
Unit Testing & Continuous Integration
(basierend auf Folien von Marc Bux)

O n a blustery autumn evening five old friends met in the backroom of one of the city’s oldest and most private clubs. Each had
traveled a long distance — from all corners of the world — to meet on this very specific day… October 2, 1900 — 28 years to the

day that the London eccentric, Phileas Fogg accepted and then won a £20,000 bet that he could travel Around the World in 80 Days.
When the story of Fogg’s triumphant journey filled all the newspapers of the day, the five attended University together. Inspired by
his impetuous gamble, and a few pints from the local pub, the group commemorated his circumnavigation with a more modest excur-
sion and wager – a bottle of good claret to the first to make it to Le Procope in Paris.
Each succeeding year, they met to celebrate the anniversary and pay tribute to Fogg. And each year a new expedition (always more
difficult) with a new wager (always more expensive) was proposed. Now at the dawn of the century it was time for a new impossi-
ble journey. The stakes: $1 Million in a winner-takes-all competition. The objective: to see which of them could travel by rail to the
most cities in North America — in just 7 days. The journey would begin immediately…
Ticket to Ride is a cross-country train adventure. Players compete to connect different cities by laying claim to railway routes on a
map of North America.

For 2 - 5 players
ages 8 and above
30 - 60 minutes

[T2R] rules EN reprint 2015_TTR2 rules US 06/03/15 17:36 Page2

Patrick Schäfer

patrick.schaefer@hu-berlin.de
Semesterprojekt: Implementierung eines Brettspiels, WS 18/19

Unit-Tests	&	Continuous Integration 2

Today
• New User Story:

– Observer-Mode

– Backlog-Grooming

• Technical Talk: Unit tests & continuous integration

• This week:
– technical refinement for the new user stories

– finalize tasks in your sprint backlog (incl. tests, code review)

• Next Monday, 13 c.t.
– Sprint #1 Review Meeting; bring a laptop & presentable prototype

– Sprint #2 Sprint planning; kickoff; present your Sprint Backlog

Unit-Tests	&	Continuous Integration 3

How Software	Used to Be Developed
• software developed in teams
• software is divided in modules
• modules are assigned to teams
• modules have to be integrated at some point
• integration is done manually at release time

human player

AI player

game logic

release candidatestart of development

bug fixes?

new features?

Unit-Tests	&	Continuous Integration 4

What Are	the Issues?

• effects of changes (bugfixes, new features) are hard to predict
→ Unit Tests

• no feedback (by the product owner) possible before release
→ Continuous Integration

• unnecessarily complicated integration process
• bad software quality
• integration hell: stress and frustration towards the end of a project

Unit-Tests	&	Continuous Integration 5

Unit	Tests
unit test: systematic, automated test of a software component

• unit: smallest testable part of an application
– in object-oriented programming, this is usually a method (or a class)

• the unit is tested in isolation (of other units)

• usually written in the same language as the tested software
• tests should be written by the developer (of the unit)
• can be written prior or concurrent to unit development
• tests can succeed or fail

Unit-Tests	&	Continuous Integration 6

Advantages	of Unit	Testing

unit tests …

• … facilitate the design of robust code
(bugs make it through only if the unit and its test are poorly designed)

• … provide immediate feedback on the effect of changes in the code base
• … serve as a to-do list subsequent to changes in the code base
• … help define what a piece of code is (and isn’t) supposed to do

Unit-Tests	&	Continuous Integration 7

Best	Practices

1. test the complete intended behavior of the unit, including
a) expected cases (e.g., sort an unsorted array)
b) special cases (e.g., sort already sorted array)
c) boundary conditions (e.g., sort empty array)

2. test every behavior only once (no redundant test)
3. test only one unit at a time
4. design tests independent of the application‘s state
5. design tests independent of external resources
6. name unit tests clearly and consistently
7. whoever breaks a working unit is responsible for fixing it

Unit-Tests	&	Continuous Integration 8

A	concrete	Example
• We want to add the functionality to claim routes
• From the rule book:

To claim a route, a player must play a set of cards equal to the number of spaces in the route. A set
of cards must be of the same type. Most routes require a specific type of set. For example a Blue
route must be claimed using blue-colored Passenger Car cards. Some routes – those that are Gray
colored – can be claimed using a set of cards of any one color.

[...] Locomotives are Multi-colored and act as a wild card that can be part of any set of cards when
claiming a route. [...]

