

Ticket to Ride: Concepts in Graph Theory

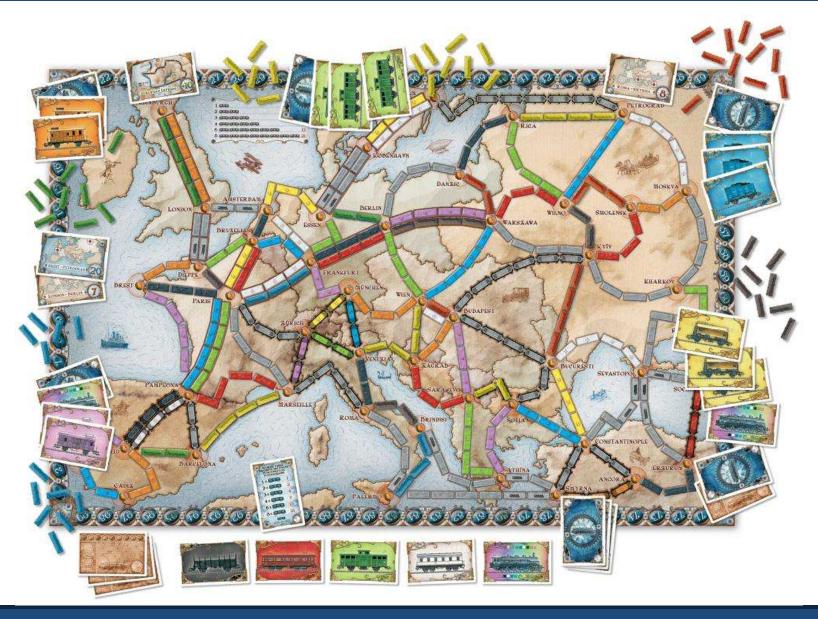
Patrick Schäfer patrick.schaefer@hu-berlin.de

Semesterprojekt: Implementierung eines Brettspiels, WS 18/19

Agenda

- Last week
 - Technical refinement for new user stories
- Today (w/ POs), 13:30
 - Sprint #1 Review Meeting; bring a laptop & presentable prototype
 - Sprint #2 kickoff; present your Sprint Backlog
 - short talk on
 - Ticket to Ride: concepts in graph theory
 - Coding guidelines / conventions

The Board Represents a Graph



Ticket to Ride and Graph Theory

- G = (V,E), V=Cities, E = Railways.
- Each vertex of the graph represents one city in Europe
- An edge connects two cities
- Each edge has a color and a length (cost)
- The graph has more edges than any player can claim
- The set of cities and edges is a player's edge-induced subgraph
- Connected components: Player's subgraphs don't have to be connected
- Paths and Cycles
 - A destination ticket is met, when there is a path between the two cities
 - Creating cycles do not increase coverage, and thus do not help meeting destination tickets (but may block other players)

Graph Algorithms

- Concepts known from: "Algorithmen und Datenstrukturen"
 - Graph representations: Adjacency List, Adjacency Matrix
 - Shortest paths: Dijkstra, Floyd Warshall
 - Graph traversal: BFS, DFS
 - Minimum Spanning Tree: Prim, Kruskal
 - Topological sorting of directed graphs.

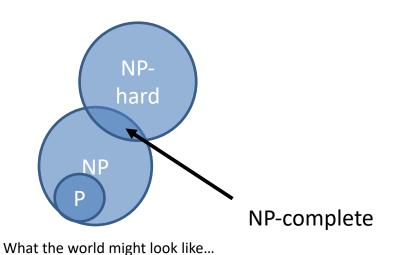
Ticket to Ride Rules and their Concepts in Computer Science

- What is the best representation of the board?
 - Adjacency matrix or adjacency list?
- Given a destination ticket, what is the shortest path?
 - Shortest path: Dijkstra
- How to fulfill destination tickets with the least amount of trains?
 - Minimum spanning tree on subgraph (Minimum Steiner tree)
- Calculating the final score:
 - List of routes claimed by a player
 - Lookup in graph data structure (adjacency matrix or adjacency list)
 - List of destination tickets fulfilled by a player.
 - Graph traversal: DFS / BFS
 - 10 point bonus is awarded to player with the longest route on the board.
 - Longest path in a tree / graph

