" T @monsD@@wmmw ﬂ‘ﬁzmﬂm GJ@WEmm

Unit Testing & Continuous Integration

(basierend auf Folien von Marc Bux)

Patrick Schafer
patrick.schaefer@hu-berlin.de

Semesterprojekt: Implementierung eines Brettspiels, WS 18/19

Today

* New User Story:
— Observer-Mode

— Backlog-Grooming

* Technical Talk: Unit tests & continuous integration

* This week:
— technical refinement for the new user stories

— finalize tasks in your sprint backlog (incl. tests, code review)

 Next Monday, 13 c.t.
— Sprint #1 Review Meeting; bring a laptop & presentable prototype
— Sprint #2 Sprint planning; kickoff; present your Sprint Backlog

Unit-Tests & Continuous Integration 2

How Software Used to Be Developed

e software developed in teams

e software is divided in modules

 modules are assigned to teams

 modules have to be integrated at some point

* integration is done manually at release time

human player

’ bug fixes?
Al player -
: new features?
game logic
start of development release candidate

Unit-Tests & Continuous Integration 3

What Are the Issues?

» effects of changes (bugfixes, new features) are hard to predict
- Unit Tests

* no feedback (by the product owner) possible before release
— Continuous Integration

* unnecessarily complicated integration process

* bad software quality

* integration hell: stress and frustration towards the end of a project

Unit-Tests & Continuous Integration 4

Unit Tests

unit test: systematic, automated test of a software component

* unit: smallest testable part of an application

— in object-oriented programming, this is usually a method (or a class)

* the unitis tested in isolation (of other units)

e usually written in the same language as the tested software
e tests should be written by the developer (of the unit)
* can be written prior or concurrent to unit development

* tests can succeed or fail

Unit-Tests & Continuous Integration 5

Advantages of Unit Testing

unit tests ...

e ... facilitate the design of robust code
(bugs make it through only if the unit and its test are poorly designed)

e ...provide immediate feedback on the effect of changes in the code base
e ..serve as ato-do list subsequent to changes in the code base

* ... help define what a piece of code is (and isn’t) supposed to do

Unit-Tests & Continuous Integration 6

Best Practices

1. test the complete intended behavior of the unit, including

a) expected cases (e.g., sort an unsorted array)
b) special cases (e.g., sort already sorted array)

c) boundary conditions (e.g., sort empty array)

test every behavior only once (no redundant test)
test only one unit at a time

design tests independent of the application’s state
design tests independent of external resources

name unit tests clearly and consistently

N o v kW DN

whoever breaks a working unit is responsible for fixing it

Unit-Tests & Continuous Integration 7

A concrete Example

 We want to add the functionality to claim routes

e From the rule book:

To claim a route, a player must play a set of cards equal to the number of spaces in the route. A set
of cards must be of the same type. Most routes require a specific type of set. For example a Blue

route must be claimed using blue-colored Passenger Car cards. Some routes — those that are Gray
colored — can be claimed using a set of cards of any one color.

[...] Locomotives are Multi-colored and act as a wild card that can be part of any set of cards when
claiming a route. [...]

Unit-Tests & Continuous Integration 8

A naive Example

package de.huberlin.wbi;

public class Player {
public static enum PassengerColor {
Blue, Black, Red, Rainbow
}
int[] playerCards = new int[4];

/**
* Claim a route between two adjacent cities using
* the payByColor-passenger-cards in our hand
*
/
public boolean claimRoute(
PassengerColor payByColor,
int routeCost,
PassengerColor routeColor
){
int currentCards = playerCards[payByColor.ordinal()];
// Pay for a route between two adjacent cities on the map
if ((payByColor == routeColor
| | payByColor == PassengerColor.Rainbow
| | routeColor == PassengerColor.Rainbow)) {

if (currentCards >= routeCost) {
playerCards[payByColor.ordinal()] -= routeCost;
return true;

}
}

// we cannot buy the route
return false;

