

Ticket to Ride: Steiner Tree

Patrick Schäfer
patrick.schaefer@hu-berlin.de

Agenda

- Today, 13:15
- Competition
- Short talk on Steiner Tree Approximation

Questions

- Are there any questions related to...
- TTR-Server
- TTR-Protocol
- C\#-Client-Implementation
- Benchmark AI and Shell-Script (also linked on the webpage):
- https://box.hu-berlin.de/f/5b76e7c0f9084980ac63/?dl=1

Ticket to Ride and Graph Theory

- $\quad \mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{V}=$ Cities, $\mathrm{E}=$ Railways.
- Each vertex of the graph represents one city in Europe
- An edge connects two cities
- Each edge has a color and a length (cost)
- The graph contains more edges than any player can claim

A MST for Ticket to Ride

Minimum Spanning Tree (Forest)

- A spanning tree of the full graph would guarantee that any destination ticket is fulfilled.
- But payers do not have enough train tokens to claim a spanning tree of the full graph (45 vs 108).
- Thus, the best strategy is to capture a minimum spanning tree or forest of a subset of vertices (based on the destination tickets).
- Steiner Tree / Forest: Given an undirected, weighted graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a subset of vertices V^{\prime}, referred to as terminals, we search the subgraph G^{\prime} with minimum weight, that connects all terminals (and may include additional vertices).

Special Case: 2 terminals

Minimum-Weight Subtree
3 destination tickets, find the
subgraph with minimum weight.

Dijkstra

Total : 10+10+9=29

Minimum-Weight Subtree on Destination Tickets

One cost-optimal Steiner tree

Total : $3+3+4+4+4+2+2=22$

Approximate Algorithm

- Steiner Tree optimization problem is NP-hard, thus there is likely to be no exact polynomial time algorithm.
- There are heuristic algorithms with polynomial time, that have upper bound guarantees on the maximum cost.
- Implementing a good algorithm helps greatly for the AIChallenge.

Steiner Tree Special Cases

- $\left|\mathrm{V}^{\prime}\right|=2$: Shortest Path
- $\left|\mathrm{V}^{\prime}\right|=\mathrm{V}$: Compute the minimum spanning tree (MST)
- Idea: if we had a fully connected graph, then we can get the optimal solution using MST
- Add edges to G^{\prime} that represent the shortest path between all nodes

Approximation Algorithm I

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, cost are the edge costs, S is a set of terminals
- Construct graph $\mathrm{G}^{\prime}=\left(\mathrm{S}, \mathrm{E}^{\prime}\right)$, cost ${ }^{\prime}$
build a fully connected graph:
for any pair of vertices cost'=distance of the shortest path compute $\mathrm{T}=\mathrm{MST}\left(\mathrm{G}^{\prime}\right)$
- The minimum spanning tree T contains edges that represent shortest paths
- Recover Steiner Tree from T
$T^{*}=$ recover shortest paths in G that correspond to edges in T
if present, remove cycles from T*

Build a fully-connected graph G^{\prime}

A minimum spanning tree on G^{\prime}

2-approximate Steiner tree

Approximation algorithm

- $\mathrm{A} \alpha$-approximation algorithm is a polynomial-time algorithm that returns a solution of cost at most α times the cost of an optimal solution

2-approximation

- 2 x optimal costs
= cost a DFS traversal (in blue) on the optimal tree that visits every edge exactly twice
\geq cost of some spanning tree constructed on shortest paths (orange)
\geq cost of the MST on orange edges

Minimum-Weight Subtree on Destination Tickets

Build a fully-connected graph G^{\prime}

A minimum spanning tree on G^{\prime}

2-approximate Steiner tree

Cost $=5+8+8=21$

An optimal (?) Steiner tree

Cost $=5+9+4=18$

An alternative Approximation Algorithm

- $G=(V, E), S$ is a set of terminals
- Heuristic for Steiner tree
start with subset T consisting of one terminal
while T does not span all terminals:
select a terminal t not in T that is closest to a vertex in T add to T the shortest path that connects t with T
- Improve on solution
build a subgraph of $G=(V, E)$ induced by the vertices in found solution T
compute a MST
repeat until there are no non-terminal leaves delete non-terminals that are leaves of the MST

Approximation Algorithm II

select a terminal t not in T that is closest to a vertex in T

Approximation Algorithm II

select a terminal t not in T that is closest to a vertex in T

Approximation Algorithm II

select a terminal t not in T that is closest to a vertex in T

Approximation Algorithm II

select a terminal t not in T that is closest to a vertex in T

2-approximate Steiner Tree

build a subgraph of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ induced by the vertices in found solution T

Cost $=5+9+4=18$

