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Agenda

* Today, 13:15

— Competition

— Short talk on Steiner Tree Approximation




Questions

* Are there any questions related to...

— TTR-Server
— TTR-Protocol

— C#-Client-Implementation

 Benchmark Al and Shell-Script (also linked on the webpage):
— https://box.hu-berlin.de/f/5b76e7c0f9084980ac63/?dI=1



https://box.hu-berlin.de/f/5b76e7c0f9084980ac63/?dl=1

Ticket to Ride and
Graph Theory

G = (V,E), V=Cities, E = Railways.

Each vertex of the graph represents one
city in Europe

An edge connects two cities
Each edge has a color and a length (cost)

The graph contains more edges than any
player can claim




A MST for Ticket to Ride
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Minimum Spanning Tree (Forest)

* A spanning tree of the full graph would guarantee that any
destination ticket is fulfilled.

e But payers do not have enough train tokens to claim a
spanning tree of the full graph (45 vs 108).

* Thus, the best strategy is to capture a minimum spanning tree
or forest of a subset of vertices (based on the destination
tickets).

» Steiner Tree / Forest: Given an undirected, weighted graph
G=(V,E) and a subset of vertices V’, referred to as terminals,
we search the subgraph G” with minimum weight, that
connects all terminals (and may include additional vertices).



Special Case: 2 terminals

1 destination ticket,
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Minimum-Weight Subtree

3 destination tickets, find the
subgraph with minimum weight.




Minimum-Weight Subtree on Destination Tickets

3 destination tickets, find the
subgraph with minimum weight.
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Dijkstra

4 3+3+4

3+1+6

2+2+4

Total : 10+10+9=29



Minimum-Weight Subtree on Destination Tickets

One cost-optimal Steiner tree
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Total : 3+3+4+4+4+2+2=22



Approximate Algorithm

Steiner Tree optimization problem is NP-hard, thus there is
likely to be no exact polynomial time algorithm.

There are heuristic algorithms with polynomial time, that have
upper bound guarantees on the maximum cost.

Implementing a good algorithm helps greatly for the Al-

Challenge.




Steiner Tree Special Cases

e |V’|=2:Shortest Path

* |V’|=V: Compute the minimum spanning tree (MST)

* |dea: if we had a fully connected graph, then we can get the
optimal solution using MIST

— Add edges to G’ that represent the shortest path between all nodes




Approximation Algorithm I

 G=(V,E), cost are the edge costs, S is a set of terminals

e Construct graph G’=(S,E’), cost’
build a fully connected graph:

for any pair of vertices cost’=distance of the shortest path
compute T = MST(G’)

 The minimum spanning tree T contains edges that represent
shortest paths

e Recover Steiner Tree from T

T* = recover shortest paths in G that correspond to edges in T

if present, remove cycles from T*



The graph G
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Build a fully-connected graph G’




A minimum spanning tree on G’

{




2-approximate Steiner tree

4




Approximation algorithm

* A a-approximation algorithm is a polynomial-time algorithm
that returns a solution of cost at most a times the cost of an

optimal solution




2-approximation

e 2 xoptimal costs
= cost a DFS traversal (in blue) on the optimal tree
that visits every edge exactly twice
> cost of some spanning tree constructed on shortest
paths (orange)

> cost of the MST on orange edges



https://services.math.duke.edu/~yh89/other/Lecture16-17.pdf

Minimum-Weight Subtree on Destination Tickets
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Build a fully-connected graph G’

10




A minimum spanning tree on G’

Cost=21




2-approximate Steiner tree

4

Cost = 5+8+8=21



An optimal (?7) Steiner tree

4

Cost = 5+9+4=18



An alternative Approximation Algorithm

« G=(V,E), Sis a set of terminals

* Heuristic for Steiner tree
start with subset T consisting of one terminal
while T does not span all terminals:
select a terminal t not in T that is closest to a vertexin T

add to T the shortest path that connects t with T

* Improve on solution
build a subgraph of G=(V,E) induced by the vertices in found solution T
compute a MST
repeat until there are no non-terminal leaves

delete non-terminals that are leaves of the MIST



Approximation Algorithm II

select a terminal t not
in T that is closest to a

vertexin T
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Approximation Algorithm II

select a terminal t not
in T that is closest to a

vertexin T
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Approximation Algorithm II

select a terminal t not
in T that is closest to a
vertexinT

4




Approximation Algorithm II

select a terminal t not
in T that is closest to a
vertexinT

)




2-approximate Steiner Tree

build a subgraph of G=(V,E)
induced by the vertices in
found solution T

Cost=5+9+4=18