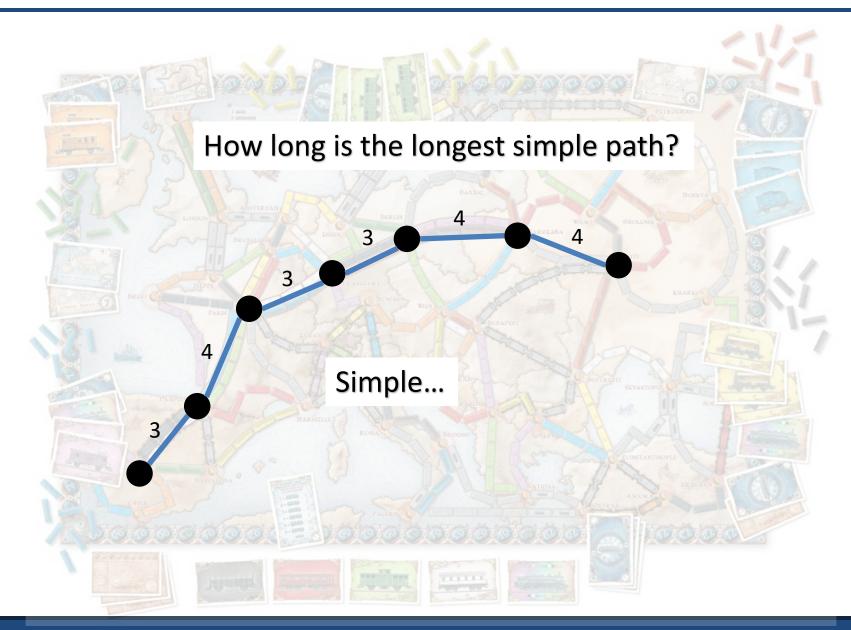
P, NP, NP-hard, NP-complete

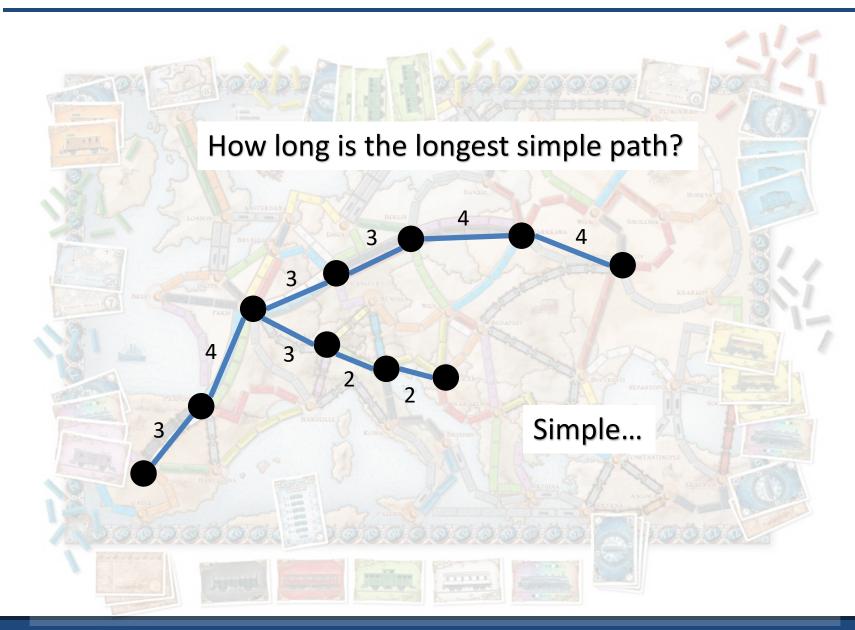
Definition:

