
Ticket to Ride: Steiner Tree
O n a blustery autumn evening five old friends met in the backroom of one of the city’s oldest and most private clubs. Each had

traveled a long distance — from all corners of the world — to meet on this very specific day… October 2, 1900 — 28 years to the
day that the London eccentric, Phileas Fogg accepted and then won a £20,000 bet that he could travel Around the World in 80 Days. 
When the story of Fogg’s triumphant journey filled all the newspapers of the day, the five attended University together. Inspired by
his impetuous gamble, and a few pints from the local pub, the group commemorated his circumnavigation with a more modest excur-
sion and wager – a bottle of good claret to the first to make it to Le Procope in Paris.
Each succeeding year, they met to celebrate the anniversary and pay tribute to Fogg. And each year a new expedition (always more
difficult) with a new wager (always more expensive) was proposed. Now at the dawn of the century it was time for a new impossi-
ble journey. The stakes: $1 Million in a winner-takes-all competition. The objective: to see which of them could travel by rail to the
most cities in North America — in just 7 days. The journey would begin immediately…
Ticket to Ride is a cross-country train adventure. Players compete to connect different cities by laying claim to railway routes on a
map of North America.

For 2 - 5 players 
ages 8 and above
30 - 60 minutes
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Agenda
• Today, 13:15

– Competition
– Short talk on Steiner Tree Approximation
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Questions
• Are there any questions related to…

– TTR-Server

– TTR-Protocol

– C#-Client-Implementation

• Benchmark AI and Shell-Script (also linked on the webpage):

– https://box.hu-berlin.de/f/5b76e7c0f9084980ac63/?dl=1

https://box.hu-berlin.de/f/5b76e7c0f9084980ac63/?dl=1
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Ticket	to	Ride	and	
Graph	Theory

• G = (V,E), V=Cities, E = Railways.

• Each vertex of the graph represents one 
city in Europe

• An edge connects two cities 

• Each edge has a color and a length (cost)

• The graph contains more edges than any 
player can claim
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A	MST	for Ticket	to Ride

The total weight of this
minimum spanning tree is: 

108 
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Minimum	Spanning	Tree	(Forest)
• A spanning tree of the full graph would guarantee that any 

destination ticket is fulfilled.
• But payers do not have enough train tokens to claim a 

spanning tree of the full graph (45 vs 108).
• Thus, the best strategy is to capture a minimum spanning tree 

or forest of a subset of vertices (based on the destination 
tickets).

• Steiner Tree / Forest: Given an undirected, weighted graph 
G=(V,E) and a subset of vertices V’, referred to as terminals, 
we search the subgraph G’ with minimum weight, that 
connects all terminals (and may include additional vertices).
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Special Case: 2	terminals
1 destination ticket,
Simple: shortest path
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Minimum-Weight	Subtree
3 destination tickets, find the 
subgraph with minimum weight.
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Minimum-Weight	Subtree	on	Destination	Tickets
3 destination tickets, find the 
subgraph with minimum weight.

3

3
4

4

4

6
43

2

3
2

2
2

3

2
2

2
3

3

2
2

4

1



10

Dijkstra

2+2+4

3+1+6

3+3+4

Total : 10+10+9=29
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Minimum-Weight	Subtree	on	Destination	Tickets

Total : 3+3+4+4+4+2+2=22

One cost-optimal Steiner tree
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Approximate	Algorithm
• Steiner Tree optimization problem is NP-hard, thus there is 

likely to be no exact polynomial time algorithm.
• There are heuristic algorithms with polynomial time, that have 

upper bound guarantees on the maximum cost.
• Implementing a good algorithm helps greatly for the AI-

Challenge. 
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Steiner	Tree	Special	Cases
• |V’|=2: Shortest Path
• |V’|=V: Compute the minimum spanning tree (MST)

• Idea: if we had a fully connected graph, then we can get the 
optimal solution using MST
– Add edges to G’ that represent the shortest path between all nodes
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Approximation	Algorithm	I
• G=(V,E), cost are the edge costs, S is a set of terminals
• Construct graph G’=(S,E’), cost’

build a fully connected graph:
for any pair of vertices cost’=distance of the shortest path

compute T = MST(G’)

• The minimum spanning tree T contains edges that represent 
shortest paths

• Recover Steiner Tree from T
T* = recover shortest paths in G that correspond to edges in T
if present, remove cycles from T*
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The	graph	G
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Build	a	fully-connected	graph	G'
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A	minimum	spanning	tree	on	G’
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2-approximate	Steiner	tree
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Approximation	algorithm

• A !-approximation algorithm is a polynomial-time algorithm 
that returns a solution of cost at most ! times the cost of an 
optimal solution
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2-approximation
• 2 x optimal costs

= cost a DFS traversal (in blue) on the optimal tree 
that visits every edge exactly twice

≥ cost of some spanning tree constructed on shortest 
paths (orange)

≥ cost of the MST on orange edges

https://services.math.duke.edu/~yh89/other/Lecture16-17.pdf

https://services.math.duke.edu/~yh89/other/Lecture16-17.pdf
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Minimum-Weight	Subtree	on	Destination	Tickets
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Build	a	fully-connected	graph	G'

5

10

8

8

13

8



23

A	minimum	spanning	tree	on	G’
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2-approximate	Steiner	tree
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An	optimal	(?)	Steiner	tree
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Cost = 5+9+4=18
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An	alternative	Approximation	Algorithm
• G=(V,E), S is a set of terminals
• Heuristic for Steiner tree

start with subset T consisting of one terminal
while T does not span all terminals:

select a terminal t not in T that is closest to a vertex in T
add to T the shortest path that connects t with T

• Improve on solution
build a subgraph of G=(V,E) induced by the vertices in found solution T
compute a MST
repeat until there are no non-terminal leaves

delete non-terminals that are leaves of the MST
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Approximation	Algorithm	II
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select a terminal t not 
in T that is closest to a 
vertex in T
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Approximation	Algorithm	II
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Approximation	Algorithm	II
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Approximation	Algorithm	II
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2-approximate	Steiner	Tree
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found solution T

Cost= 5+9+4=18


