I: Boolean, Vector Space, Relevance Feedback
- Exact online substring search: Z-Box and Boyer-Moore
- Indexing terms: Inverted files
- Searching the web: Crawling, PageRank and HITS
- Guest lecture by Prof. Anke Lüdeling: An Introduction to Linguistics
- Language models
- N-gram:
- Part-of-Speech (POS) tagging
- Collocations and domain-specific terms
- Text classification
- Guest lecture by Dr. Matthias Wendt, Neophonion tbo
- Text clustering
- Named Entity Recognition
- Word Sense Disambiguation
- Relationship Extraction
- Abschluss

Weitere Materialien

- Text Retrieval Conference, TREC Homepages
Questions?
Questions

- Diplominformatiker?
- IBI / Wirtschaftsinformatik?
- Bachelor?
- Semester?

- Special expectations, experiences, questions?
Feedback MaschSprach 2017/2018 (n=13)

- Das Tempo der Veranstaltungen empfand ich als:
 - Zu niedrig: 11
 - Zu hoch: 1

- Den Schwierigkeitsgrad der Vorlesung empfand ich als:
 - Zu niedrig: 2
 - Zu hoch: 8

- Den Arbeitsaufwand durch die Vorlesung empfand ich als:
 - Zu niedrig: 8
 - Zu hoch: 3

Alles in allem bewerte ich die Leistung der Dozentin / des Dozenten mit der Schuinote:
(1 sehr gut, 2 gut, 3 befriedigend, 4 ausreichend, 5 mangelhaft, 6 ungenügend)

- Gesamteindruck - Vorlesung:
 - 6
 - 7

Alles in allem bewerte ich die Vorlesung mit der Schuinote:

- 6
- 7
Das hat mir gefallen: (DozentInnenfrage)

- 1) Die Übungen haben geholfen den Stoff (vor allem Probleme und Fallstricke) zu verdeutlichen
- 2) Die Beispiele waren anschaulich und nicht zu einseitig (auch wenn der Trend zur Bioinformatik logischerweise erkennbar ist)
- Die Pedagogik war nachvollziehbar und deutlich
- Beispiele aus der Praxis
- Die vielen Beispiele, z.B. in Anwendungen außerhalb von Forschung
- Ein perfekter Umgang mit den Studenten, Auflockerung durch andere Gesprächsthemen, super Beispiele mit denen man die Inhalte auf Anhieb versteht.
- Eine perfekte Vorlesung!
 - sehr ausführliche, gut nachvollziehbare Foliennote
 - wirklich anwendungsorientiert (case studies, Übung, keine hohe Mathematik)
 - gute Koordination mit der Übung
 - sehr interessante Beispiele aus der Bioinformatik, Stoff wurde verständlich erklärt, Fragen konnten jederzeit geäußert werden
- - Viele Beispiele
- - Vortragsstil gut

Welche konstruktiven Anregungen und Verbesserungsvorschläge haben Sie? (DozentInnenfrage)

- 1) Ich verstehe nicht warum die Vorlesung auf deutsch aber die Folien auf englisch sind. Ich würde das einheitlich besser finden.
- 3) Ich war mir manchmal nicht sicher ob meine Frage angemessen wäre oder ob ich das 'wissen müsste' und habe deshalb dann gar nicht gefragt. Ich weiß nicht wie man diesem Problem vorbeugen kann aber es ist eine Denkanregung :)

- Der Umgang des Dozens sowie die zeitintensive Übungs abgaben spiegelt MAHO nicht die ausgeschriebenen 5 LP wider.
- Es könnten Beziehungen zu aktuellen Verfahren und Techniken hergestellt werden, ich hatte das Gefühl, dass die besprochenen Themen und Methodiken bereits etwas veraltet sind.
- Folien sind okay, konnten aber strukturerter sein.
 - Spannende Einblicke in außerfachliche Themen.
- Teilweise wird zu wenig auf die konkrete Implementation von bspw. Algorithmen eingegangen, und zu viel Zeit für die Besprechung von potentiellen Problemen benötigt.
Was ich ändern wollte

- Rausnehmen: Scalable IE
- Reinnehmen: Deep learning and word embeddings

- Was ich nicht gemacht habe: Auf 3+2 ausbauen
 - Question Answering, Opinion Mining, Topic modelling, ...
Content of this Lecture

