Ticket to Ride: Steiner Tree

Patrick Schafer

patr'Ck'SChaefer@ hu-berlin.de Semesterprojekt: Implementierung eines Brettspiels, WS 18/19

Agenda

* Today, 13:15

— Competition

— Short talk on Steiner Tree Approximation

Questions

* Are there any questions related to...

— TTR-Server
— TTR-Protocol

— C#-Client-Implementation

 Benchmark Al and Shell-Script (also linked on the webpage):
— https://box.hu-berlin.de/f/5b76e7c0f9084980ac63/?dI=1

https://box.hu-berlin.de/f/5b76e7c0f9084980ac63/?dl=1

Ticket to Ride and
Graph Theory

G = (V,E), V=Cities, E = Railways.

Each vertex of the graph represents one
city in Europe

An edge connects two cities
Each edge has a color and a length (cost)

The graph contains more edges than any
player can claim

A MST for Ticket to Ride

550%

The total weight of this

minimum spanning tree is:
P ARY 108

.........

Minimum Spanning Tree (Forest)

* A spanning tree of the full graph would guarantee that any
destination ticket is fulfilled.

e But payers do not have enough train tokens to claim a
spanning tree of the full graph (45 vs 108).

* Thus, the best strategy is to capture a minimum spanning tree
or forest of a subset of vertices (based on the destination
tickets).

» Steiner Tree / Forest: Given an undirected, weighted graph
G=(V,E) and a subset of vertices V’, referred to as terminals,
we search the subgraph G” with minimum weight, that
connects all terminals (and may include additional vertices).

Special Case: 2 terminals

1 destination ticket,

‘ww oo 1 Simple: shortest path @&
2
)
=
o N NF NN NI & f o

Minimum-Weight Subtree

3 destination tickets, find the
subgraph with minimum weight.

Minimum-Weight Subtree on Destination Tickets

3 destination tickets, find the
subgraph with minimum weight.

®
. . R 6 “‘t :
** 2 e . * *® ~
IR A 3 AR «s* C
.: -......¥.1 “¢‘ :
R O !
L 4 * - - ’
g 2 21 St s ;
3 ", : Rl o,)
e, o 2,° I‘ ., . K
2 ALY JE * @
~
2 ..Q ‘I 0.
L 4 . L 4

Dijkstra

4 3+3+4

3+1+6

2+2+4

Total : 10+10+9=29

Minimum-Weight Subtree on Destination Tickets

One cost-optimal Steiner tree

4
3 3 ® 4

3 ‘g »
o .

)
® ®

Total : 3+3+4+4+4+2+2=22

Approximate Algorithm

Steiner Tree optimization problem is NP-hard, thus there is
likely to be no exact polynomial time algorithm.

There are heuristic algorithms with polynomial time, that have
upper bound guarantees on the maximum cost.

Implementing a good algorithm helps greatly for the Al-

Challenge.

Steiner Tree Special Cases

e |V’|=2:Shortest Path

* |V’|=V: Compute the minimum spanning tree (MST)

* |dea: if we had a fully connected graph, then we can get the
optimal solution using MIST

— Add edges to G’ that represent the shortest path between all nodes

Approximation Algorithm I

 G=(V,E), cost are the edge costs, S is a set of terminals

e Construct graph G’=(S,E’), cost’
build a fully connected graph:

for any pair of vertices cost’=distance of the shortest path
compute T = MST(G’)

 The minimum spanning tree T contains edges that represent
shortest paths

e Recover Steiner Tree from T

T* = recover shortest paths in G that correspond to edges in T

if present, remove cycles from T*

The graph G

4
llllllll--.... 4
*-- N

.* o Yea,
* . s ",
“" ‘$‘3 400’ "'.
t‘ . RS
3““ ‘e “‘ ‘o’ 6 ““‘ N
“t 2 0. 3 . ’0 ““ :
.“ ._-l-.....¥ 1 o® :
Y .’ - *% “‘ K 4
..' .‘ n] 0’ o
g 32 I :
3 * ., . 2: ’0"‘ '...4 >
...Il.. .” I‘ .. R :
2 Ya, ‘ 3 *®
. - e
2 T, % .
* . ’0

Build a fully-connected graph G’

A minimum spanning tree on G’

{

2-approximate Steiner tree

4

Approximation algorithm

* A a-approximation algorithm is a polynomial-time algorithm
that returns a solution of cost at most a times the cost of an

optimal solution

2-approximation

e 2 xoptimal costs
= cost a DFS traversal (in blue) on the optimal tree
that visits every edge exactly twice
> cost of some spanning tree constructed on shortest
paths (orange)

> cost of the MST on orange edges

https://services.math.duke.edu/~yh89/other/Lecture16-17.pdf

Minimum-Weight Subtree on Destination Tickets

3 " ---------- @, 4
.
. »* . o" ..'.
““ % 3 4 . ..'
“‘ K o ““ v
3. .° . o 6 o* N

L L 4
..
L 4
.'O 0’] L] .* o 4
* L4 Q‘ - ’ :
.. 2 2. 0‘... 4 L
3 7 L ¢ .. I}
v, e . v, N
4, ... l” Y . s]
2 e %3 "o
2 L 4 ‘I Q~
L 4
.0 ‘l 0.

Build a fully-connected graph G’

10

A minimum spanning tree on G’

Cost=21

2-approximate Steiner tree

4

Cost = 5+8+8=21

An optimal (?7) Steiner tree

4

Cost = 5+9+4=18

An alternative Approximation Algorithm

« G=(V,E), Sis a set of terminals

* Heuristic for Steiner tree
start with subset T consisting of one terminal
while T does not span all terminals:
select a terminal t not in T that is closest to a vertexin T

add to T the shortest path that connects t with T

* Improve on solution
build a subgraph of G=(V,E) induced by the vertices in found solution T
compute a MST
repeat until there are no non-terminal leaves

delete non-terminals that are leaves of the MIST

Approximation Algorithm II

select a terminal t not
in T that is closest to a

vertexin T
4
*'-..---I"".'n 4
3 ® ¢ e,
»* “ o '...
““ . 3 40" "
. +* @
(a) 3 ““. “ ’0’ 6 ““ ..
o’ 2 ‘e . o o** ®
n
.... ”¥. 1 ““
., TS

. 4
®.. o2 ¢
/ N * . S
T @
2 ’0. % .,’
* .
3 .

Approximation Algorithm II

select a terminal t not
in T that is closest to a

vertexin T
4
3 *'l..-nll"".'. 4
N
»* - . 0" ..'..
.s® . 3 4 ¢ .,‘
““ % 000 6 “" .
(a) 3,e° 2.’0 % o* ““ v
a
“ * ” ““‘

Approximation Algorithm II

select a terminal t not
in T that is closest to a
vertexinT

4

Approximation Algorithm II

select a terminal t not
in T that is closest to a
vertexinT

)

2-approximate Steiner Tree

build a subgraph of G=(V,E)
induced by the vertices in
found solution T

Cost=5+9+4=18

