
Algorithms for Bioinformatics

Ulf Leser

Compressive Genomics

Ulf Leser: Algorithms for Bioinformatics 2

Hinweise

• Nächste Stunde (10.1.) entfällt
• Am 17.1.19 übernimmt Raik

Ulf Leser: Algorithms for Bioinformatics 3

Content of this Lecture

• Next Generation Sequencing
• Genome compression
• Approximate search in compressed genomes
• Using multiple references

• This lecture is not part of the examination

Ulf Leser: Algorithms for Bioinformatics 4

Large Scale Sequencing Projects

Genomics England … is creating a lasting legacy for
patients, the NHS and the UK economy through the

sequencing of 100,000 genomes: the 100,000
Genomes Project. [finished 5.12.2018]

The Veterans Affairs (VA) Office of Research and
Development is launching the Million Veteran

Program (MVP) …. The goal of MVP is to better
understand how genes affect health and illness in

order to improve health care.

50.000 samples: To obtain a comprehensive
description of genomic, transcriptomic and

epigenomic changes in 50 different tumor types
and/or subtypes which are of clinical and societal

importance across the globe.

Ulf Leser: Algorithms for Bioinformatics 5

Next Generation Sequencing

• New generation of sequencers since ~2005
– Illumina, Solexa, 454, Solid, …
– Massively parallel sequencing of short reads

• Much higher throughput
– Terabytes of raw data per week
– Cost for sequencing a genome

down to ~1.000 USD
• 3rd generation sequencers

– Single molecule sequencing
– A (human) genome in a day
– Sequence every human
– Sequence different cells in every human

Illumina HiSeq 2000. DNAVision

Ulf Leser: Algorithms for Bioinformatics 6

2015: High-Seq

• 600GB / day, 18.000 genomes per year
• $1,000 genome at 30x coverage

– Amortized over 18,000 genomes per year over four-year period

Ulf Leser: Algorithms for Bioinformatics 7

Data Tsunami

Stein, L. D. (2010). Genome Biol

Ulf Leser: Algorithms for Bioinformatics 8

The „real“ Cost of Genomic Sequencing

Sboner, A. (2011). The real cost of sequencing: higher than you think! Genome Biology 2011

Ulf Leser: Algorithms for Bioinformatics 9

New Problems

• Need to process huge amounts of data
– Single genome at 30 fold coverage with read length 100bp:

900.000.000 reads
– Single genome at 60 fold coverage with read length 100bp: 1.8E9

reads
– 10.000 genomes per year ~ 30 genomes per day ~ processing of

60E9 reads per day
• Need to store huge amounts of sequence data

– (Hundreds of) thousands of genomes

Ulf Leser: Algorithms for Bioinformatics 10

Content of this Lecture

• Next Generation Sequencing
• Genome compression

– Referential compression
– Four issues

• Approximate search in compressed genomes
• Using multiple references

Ulf Leser: Algorithms for Bioinformatics 11

Compressing Genomes

• Four basic techniques (lossless)
– Bit packing
– Statistical compression
– Dictionary-based compression
– Referential compression

• Criteria for compression methods
– Compression ratio
– Compression speed / decompression speed
– Analyzing (searching) compressed data

• Compressing reads is another topic
– Quality information, non-standard bases, short strings, …

• Another big topic: Lossy compression

Ulf Leser: Algorithms for Bioinformatics 12

1. Bit Packing

• A genome consists of 4 (5, 7, …) different bases
• Representing one bases thus requires 2 bits only
• One byte – four bases
• Compression ratio (compared to ASCII / FASTA): 1:4
• Advantages: Fast, universal, simple, all search operations

can be easily adapated
• Disadvantage: Low compression ratio

Ulf Leser: Algorithms for Bioinformatics 13

2. Statistical Compression

• Idea: Don’t use the same number of bits for every char
• Frequent characters are represented with less bits

– Example: Huffman coding, arithmetic coding
• Useful for larger alphabets with large differences in

character frequencies
– Can be applied to q-grams

• But: Even DNA q-gram are
roughly equally frequent

• Disadvantage:
Low compression ratio (~1:5)

