
Ticket to Ride: Steiner Tree
O n a blustery autumn evening five old friends met in the backroom of one of the city’s oldest and most private clubs. Each had

traveled a long distance — from all corners of the world — to meet on this very specific day… October 2, 1900 — 28 years to the
day that the London eccentric, Phileas Fogg accepted and then won a £20,000 bet that he could travel Around the World in 80 Days.
When the story of Fogg’s triumphant journey filled all the newspapers of the day, the five attended University together. Inspired by
his impetuous gamble, and a few pints from the local pub, the group commemorated his circumnavigation with a more modest excur-
sion and wager – a bottle of good claret to the first to make it to Le Procope in Paris.
Each succeeding year, they met to celebrate the anniversary and pay tribute to Fogg. And each year a new expedition (always more
difficult) with a new wager (always more expensive) was proposed. Now at the dawn of the century it was time for a new impossi-
ble journey. The stakes: $1 Million in a winner-takes-all competition. The objective: to see which of them could travel by rail to the
most cities in North America — in just 7 days. The journey would begin immediately…
Ticket to Ride is a cross-country train adventure. Players compete to connect different cities by laying claim to railway routes on a
map of North America.

For 2 - 5 players
ages 8 and above
30 - 60 minutes

[T2R] rules EN reprint 2015_TTR2 rules US 06/03/15 17:36 Page2

Patrick Schäfer
patrick.schaefer@hu-berlin.de Semesterprojekt: Implementierung eines Brettspiels, WS 18/19

Agenda
• Today, 13:15

– Competition
– Short talk on Steiner Tree Approximation

3

Questions
• Are there any questions related to…

– TTR-Server

– TTR-Protocol

– C#-Client-Implementation

• Benchmark AI and Shell-Script (also linked on the webpage):

– https://box.hu-berlin.de/f/5b76e7c0f9084980ac63/?dl=1

https://box.hu-berlin.de/f/5b76e7c0f9084980ac63/?dl=1

4

Ticket	to	Ride	and	
Graph	Theory

• G = (V,E), V=Cities, E = Railways.

• Each vertex of the graph represents one
city in Europe

• An edge connects two cities

• Each edge has a color and a length (cost)

• The graph contains more edges than any
player can claim

5

A	MST	for Ticket	to Ride

The total weight of this
minimum spanning tree is:

108

6

Minimum	Spanning	Tree	(Forest)
• A spanning tree of the full graph would guarantee that any

destination ticket is fulfilled.
• But payers do not have enough train tokens to claim a

spanning tree of the full graph (45 vs 108).
• Thus, the best strategy is to capture a minimum spanning tree

or forest of a subset of vertices (based on the destination
tickets).

• Steiner Tree / Forest: Given an undirected, weighted graph
G=(V,E) and a subset of vertices V’, referred to as terminals,
we search the subgraph G’ with minimum weight, that
connects all terminals (and may include additional vertices).

7

Special Case: 2	terminals
1 destination ticket,
Simple: shortest path

8

Minimum-Weight	Subtree
3 destination tickets, find the
subgraph with minimum weight.

9

Minimum-Weight	Subtree	on	Destination	Tickets
3 destination tickets, find the
subgraph with minimum weight.

3

3
4

4

4

6
43

2

3
2

2
2

3

2
2

2
3

3

2
2

4

1

10

Dijkstra

2+2+4

3+1+6

3+3+4

Total : 10+10+9=29

3

3
4

6
3 1

2
2

4

11

Minimum-Weight	Subtree	on	Destination	Tickets

Total : 3+3+4+4+4+2+2=22

One cost-optimal Steiner tree

3

3
4

4

4

2

2

12

Approximate	Algorithm
• Steiner Tree optimization problem is NP-hard, thus there is

likely to be no exact polynomial time algorithm.
• There are heuristic algorithms with polynomial time, that have

upper bound guarantees on the maximum cost.
• Implementing a good algorithm helps greatly for the AI-

Challenge.