Unit-Tests & Continuous Integration

public class PlayerTest {

@Test

public void testContains() {
Player p = new Player();
Arrays.fill(p.playerCards, 3);

assertTrue(p.claimRoute(Player.PassengerColor.Black, 1, Player.PassengerColor.Black));
assertTrue(p.claimRoute(Player.PassengerColor.Red, 1, Player.PassengerColor.Rainbow));
assertTrue(p.claimRoute(Player.PassengerColor.Rainbow, 1, Player.PassengerColor.Blue));

assertFalse(p.claimRoute(Player.PassengerColor.Black, 2, Player.PassengerColor.Blue));
assertFalse(p.claimRoute(Player.PassengerColor.Red, 10, Player.PassengerColor.Red));

// Blue, Black, Red, Rainbow
System.out.printin(Arrays.toString(p.playerCards));
for (int c : p.playerCards) {
assertTrue(c >= 0);
}
}

Rainbow Cards

* From the rule book:

To claim a route, a player must play a set of cards equal to the number of spaces in the route. A set
of cards must be of the same type. Most routes require a specific type of set. For example a Blue

route must be claimed using blue-colored Passenger Car cards. Some routes — those that are Gray
colored — can be claimed using a set of cards of any one color.

[...] Locomotives are Multi-colored and act as a wild card that can be part of any set of cards when
claiming a route. [...]

* So lets add this functionality

Unit-Tests & Continuous Integration

10

A naive Example

public boolean claimRoute(
PassengerColor payByColor,
int routeCost,
PassengerColor routeColor
) {
int currentCards = playerCards[payByColor.ordinal()];
int rainBowCards = playerCards[PassengerColor.Rainbow.ordinal()];

// Pay for a route between two adjacent cities on the map
if ((payByColor == routeColor
| | payByColor == PassengerColor.Rainbow
| | routeColor == PassengerColor.Rainbow)) {
// no rainbow cards needed
if (currentCards >= routeCost) {
playerCards[payByColor.ordinal()] -= routeCost;
return true;
}
// rainbow cards are needed
else if (currentCards + rainBowCards >= routeCost){
playerCards[payByColor.ordinal()]= 0;

playerCards[PassengerColor.Rainbow.ordinal()] -= (routeCost - currentCards);
return true;

}
}

// we cannot buy the route
return false;

Unit-Tests & Continuous Integration

11

Demo: Unit Tests

Repository:
https://github.com/hu-berlin-semesterprojekte/cidemo

Unit-Tests & Continuous Integration 12

https://github.com/hu-berlin-semesterprojekte/cidemo

Continuous Integration (CI)

automatically test and merge all units into an integrated software (multiple times a day)

e every change (e.g., git push) in the software triggers a new build
* unit tests are executed to determine the success of a build

» gives feedback in form of reports

e requires version control and build automation for downloading dependencies,
compiling code, and running tests

— build automation tools for Java: Maven, Ant, Gradle

builds can succeed or fail

Unit-Tests & Continuous Integration 13

CI in Practice

Version
Control

Developer Fetch HEAD

Create build
Server

Unit-Tests & Continuous Integration 14

Advantages of Continuous Integreation

with continuous integration, we ...

e prevent “integration hell” early

* always know the latest stable version of our software

instant feedback if a developer‘s work in progress breaks the stable version
e can automatically test different setups

— different databases

— multiple versions of 3rd party libraries

— different configurations

Unit-Tests & Continuous Integration 15

Best Practices

design meaningful unit tests for your software modules
commit frequently; keep iterations small

keep your tests fast; keep the build fast

oW noe

don’t (ever) commit into a stable branch when the build is broken

Unit-Tests & Continuous Integration 16

Travis CI

e open-source continuous integration service / server

e website: https://travis-ci.org

e coupled with GitHub

* easy to set up:

1. sign in using your GitHub account

2. select repositories that Travis should build
* build is configurable via .travis.yml file

— YAML is a popular data serialization file format,
similar to XML or JSON

Unit-Tests & Continuous Integration 17

https://travis-ci.org/

Travis CI

Dashboard Changelog Documentation

patrickzib / SFA ouid_pessing

+ Current Branches Build History Pull Requests Build #44

More options

Cancel job

Duration: 10 min 16 sec) . .
Commit b44ad42 Running for 10 min 16 sec

Compare 43cfad8. .b44ad42

+/ hu-berlin-sem rprojekte/ 3

Branch master
Duration: 49 sec

Finished: 2 years ago Patrick Schafer

JDK: oraclejdk8

ob log View config

X: Remove log

worker information worker_info .
Build system information system_info

Setting APT mirror in /etc/apt/sources.list: http://us-east-1.ec2.archive.ubuntu.com/ubuntu/
$ jdk_switcher use oraclejdks
Switching to Oracle JDK8 (java-8-oracle), JAVA_HOME will be set to /usr/lib/jvm/java-8-oracle