Ulf Leser: Algorithms for Bioinformatics 14

3. Dictionary-based Compression

• Idea: Represent frequent substrings with short codes
• Ziv-Lempel-Welch: Find most frequent substrings online

– Stored in a dictionary
– Index in dictionary is used as code
– Trade-Off: Dictionary-size,

compression speed,
compression ratio

• Useful when large diffs in
frequency of substrings exist
– Recurring patterns: Images, language, tables, …

• Disadvantage: Low compression ratio (for DNA, ~1:4-6)

Ulf Leser: Algorithms for Bioinformatics 15

4. Referential Compression

• When sequencing humans, we know the reference genome
• Idea: Use reference as predefined “dictionary”
• Genomes are represented as lists of referential match

entries (rme): (start, length, first mismatch)
• Issues

– Find long matches fast
• Trade-off: Long matches: ratio++; faster compression: ratio—

– Efficient coding of RMEs

Ulf Leser: Algorithms for Bioinformatics 16

Greedy Algorithm

• Compression rate for human chromosomes: ~1:60
• Compression speed for human chromosomes : 80 MB/s
• Main memory usage during compression: ~4*|ref|+|s|

– Using DNA-optimized compressed suffix trees

Ulf Leser: Algorithms for Bioinformatics 17

Content of this Lecture

• Next Generation Sequencing
• Genome compression

– Referential compression
– Four issues in referential compression

• Approximate search in compressed genomes
• Using multiple references

Ulf Leser: Algorithms for Bioinformatics 18

Issues

• Compact encoding of RMEs
• Main memory usage
• Faster compression / decompression
• Which reference?

• General: Balancing the trade-off between compression
ratio and compression speed

Ulf Leser: Algorithms for Bioinformatics 19

1. Encoding RME’s

• Very frequent: Series of consecutive matches with short
SNVs in between

(1000,5,A), (1006,12,C), (1019,4,A), (1024,20,C), (1045,8,B), (9453,25,C), …

• Improvement: Delta encoding (with/out default stepsize)

(1000,5,A), (1006,12,C), (1019,4,A), (1024,20,C), (1045,8,B), (9453,25,C), …
(1000,5,A), (+6,12,C), (+13,4,A), (+5,20,C), (+21,8,B), (9453,25,C), …
(1000,5,A), (+0,12,C), (+0,4,A), (+0,20,C), (+0,8,B), (9453,25,C), …

• Large impact on compression ratio

Rare!

Ulf Leser: Algorithms for Bioinformatics 20

2. Improving Main Memory Usage

• Best (compressed) suffix tree libraries need ~4*|ref| space
• Observation: We often find consecutive matches in

consecutive regions

• Can be exploited to save main memory
– Partition reference and input into blocks (e.g. 5MB)
– Keep one (indexed) block at a time in main memory
– Search other reference blocks only when no good match is found

• Switching blocks is costly: Avoid
– Even if this means less optimal compression
– Typical: Threshold on minimal length of RMEs; otherwise switch

Ulf Leser: Algorithms for Bioinformatics 21

• Evaluation for human chromosome 1
– Small blocks: Frequent block changes, bad ratio
– Blocks larger than ~100MB: No further improvements of ratio
– Compression/decompression requires only ~500MB for dictionary

Memory / compression speed / compression ratio

Ulf Leser: Algorithms for Bioinformatics 22

3. Improving compression speed

• Runtime dominated by looking up prefixes in the
compressed suffix tree
– Decoding the compressed suffix tree structure costs time
– Maximal throughput: ~50.000 lookups / sec

• Improvement: Local matching
– Search next RME near previous RME directly in the reference

• Ignoring the index
– Accept best next match iff RME sufficiently long
– Speed-up by a factor of ~5-10

• Also improves compression ratio
– Next matches close to previous ones – effective delta encoding
– But may not find longest RME
– Evaluation: Overall space reduction

Ulf Leser: Algorithms for Bioinformatics 23

Results: Ratio (Data: 1000 Genomes project)

Overall compression ratio: ~1:400

Ulf Leser: Algorithms for Bioinformatics 24

Results: Speed

Ulf Leser: Algorithms for Bioinformatics 25

4. Which reference to use?

• Given a set of genomes: Which should be the reference?
• Similarity to reference is key to high compression rates