13

Steiner	Tree	Special	Cases
• |V’|=2: Shortest Path
• |V’|=V: Compute the minimum spanning tree (MST)

• Idea: if we had a fully connected graph, then we can get the
optimal solution using MST
– Add edges to G’ that represent the shortest path between all nodes

14

Approximation	Algorithm	I
• G=(V,E), cost are the edge costs, S is a set of terminals
• Construct graph G’=(S,E’), cost’

build a fully connected graph:
for any pair of vertices cost’=distance of the shortest path

compute T = MST(G’)

• The minimum spanning tree T contains edges that represent
shortest paths

• Recover Steiner Tree from T
T* = recover shortest paths in G that correspond to edges in T
if present, remove cycles from T*

15

The	graph	G

3

3
4

4

4

6
43

2

3
2

2
2

3

2
2

2
3

3

2
2

4

1

16

Build	a	fully-connected	graph	G'

5

5 2

10
14

10

7

8

8

10

8

13

8

4

4

17

A	minimum	spanning	tree	on	G’

5

2

7 4

4

18

2-approximate	Steiner	tree

3

3
4

4

4

6
43

2

3
2

2
2

3

2
2

2
3

3

2
2

4

1

19

Approximation	algorithm

• A !-approximation algorithm is a polynomial-time algorithm
that returns a solution of cost at most ! times the cost of an
optimal solution

20

2-approximation
• 2 x optimal costs

= cost a DFS traversal (in blue) on the optimal tree
that visits every edge exactly twice

≥ cost of some spanning tree constructed on shortest
paths (orange)

≥ cost of the MST on orange edges

https://services.math.duke.edu/~yh89/other/Lecture16-17.pdf

https://services.math.duke.edu/~yh89/other/Lecture16-17.pdf

21

Minimum-Weight	Subtree	on	Destination	Tickets

3

3
4

4

4

6
43

2

3
2

2
2

3

2
2

2
3

3

2
2

4

1

22

Build	a	fully-connected	graph	G'

5

10

8

8

13

8

23

A	minimum	spanning	tree	on	G’

5

8

8

Cost = 21

24

2-approximate	Steiner	tree

3

3
4

4

4

6
43

2

3
2

2
2

3

2
2

2
3

3

2
2

4

1

Cost = 5+8+8=21

25

An	optimal	(?)	Steiner	tree

3

3
4

4

4

6
43

2

3
2

2
2

3

2
2

2
3

3

2
2

4

1

Cost = 5+9+4=18

26

An	alternative	Approximation	Algorithm
• G=(V,E), S is a set of terminals
• Heuristic for Steiner tree

start with subset T consisting of one terminal
while T does not span all terminals:

select a terminal t not in T that is closest to a vertex in T
add to T the shortest path that connects t with T

• Improve on solution
build a subgraph of G=(V,E) induced by the vertices in found solution T
compute a MST
repeat until there are no non-terminal leaves

delete non-terminals that are leaves of the MST

27

Approximation	Algorithm	II

3

3
4

4

4

6
43

2

3
2

2
2

3

2
2

2
3

3

2
2

4

1
(a)

select a terminal t not
in T that is closest to a
vertex in T

28

Approximation	Algorithm	II

3

3
4

4

4

6
43

2

3
2

2
2

3

2
2

2
3

3

2
2

4

1
(a)

select a terminal t not
in T that is closest to a
vertex in T

(b)

29

Approximation	Algorithm	II

3

3
4

4

4

6
43

2

3
2

2
2

3

2
2

2
3

3

2
2

4

1
(a)

select a terminal t not
in T that is closest to a
vertex in T

(b) (c)

30

Approximation	Algorithm	II

3

3
4

4

4

6
43

2

3
2

2
2

3

2
2

2
3

3

2
2

4

1
(a)

select a terminal t not
in T that is closest to a
vertex in T

(b) (c)

(d)

31

2-approximate	Steiner	Tree

4

3
2

2
2

4

1

build a subgraph of G=(V,E)
induced by the vertices in
found solution T

Cost= 5+9+4=18