- P is the set of decision problems that can be solved in polynomial time
- NP is the set of decision problems where we can verify a solution in polynomial time
- NP-hard: at least as hard as NP (using polynomial time reduction)
- NP-complete: it is NP-hard and in NP



Longest Simple Path

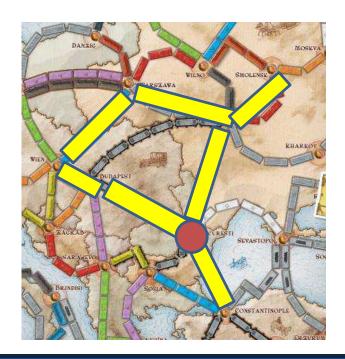




Longest Simple Path

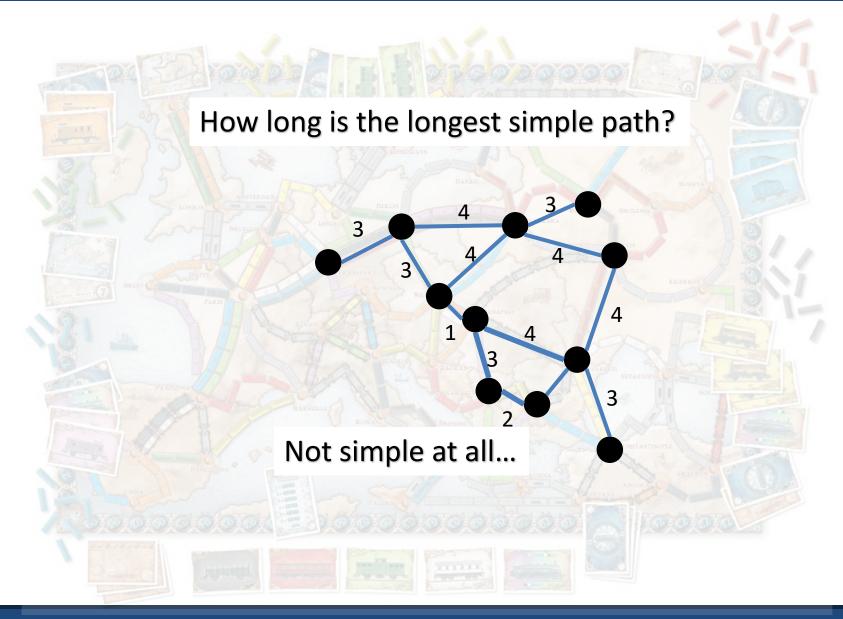
- There is an algorithm for finding the longest simple path in undirected trees using two Depth-First-Searches:
 - Start DFS from a random vertex ν and find the farthest vertex ν' away.
 - Now, start a DFS from v' to find the vertex v'' farthest away from it. This path is the longest path in the graph.

Does this still work in a cyclic graph?