– Compressing Human against Mouse: Disaster
– Similarity in non-coding region is low

• Exhaustive reference selection is very time consuming
(took 6 days for 1092 * 1091 H-22)

Ulf Leser: Algorithms for Bioinformatics 26

Two Alternatives

• Idea: Chose as reference the genome with highest average
similarity to all other genomes

• Heuristic-based reference selection
– Define a heuristic for the similarity of two sequences

• For instance: Compute best reference based on small sample
• Use any other fast similarity estimation method

– Pick the sequence most similar to all other sequences according to
this heuristic

• Better: Build your own reference
– Reference rewriting
– Given a reference, rewrite it in order to obtain higher compression

ratios
• Note: It doesn’t matter if the reference is a “real” genome

Ulf Leser: Algorithms for Bioinformatics 27

Selection versus Rewriting

Ulf Leser: Algorithms for Bioinformatics 28

Selection versus Rewriting

Ulf Leser: Algorithms for Bioinformatics 29

Fresco: Comparative Evaluation

• Second Order Compression: Compress RME sets
– All sequences are similar to each other
– Thus, different sequences produce very similar RME lists
– Idea: Compress (using “meta” referential compression)

• Best algorithms as of 2015 [Deorowisc 2015, GDC-2]
– Compression ratio 1:9500
– 7TB FASTA compressed to 700MB
– Speed: 200MB/sec (beware: measured on different hardware)

Ulf Leser: Algorithms for Bioinformatics 30

Content of this Lecture

• Next Generation Sequencing
• Sequence compression

– Referential compression
– Four issues

• Approximate search in compressed genomes
• Using multiple references

Ulf Leser: Algorithms for Bioinformatics 31

K-Approximate Matching (k-difference Mathcing)

• Given a collection of referentially compressed genomes S,
find all k-approximate matches of a query q

Ulf Leser: Algorithms for Bioinformatics 32

Example Application: Personalized Medicine

• Modern cancer drugs depend on
genotype of patients

• Genotype: Mutations in certain
cancer genes

• Clinics sequence thousands of
human genomes

• Given a set of patient genomes S
with known outcome and the
sequence of a cancer gene g in a
new patient q – what is the most
similar occurrence of g in S?

Ulf Leser: Algorithms for Bioinformatics 33

Storing Similar Strings

• Referential Compression
– Choose a reference string p from S
– When adding a new string s, only

store differences between s and p

0123456789012345678
p: Kohala Coast-Hawaii
s2: Kohala Cost
s3: Koala Coast/Hawaii

s2: (p,0,9,s),(p,11,1,_)
s3: (p,0,2,a),(p,4,8,/),(p,13,6,_)

RME: Referential
Match Entries

Ulf Leser: Algorithms for Bioinformatics 34

• Key idea: Find matches in all compressed sequences
simultaneously by searching the reference
– Store reference as suffix tree
– Search using standard BYP-algorithm
– For every match, find all RME completely containing that match

• Build an interval tree over all RMEs
• If RME X contains match, only children of X may contain other matches

• Problem: Matches not contained in the reference

RCSI: Referentially Compressed Search Index

CGGACAAACTGACGTTCGACG

ACAAACTG

ACAA AAACT

AAA

Ulf Leser: Algorithms for Bioinformatics 35

RCSI Approach

• Fix maximal query length qmax and maximal kmax
• Compute overlap sequences

– One for every mismatch leading to two consecutive RMEs
• How long must these overlaps be?

– Answer: 2*|qmax + kmax|
– Very conservative estimation, guaranteed to not loose any match

• Index set of overlap
sequences

• This index can be
searched using BYP
– Additional to searching the

reference

Ulf Leser: Algorithms for Bioinformatics 36

RCSI: Architecture

Ulf Leser: Algorithms for Bioinformatics 37

Evaluation: Indexing time

• Indexing one genome: ~30 sec
• Indexing 1000 genomes: ~8 hours

Ulf Leser: Algorithms for Bioinformatics 38

Evaluation: Approx. search in 1000 genomes

• Until k=5, almost all queries finish in <10ms
• For k=1, almost all queries finish in <1ms
• Outliers: Queries matching repetitive regions