$ git clone --depth=56 --branch=master https://github.com/patrickzib/SFA.git patrickzib/SFA git.checkout

$ export TERM=dumb

$ java -Xmx32m -version

java version "1.8.6_151"

Java(TM) SE Runtime Environment (build 1.8.6_151-b12)

Java HotSpot(TM) 64-Bit Server VM (build 25.151-bi12, mixed mode)

$ javac -J-Xmx32m -version

javac 1.8.6_151

$ gradle wrapper --gradle-version 4.2 install 18.06s
$./gradlew check

Unit-Tests & Continuous Integration

Travis CI: Build History

£ patrickzib / SFA

build | passing

Current Branches Build History Pull Requests

Patrick Schafer

master

Patrick Schafer

master

Patrick Schafer

Patrick Schafer

master

v
v
</ master
v

Patrick Schafer
X

X master

Patrick Schafer

X master

Patrick Schafer

</ master

Patrick Schafer

master
Patrick Schafer

</ master

Unit-Tests & Continuous Integration

shorten logs

Merge branch 'master' of github.com:patric!

Update README.md

teaser update

reset windowLength 350

reset min length to 8

changes because of the new UCR dataset fo

Merge pull request #24 from assaad/master

Merge branch 'master' of github.com:patric!

Update README.md

b44ad42

O- #38 passed

43cfad8

o- #36 passed

08d3540

- #34 passed

g9efcfac

O #33 passed

52fe881

o #32 failed

e979299

o- #31 failed

9ee7a2e

o- #30 failed

6508932

- #28 passed

9fafele

- #27 passed

More options

11 min 19 sec

13 min 39 sec

about a month ago

12 min 51 sec

about a month ago

9 min 27 sec

about a month ago

15 min 28 sec

about a month ago

12 min 34 sec

13 minutes ago

14 min 14 sec

about a month ago

6min 12 sec

about a month ago

12 min 40 sec

2 months ago

12 min 25 sec

Using Travis YML

1. Write Unit Tests 2. Configure build 3. Configure travis to
automation use build automation
pom.xml for Maven (Java) travis.yml:

language: java

build.gradle for Gradle (Java) jdk: - oraclejdk8
sudo: false

script: mvn clean verify

Unit-Tests & Continuous Integration 20

Demo: Continuous Integration

Repository:
https://github.com/hu-berlin-semesterprojekte/cidemo

Unit-Tests & Continuous Integration 21

https://github.com/hu-berlin-semesterprojekte/cidemo

Further Reading

* unit tests in Java using JUnit:
http://www.frankwestphal.de/UnitTestingmitJUnit.html|

* build automation in Java using Maven:
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

e unit tests in Unity using Unity Test Tools:
https://unity3d.com/learn/tutorials/topics/production/unity-test-tools

e continuous integration in Unity using GitHub and Travis Cl:
https://stablekernel.com/continuous-integration-for-unity-5-using-travisci/

Unit-Tests & Continuous Integration 22

http://www.frankwestphal.de/UnitTestingmitJUnit.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://unity3d.com/learn/tutorials/topics/production/unity-test-tools
https://stablekernel.com/continuous-integration-for-unity-5-using-travisci/

Next steps

* familiarize yourself with unit tests & continuous integration

— further reading (= last slide)

— start testing and integrating (= user story “Continuous Integration”)

e this week (w/o POs)
— finalize tasks in your sprint backlog (incl. tests, code review)

— mid-week: technical refinement for the new user stories

 Next Monday, 13:30

— Sprint #1 Review Meeting; bring a laptop & presentable prototype
— Sprint #2 Sprint planning; kickoff; present your Sprint Backlog

e Further technical talks...

e Questions?

Unit-Tests & Continuous Integration 23