Cyclic, Undirected Graph

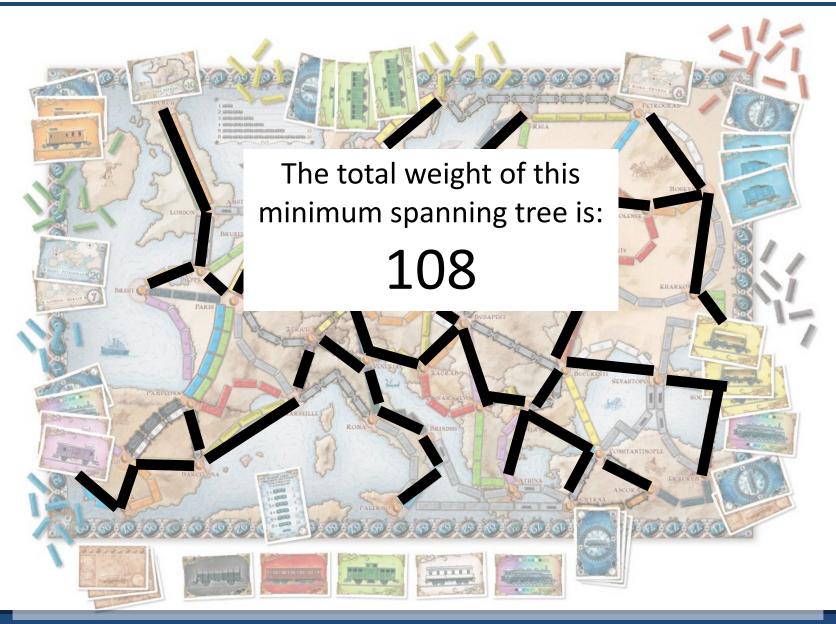
Cyclic, Undirected Graph



Reformulation

- Is there a path in the player's edge-induced subgraph, that visits all edges? NP-hard
 - Check for Euler path of the full graph is in P
 - But if there is no Eulerian path, we have to check O(2^n) many subsets
- Finding the longest simple path in a cyclic graph is NP-hard. Thus, there is likely to be no polynomial time algorithm.
- There are approximate algorithms in polynomial time.
- For final scoring, we need the exact length of the longest path (not an approximation).
- Side note: finding the longest simple path in an undirected tree (acyclic graph) is in polynomial time.

A MST for Ticket to Ride



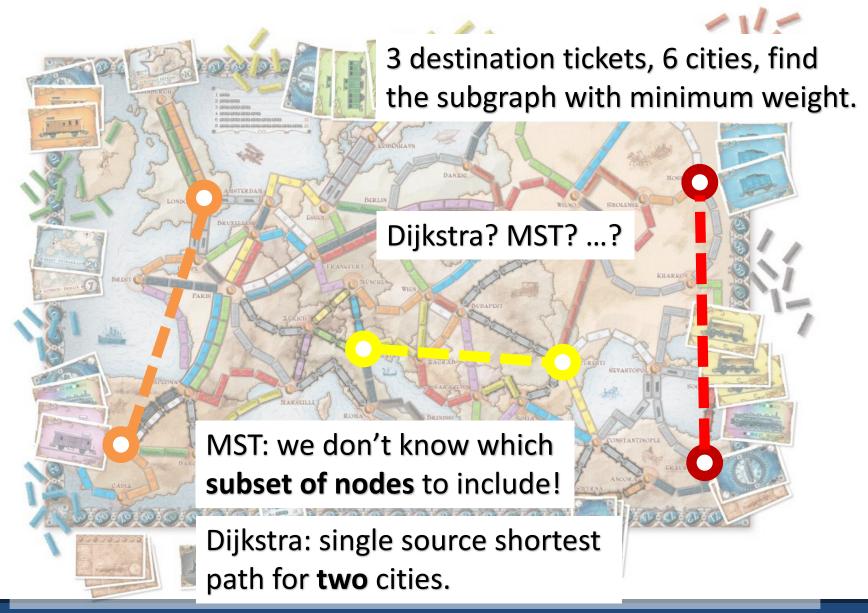
Minimum Spanning Tree (Forest)

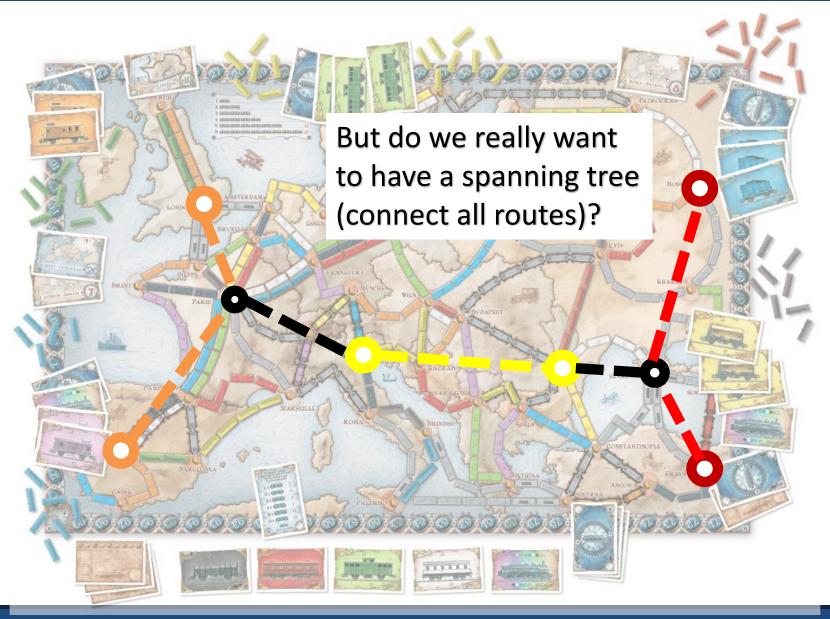
- A spanning tree of the full graph would guarantee that any destination ticket is fulfilled.
- But payers do not have enough train tokens to claim a spanning tree of the full graph (45 vs 108).
- Thus, the best strategy is to capture a minimum spanning tree or forest of a subset of vertices (based on the destination tickets).