(|q|∈[120,170])

Ulf Leser: Algorithms for Bioinformatics 39

Competitors

• GC open source code lacks important preprocessing step
– We could only compare using the data from GC paper

• RCSI between 10 and 100 times faster
– And computes all results

Ulf Leser: Algorithms for Bioinformatics 40

Content of this Lecture

• Next Generation Sequencing
• Sequence compression

– Referential compression
– Four issues

• Approximate search in compressed genomes
• Using multiple references

Ulf Leser: Algorithms for Bioinformatics 41

Collections of Similar Strings

• Often (not always): Strings are similar to each other
– All human genomes are 99% identical
– All mammal genomes are >90% identical
– All elements of a Wikipedia revision histories are highly similar
– Elements of version histories are very similar (SVN, subversion, …)
– …

Ulf Leser: Algorithms for Bioinformatics 42

Heterogeneous String Collections

p: Kohala Coast-Hawaii
s2: Kohala Cost
s3: Koala Coast/Hawaii Islands
s4: Kohala Coast-Hawaii Islands
s5: Orchid Island
s6: Orchied Island

Kohala Coast-Hawaii

Kohala Cost

Kohala Coast/Hawaii Islands

Koala Coast/Hawaii Islands

„compressed against“

Ulf Leser: Algorithms for Bioinformatics 43

Heterogeneous String Collections

p: Kohala Coast-Hawaii
s2: Kohala Cost
s3: Koala Coast/Hawaii Islands
s4: Kohala Coast-Hawaii Islands
s5: Orchid Island
s6: Orchied Island

Kohala Coast-Hawaii

Kohala Cost

Kohala Coast/Hawaii Islands

Koala Coast/Hawaii Islands

Orchid Island

Orchied Island

Ulf Leser: Algorithms for Bioinformatics 44

Novel Idea: Use Multiple References

Strings are compressed against different references

Challenge: Which are the best references?

Kohala Coast-Hawaii

Kohala Cost

Kohala Coast/Hawaii
Islands

Koala Coast/Hawaii
Islands

Orchid Island

Orchied Island

Ulf Leser: Algorithms for Bioinformatics 45

Novel Idea: Allow Hierarchical Compressions

Compression dependencies can form hierarchies

Challenge: Which is the best parent?

Orchid Island

Orchied Island

Kohala Coast-Hawaii

Kohala Cost

Kohala Coast/Hawaii
Islands

Koala Coast/Hawaii
Islands

Ulf Leser: Algorithms for Bioinformatics 46

Novel Idea: Compress against Multiple References

Strings are compressed against multiple other strings

Challenge: Which is the best set of parents?

Orchid Island

Orchied Island

Kohala Coast-Hawaii

Kohala Cost

Kohala Coast/Hawaii
Islands

Koala Coast/Hawaii
Islands

Ulf Leser: Algorithms for Bioinformatics 47

MRSCI: Multiple Reference Compression

• Challenges during compression
– Which strings should be references – and how many?
– How can we efficiently find good parents?
– What is the optimal compression hierarchy?

• How to perform k-approximate search in a multi-reference
compression hierarchy?

• Findings
– Proof that finding an optimal compression hierarchy is NP-hard
– Three heuristics to build increasingly complex CHs

• Increasingly better compression rates
• Moderate increase in indexing time, roughly same search speed

Ulf Leser: Algorithms for Bioinformatics 48

Overview

RCSI: VLDB 2014 CPart

CForest CDAG

disallowed;
heuristic
solutions

Ulf Leser: Algorithms for Bioinformatics 49

CPart: Using Multiple References

• Iteratively and greedily compress strings from S
– Choose first string as first reference p, set P={p}
– Compress all other strings s one-by-one

• Find reference p’ from P “most similar” to s
• If p’ and s are sufficiently similar – compress s against p’
• If not, add s to P (new reference, new root)

• Needs fast method for assessing string similarity
• Essentially performs a greedy clustering of C

Ulf Leser: Algorithms for Bioinformatics 50

Competitors

• Sweet spot: Strong and fast compression, fast search
• Two classes of competitors