- A very short primer on Information Retrieval
- A very short primer on Natural Language Processing
- A very short primer on Text Mining
Phases in Text Mining

Information Retrieval

Document Retrieval

NLP

Text Preprocessing

Linguistic Annotation

Named Entity Recognition

Named Entity Normalization

Text Mining

Relationship Extraction

Text Classification

Text Clustering
Information Retrieval (aka “Search”)

- Find all **documents** which contain the following **words**
- „Leading the user to those documents that will best enable him/her to satisfy his/her **need for information**“ [Robertson 1981]
 - A user wants to know something
 - The user needs to tell the machine what he wants to know: query
 - Posing exact queries is difficult: room for interpretation
 - **Machine interprets query** to compute the (hopefully) best answer
 - Goodness of answer depends on original intention of user, not on the query (relevance)
Difference to Database Queries

- Queries: Formal language versus **natural language**
- Exactly defined result versus loosely described **relevance**
- Result set versus **ranked list** of results
- DB: Posing the **right query** is completely left to the user
- IR: Understanding the query is a **problem of the software**
Natural Language Processing

• Making natural language text accessible to a computer
 – Find semantic units: words, tokens, phrases, clauses, sentences
 • “Implementing the C4.5 algorithm with languages such as DOT.NET, Java etc. is not as simple as one might think ...”
 • “The α(3)-helicase-5’ mRNA is ...”
 – Find grammatical role of words
 – Find grammatical structure of sentences
 – Find syntactic relationships between entities
 – Draw semantic inferences from a text
 – ...

• “Understand” the text
"The PAX1 protein represses MyoD-dependent transcription by inhibiting MyoD-binding to the KIX domain of p300."
Part-Of-Speech Tagging

- Part-of-Speech (POS) is the grammatical class of a word
 - Adverb, verb, adjective, ...
 - Verb: Tense, number, ...
 - Noun: Gender, case, number, ...

- POS tagging: Given a text, assign each word its POS
 - "Does/VBZ flight/NN LH750/NNP serve/VB dinner/NN ?"
 - Caveat: There are different tag sets

- POS tags are very useful for many tasks
 - NER: names of entities should be nouns

- Methods: Maximum Entropy, Hidden Markov Models

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
<td>Determiner</td>
</tr>
<tr>
<td>EX</td>
<td>Existential there</td>
</tr>
<tr>
<td>FW</td>
<td>Foreign word</td>
</tr>
<tr>
<td>NN</td>
<td>Noun, singular or mass</td>
</tr>
<tr>
<td>NNS</td>
<td>Noun, plural</td>
</tr>
<tr>
<td>NNP</td>
<td>Proper noun, singular</td>
</tr>
<tr>
<td>NNPS</td>
<td>Proper noun, plural</td>
</tr>
<tr>
<td>RP</td>
<td>Particle</td>
</tr>
<tr>
<td>SYM</td>
<td>Symbol (math or scientific)</td>
</tr>
<tr>
<td>UH</td>
<td>Interjection</td>
</tr>
<tr>
<td>VB</td>
<td>Verb, base form</td>
</tr>
<tr>
<td>VBD</td>
<td>Verb, past tense</td>
</tr>
<tr>
<td>VBG</td>
<td>Verb, gerund/present participle</td>
</tr>
<tr>
<td>VBJ</td>
<td>Verb, 3rd person/singular, present</td>
</tr>
</tbody>
</table>
Text Mining

- Text Mining = “Data Mining on text”
- Text Mining = “Statistical NLP minus parsing”
 [Altmann/Schütze]
- Typical tasks
 - Document classification (route emails to the right operator)
 - Document clustering (group search results by topics)
 - Information extraction (find all celebrities and their partners)
 - Question Answering (what will be the weather tomorrow?)
Clinical Entity Recognition for ICD-9 Code Prediction in Clinical Discharge Summaries

Diploma Thesis Presentation
Jonathan Bräuer
02.10.2017
Clinical data is often stored in **textual form**.