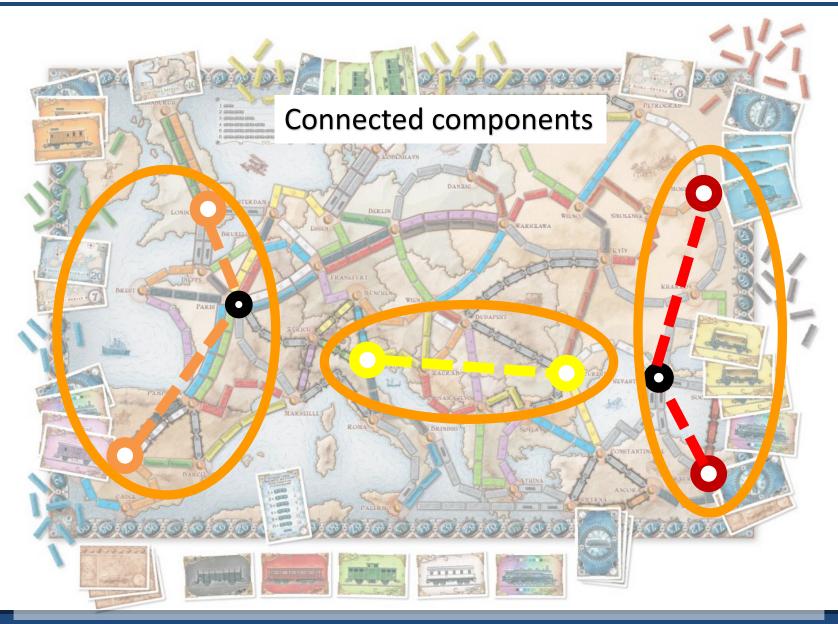
 Steiner Tree / Forest: Given an undirected, weighted graph G=(V,E) and a subset of vertices V', referred to as terminals, we search the subgraph G' with minimum weight, that connects all terminals (and may include additional vertices).