– Pure indexer: ESA, CST: Large memory footprint, fast search
– Pure compressors: Strong compression, slow search
– Variations we built: Compressors with additional search indexes

• RLZ / Tong after modification: iRLZ, iTong

Ulf Leser: Algorithms for Bioinformatics 51

Evaluation: Indexing WikiPedia Revisions

• CDAG strongest of index-based, almost as small as best
• CDAG (or CPart) are fastest (2-4 times faster than iTong)

Wikipedia Helsinki, ~3K versions
577 MB

Wikipedia GW Bush, ~45K versions
1400 MB

Ulf Leser: Algorithms for Bioinformatics 52

Evaluation: Searching (HEL)

• ESA fastest in search
• All compressing methods perform roughly the same

5000 random queries, length 12-18 char

Ulf Leser: Algorithms for Bioinformatics 53

Evaluation: Large Datasets

Human chromosome 21, up to 640 versions, up to 51GB

Ulf Leser: Algorithms for Bioinformatics 54

Conclusions

• Referential compression beats standard compression tools
by orders of magnitude for highly-similar sequences (w.r.t.
storage and speed)

• Inherent trade-off between compression ratio and de-
/compression speed

• Given a referential index, some (many?) string matching
problems can be solved much more efficiently – ample
room for further research
– “Compressive genomics”

Ulf Leser: Algorithms for Bioinformatics 55

References

• Deorowicz, Sebastian, Agnieszka Danek, and Marcin Niemiec. "GDC 2: Compression of
large collections of genomes." arXiv preprint arXiv:1503.01624 (2015).

• Wandelt, S. and U. Leser (2014). “MRCSI: Compressing and Searching String Collections
with Multiple References”. PVLDB. Kona, Hawaii.

• Wandelt, S. and U. Leser (2013). "FRESCO: Referential Compression of Highly-Similar
sequences." Transactions on Computational Biology and Bioinformatics 10(5): 1275-
1288.

• Wandelt, S. and U. Leser (2012). "Adaptive efficient compression of genomes."
Algorithms for Molecular Biology 7(30).

• Wandelt, S., J. Starlinger, M. Bux and U. Leser (2013). “RCSI: Scalable similarity search
in thousand(s) of genome”s. PVLDB, Hangzhou, China.

• Wandelt, S., Rheinländer, A., Bux, M., Thalheim, L., Haldemann, B. and Leser, U. (2012).
"Data Management Challenges in Next Generation Sequencing." Datenbank Spektrum

	Foliennummer 1
	Hinweise
	Content of this Lecture
	Large Scale Sequencing Projects
	Next Generation Sequencing
	2015: High-Seq
	Data Tsunami
	The „real“ Cost of Genomic Sequencing
	New Problems
	Content of this Lecture
	Compressing Genomes
	1. Bit Packing
	2. Statistical Compression
	3. Dictionary-based Compression
	4. Referential Compression
	Greedy Algorithm
	Content of this Lecture
	Issues
	1. Encoding RME’s
	2. Improving Main Memory Usage
	Memory / compression speed / compression ratio
	3. Improving compression speed
	Results: Ratio (Data: 1000 Genomes project)
	Results: Speed
	4. Which reference to use?
	Two Alternatives
	Selection versus Rewriting
	Selection versus Rewriting
	Fresco: Comparative Evaluation
	Content of this Lecture
	K-Approximate Matching (k-difference Mathcing)
	Example Application: Personalized Medicine
	Storing Similar Strings
	RCSI: Referentially Compressed Search Index
	RCSI Approach
	RCSI: Architecture
	Evaluation: Indexing time
	Evaluation: Approx. search in 1000 genomes
	Competitors
	Content of this Lecture
	Collections of Similar Strings
	Heterogeneous String Collections
	Heterogeneous String Collections
	Novel Idea: Use Multiple References
	Novel Idea: Allow Hierarchical Compressions
	Novel Idea: Compress against Multiple References
	MRSCI: Multiple Reference Compression
	Overview
	CPart: Using Multiple References
	Competitors
	Evaluation: Indexing WikiPedia Revisions
	Evaluation: Searching (HEL)
	Evaluation: Large Datasets
	Conclusions
	References