Reports contain valuable information:
- Diseases, symptoms, treatments, drugs, dosage, family history, lab measurements, images/radiology, progression, ...
- Many of these not available in structured form

Especially important: **Disease** (symptoms, phenotypes)
- For accounting
- For decision support
DATE OF ADMISSION: MM/DD/YYYY
DATE OF DISCHARGE: MM/DD/YYYY
DISCHARGE DIAGNOSES:
1. Vasovagal syncope, status post fall.
2. Traumatic arthritis, right knee.
3. Hypertension.
BRIEF HISTORY: The patient is an (XX)-year-old female with history of previous stroke; hypertension; COPD, stable; renal carcinoma; presenting after a fall and possible syncope. While walking, she accidentally fell to her knees and did hit her head on the ground, near her left eye. Her fall was not observed, but the patient does not profess any loss of consciousness, recalling the entire event. The patient does have a history of previous falls, one of which resulted in a hip fracture. She has had physical therapy and recovered completely from that...
DIAGNOSTIC STUDIES: All x-rays including left foot, right knee, left shoulder and cervical spine showed no acute fractures. The left shoulder did show old healed left humeral head and neck fracture with baseline anterior dislocation. ...
HOSPITAL COURSE:
1. Fall: The patient was admitted and ruled out for syncopal episode. Echocardiogram was normal, and when the patient was able, ...
2. Status post fall with trauma: The patient was unable to walk normally secondary to traumatic injury of her knee, causing significant pain and swelling. Although a scan showed no acute fractures, ...
Goals and Methods

- Predict **discharge diagnosis** based on clinical texts
- Approach 1: **Recognize diseases** in text (NER-based approach)
 - Extract clinical entities
 - Map to ICD-9-CM
 - Compare to assigned codes

- Approach 2: **Predict disease** based on (entire, partial) text (classification-based approach)
 - Extract clinical entities
 - Transform into vector space
 - Train classifiers per code
 - Determine prediction quality
Disease Names: ICD-9

ICD-9-CM Root

001-139 Infectious and parasitic diseases
001-009 Intestinal infect. dis.
001 Cholera
001.0 Cholera due to vibrio cholerae
001.1 ...

010-018 Tuberculosis
010-018 Typhoid and parat. fevers
002 Typhoid and parat. fevers
002.0 Typhoid fever
002.1 Paratyphoid fever A
003.2 ...

140-239 Neoplasms
019- ...

240- ...

Medical NER Tools Evaluated
Number of Extracted Concepts (Per Document)

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Disease Mentions</th>
<th>ICD-9 Mapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTAKES</td>
<td>635,80</td>
<td>191,40</td>
<td></td>
</tr>
<tr>
<td>DNORM</td>
<td>33,30</td>
<td>18,50</td>
<td></td>
</tr>
<tr>
<td>HITEX</td>
<td>217,20</td>
<td>61,00</td>
<td></td>
</tr>
<tr>
<td>METAMAP</td>
<td>294,90</td>
<td>119,70</td>
<td></td>
</tr>
<tr>
<td>NCBO</td>
<td>642,30</td>
<td>152,70</td>
<td></td>
</tr>
<tr>
<td>MANUAL</td>
<td>59,50</td>
<td>10,90</td>
<td></td>
</tr>
</tbody>
</table>

Ulf Leser: Maschinelle Sprachverarbeitung
Issues (Typical)

- **Hierarchical classification** – which level of ICD-9?
 - Higher levels: More training data, few classes, high accuracy
 But: Little value
 - Lower levels: Little training data, many classes, low accuracy
 But: High value

- **Mapping** between ontologies
 - Concepts with different syntax & synonyms
 - Concepts at different granularities
 - Conflicting subsumption relationships
 - Diverging coverage
 - ...
Results / Evaluation

- 50 k discharge summaries
- 7 k classes (diagnosis codes)

- Precision and Recall values for different models (MANU, CTAKES, DNORM, HITEK, META, NCBO) are shown in the diagram.

- The evaluation shows variability in performance across models, with some models performing significantly better than others.

- The results highlight the importance of choosing the right method for specific tasks and data sets.
Results / Evaluation

- Baseline: 10 k top concepts 7 k
- Train/test split 90% / 10%
Error Analysis

- False positive code assignments
 - Mapping errors
 - Contextual errors
 - Negation / temporal status
- False negative code assignments
 - Obvious codes not tagged in gold standard (hypertension)
 - Heavy use of abbreviations and acronyms
 - Missing sections
 - Missing mention
What we will not cover

- Linguistic analysis beyond parsing
 - Pragmatic structure, co-reference resolution, ...
- Spoken language
- Machine translation
- Cross-language search / analysis
- User interfaces
- Special classification problems: Sentiment analysis etc.
- Question answering
- Topic modelling
- ...