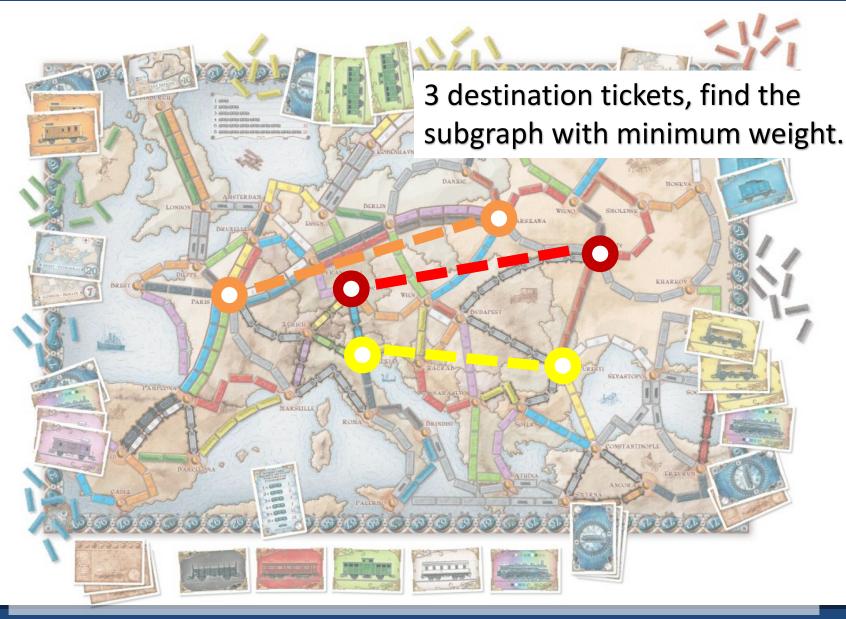
Shortest Path on Destination Ticket

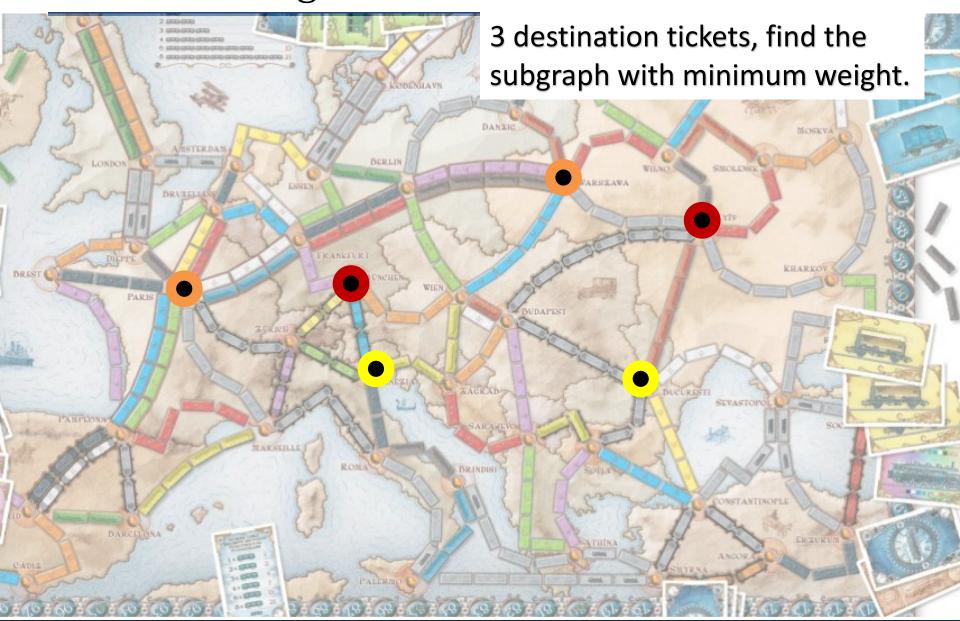




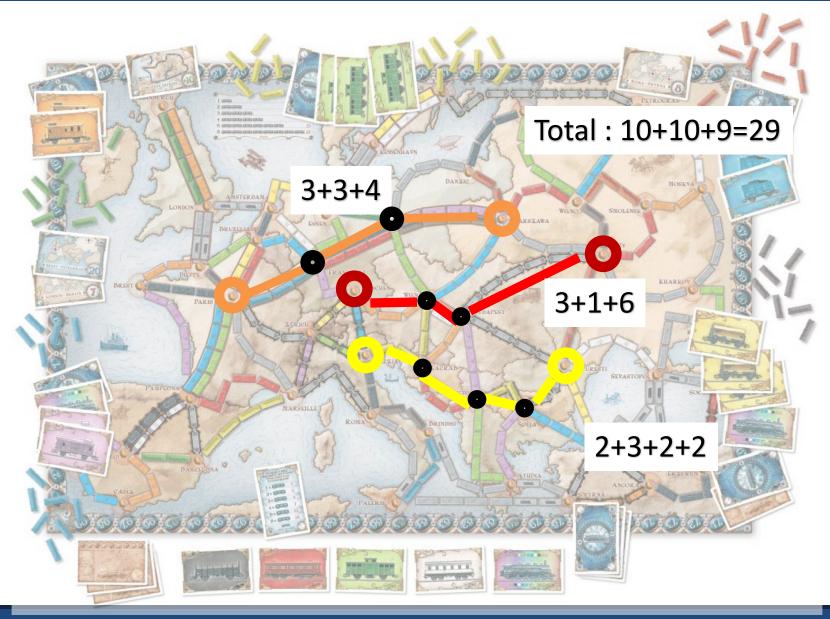






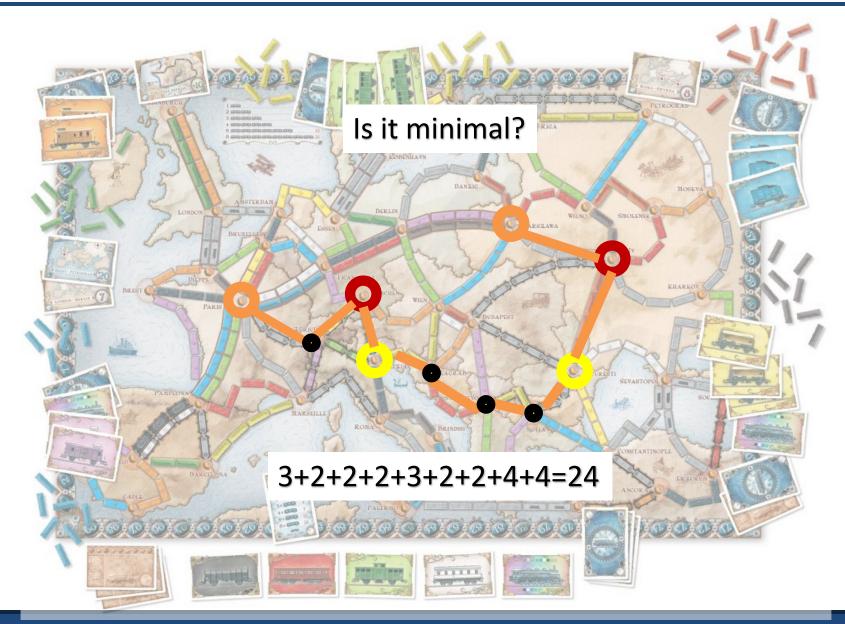


Using Dijkstra...?



A Spanning Tree on the Subgraph...

A Spanning Tree on the Subgraph...



A Spanning Tree on the Subgraph...



NP-hardness

- We are dealing with NP-hard optimization problems [1]:
 - "LONGEST PATH: Given a non-negatively weighted graph G and two vertices u and v, what is the longest simple path from u to v in the graph? A path is simple if it visits each vertex at most once."
 - "STEINER TREE: Given a weighted, undirected graph G with some of the vertices marked, what is the minimum-weight subtree of G that contains every marked vertex? If every vertex is marked, the minimum Steiner tree is just the minimum spanning tree; if exactly two vertices are marked, the minimum Steiner tree is just the shortest path between them.,

[1] Garey and Johnsons, "Computers and Intractability: A Guide to the Theory of NP-Completeness"

Steiner Tree / Forest in Cyclic Graphs is NP-hard

 Steiner Tree optimization problem is NP-hard, thus there is likely to be no exact polynomial time algorithm.

Naïve approach:

```
for each subset of nodes:

compute the MST.

// 2|V|-Subsets

// O(|E|+|V|log|v|)

pick the subset with minimum costs.
```

- There are heuristic algorithms with polynomial time, that have upper bound guarantees on the maximum cost.
- Finding a good algorithm is part of the AI-Challenge.

Literature

- 21 NP-Hard Problems: http://web.engr.illinois.edu/~jeffe/teaching/algorithms/2009/notes/21-nphard.pdf
- Taking Students Out for a Ride: Using a Board Game to Teach Graph Theory: http://www.cs.xu.edu/csci390/13s/p367-
 lim.pdf
- Garey and Johnsons, "Computers and Intractability: A Guide to the Theory of NP-Completeness"