

Ticket to Ride: Concepts in Graph Theory

Patrick Schäfer
patrick.schaefer@hu-berlin.de
Semesterprojekt: Implementierung eines Brettspiels, WS 18/19

Agenda

- Last week
- Technical refinement for new user stories
- Today (w/ POs), 13:30
- Sprint \#1 Review Meeting; bring a laptop \& presentable prototype
- Sprint \#2 kickoff; present your Sprint Backlog
- short talk on
- Ticket to Ride: concepts in graph theory
- Coding guidelines / conventions

The Board Represents a Graph

Ticket to Ride: Concepts in Graph Theory

Ticket to Ride and Graph Theory

- $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{V}=$ Cities, $\mathrm{E}=$ Railways.
- Each vertex of the graph represents one city in Europe
- An edge connects two cities
- Each edge has a color and a length (cost)
- The graph has more edges than any player can claim
- The set of cities and edges is a player's edge-induced subgraph
- Connected components: Player's subgraphs don't have to be connected
- Paths and Cycles
- A destination ticket is met, when there is a path between the two cities
- Creating cycles do not increase coverage, and thus do not help meeting destination tickets (but may block other players)

Graph Algorithms

- Concepts known from: "Algorithmen und Datenstrukturen"
- Graph representations: Adjacency List, Adjacency Matrix
- Shortest paths: Dijkstra, Floyd Warshall
- Graph traversal: BFS, DFS
- Minimum Spanning Tree: Prim, Kruskal
- Topological sorting of directed graphs.

Ticket to Ride Rules and their Concepts in Computer Science

- What is the best representation of the board?
- Adjacency matrix or adjacency list?
- Given a destination ticket, what is the shortest path?
- Shortest path: Dijkstra
- How to fulfill destination tickets with the least amount of trains?
- Minimum spanning tree on subgraph (Minimum Steiner tree)
- Calculating the final score:
- List of routes claimed by a player
- Lookup in graph data structure (adjacency matrix or adjacency list)
- List of destination tickets fulfilled by a player.
- Graph traversal: DFS / BFS
- 10 point bonus is awarded to player with the longest route on the board.
- Longest path in a tree / graph

P, NP, NP-hard, NP-complete

- Definition:
- P is the set of decision problems that can be solved in polynomial time
- NP is the set of decision problems where we can verify a solution in polynomial time
- NP-hard: at least as hard as NP (using polynomial time reduction)
- NP-complete: it is NP-hard and in NP

NP-complete
What the world might look like...

Longest Simple Path

Acyclic Graph / Undirected Tree

Ticket to Ride: Concepts in Graph Theory

Acyclic Graph / Undirected Tree

How long is the longest simple path?

Acyclic Graph / Undirected Tree

Ticket to Ride: Concepts in Graph Theory

Acyclic Graph / Undirected Tree

How long is the longest simple path?

Simple...

Longest Simple Path

- There is an algorithm for finding the longest simple path in undirected trees using two Depth-First-Searches:
- Start DFS from a random vertex v and find the farthest vertex v^{\prime} away.
- Now, start a DFS from v^{\prime} to find the vertex $v^{\prime \prime}$ farthest away from it. This path is the longest path in the graph.
- Does this still work in a cyclic graph?

Cyclic, Undirected Graph

Ticket to Ride: Concepts in Graph Theory

Cyclic, Undirected Graph

How long is the longest simple path?

Reformulation

- Is there a path in the player's edge-induced subgraph, that visits all edges? NP-hard
- Check for Euler path of the full graph is in P
- But if there is no Eulerian path, we have to check $O\left(2^{\wedge} n\right)$ many subsets
- Finding the longest simple path in a cyclic graph is NP-hard. Thus, there is likely to be no polynomial time algorithm.
- There are approximate algorithms in polynomial time.
- For final scoring, we need the exact length of the longest path (not an approximation).
- Side note: finding the longest simple path in an undirected tree (acyclic graph) is in polynomial time.

A MST for Ticket to Ride

Ticket to Ride: Concepts in Graph Theory

Minimum Spanning Tree (Forest)

- A spanning tree of the full graph would guarantee that any destination ticket is fulfilled.
- But payers do not have enough train tokens to claim a spanning tree of the full graph (45 vs 108).
- Thus, the best strategy is to capture a minimum spanning tree or forest of a subset of vertices (based on the destination tickets).
- Steiner Tree / Forest: Given an undirected, weighted graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a subset of vertices V^{\prime}, referred to as terminals, we search the subgraph G^{\prime} with minimum weight, that connects all terminals (and may include additional vertices).

Shortest Path on Destination Ticket

Minimum-Weight Subtree on Destination Tickets

Minimum-Weight Subtree on Destination Tickets

Minimum-Weight Subtree on Destination Tickets

Ticket to Ride: Concepts in Graph Theory

Minimum-Weight Subtree on Destination Tickets

Ticket to Ride: Concepts in Graph Theory

Minimum-Weight Subtree on Destination Tickets

Ticket to Ride: Concepts in Graph Theory

Using Dijkstra...?

Ticket to Ride: Concepts in Graph Theory

A Spanning Tree on the Subgraph...

Ticket to Ride: Concepts in Graph Theory

A Spanning Tree on the Subgraph...

Ticket to Ride: Concepts in Graph Theory

A Spanning Tree on the Subgraph...

Ticket to Ride: Concepts in Graph Theory

NP-hardness

- We are dealing with NP-hard optimization problems [1]:
- „LONGEST PATH: Given a non-negatively weighted graph G and two vertices u and v, what is the longest simple path from u to v in the graph? A path is simple if it visits each vertex at most once.,,
- „STEINER TREE: Given a weighted, undirected graph G with some of the vertices marked, what is the minimum-weight subtree of G that contains every marked vertex? If every vertex is marked, the minimum Steiner tree is just the minimum spanning tree; if exactly two vertices are marked, the minimum Steiner tree is just the shortest path between them.,,
[1] Garey and Johnsons, „Computers and Intractability: A Guide to the Theory of NP-Completeness"

Steiner Tree / Forest in Cyclic Graphs is NP-hard

- Steiner Tree optimization problem is NP-hard, thus there is likely to be no exact polynomial time algorithm.
- Naïve approach:
for each subset of nodes:
compute the MST.
$/ / 2^{\text {IVI }}$-Subsets
// O(|E|+|V|log|v|)
pick the subset with minimum costs.
- There are heuristic algorithms with polynomial time, that have upper bound guarantees on the maximum cost.
- Finding a good algorithm is part of the AI-Challenge.

Literature

- 21 NP-Hard Problems:
http://web.engr.illinois.edu/~jeffe/teaching/algorithms/2009/ notes/21-nphard.pdf
- Taking Students Out for a Ride: Using a Board Game to Teach Graph Theory: http://www.cs.xu.edu/csci390/13s/p367lim.pdf
- Garey and Johnsons, „Computers and Intractability: A Guide to the Theory of NP-Completeness"