Unit-Tests	&	Continuous Integration 9

A	naïve	Example
package de.huberlin.wbi;

public class Player {
public static enum PassengerColor {
Blue, Black, Red, Rainbow

}
int[] playerCards = new int[4];

/**
* Claim a route between two adjacent cities using
* the payByColor-passenger-cards in our hand
*/

public boolean claimRoute(
PassengerColor payByColor,
int routeCost,
PassengerColor routeColor

) {
int currentCards = playerCards[payByColor.ordinal()];
// Pay for a route between two adjacent cities on the map
if ((payByColor == routeColor

|| payByColor == PassengerColor.Rainbow
|| routeColor == PassengerColor.Rainbow)) {

if (currentCards >= routeCost) {
playerCards[payByColor.ordinal()] -= routeCost;
return true;

}
}
// we cannot buy the route
return false;

}
}

public class PlayerTest {

@Test
public void testContains() {

Player p = new Player();
Arrays.fill(p.playerCards, 3);

assertTrue(p.claimRoute(Player.PassengerColor.Black, 1, Player.PassengerColor.Black));
assertTrue(p.claimRoute(Player.PassengerColor.Red, 1, Player.PassengerColor.Rainbow));
assertTrue(p.claimRoute(Player.PassengerColor.Rainbow, 1, Player.PassengerColor.Blue));

assertFalse(p.claimRoute(Player.PassengerColor.Black, 2, Player.PassengerColor.Blue));
assertFalse(p.claimRoute(Player.PassengerColor.Red, 10, Player.PassengerColor.Red));

// Blue, Black, Red, Rainbow
System.out.println(Arrays.toString(p.playerCards));
for (int c : p.playerCards) {

assertTrue(c >= 0);
}

}
}

How to test this:

- Special-Cases?

- Expected Cases?

- Boundary Cases?

Unit-Tests	&	Continuous Integration 10

Rainbow	Cards
• From the rule book:

To claim a route, a player must play a set of cards equal to the number of spaces in the route. A set
of cards must be of the same type. Most routes require a specific type of set. For example a Blue
route must be claimed using blue-colored Passenger Car cards. Some routes – those that are Gray
colored – can be claimed using a set of cards of any one color.
[...] Locomotives are Multi-colored and act as a wild card that can be part of any set of cards when
claiming a route. [...]

• So lets add this functionality

Unit-Tests	&	Continuous Integration 11

A	naïve	Example
public boolean claimRoute(

PassengerColor payByColor,
int routeCost,
PassengerColor routeColor

) {
int currentCards = playerCards[payByColor.ordinal()];
int rainBowCards = playerCards[PassengerColor.Rainbow.ordinal()];

// Pay for a route between two adjacent cities on the map
if ((payByColor == routeColor

|| payByColor == PassengerColor.Rainbow
|| routeColor == PassengerColor.Rainbow)) {

// no rainbow cards needed
if (currentCards >= routeCost) {

playerCards[payByColor.ordinal()] -= routeCost;
return true;

}
// rainbow cards are needed
else if (currentCards + rainBowCards >= routeCost){

playerCards[payByColor.ordinal()]= 0;
playerCards[PassengerColor.Rainbow.ordinal()] -= (routeCost - currentCards);
return true;

}
}

// we cannot buy the route
return false;

}

Any problems?

Special-Cases?

Expected Cases?

Boundary Cases?

Unit-Tests	&	Continuous Integration 12

Demo:	Unit	Tests

Repository:
https://github.com/hu-berlin-semesterprojekte/cidemo

https://github.com/hu-berlin-semesterprojekte/cidemo

Unit-Tests	&	Continuous Integration 13

Continuous	Integration	(CI)
• automatically test and merge all units into an integrated software (multiple times a day)

• every change (e.g., git push) in the software triggers a new build

• unit tests are executed to determine the success of a build

• gives feedback in form of reports

• requires version control and build automation for downloading dependencies,
compiling code, and running tests

– build automation tools for Java: Maven, Ant, Gradle

• builds can succeed or fail

Unit-Tests	&	Continuous Integration 14

CI	in	Practice

Developer

Version
Control
System

Commit

CI
Server

Fetch HEAD
Report

Create build

Unit-Tests	&	Continuous Integration 15

Advantages	of	Continuous	Integreation
with continuous integration, we …

• prevent “integration hell” early

• always know the latest stable version of our software

• instant feedback if a developer‘s work in progress breaks the stable version
• can automatically test different setups

– different databases

– multiple versions of 3rd party libraries

– different configurations

Unit-Tests	&	Continuous Integration 16

Best	Practices

1. design meaningful unit tests for your software modules

2. commit frequently; keep iterations small

3. keep your tests fast; keep the build fast

4. don’t (ever) commit into a stable branch when the build is broken

Unit-Tests	&	Continuous Integration 17

Travis	CI
• open-source continuous integration service / server

• website: https://travis-ci.org

• coupled with GitHub

• easy to set up:

1. sign in using your GitHub account

2. select repositories that Travis should build

• build is configurable via .travis.yml file

– YAML is a popular data serialization file format,
similar to XML or JSON

https://travis-ci.org/

Unit-Tests	&	Continuous Integration 18

Travis	CI

Unit-Tests	&	Continuous Integration 19

Travis	CI:	Build	History

Unit-Tests	&	Continuous Integration 20

Using	Travis	YML
3. Configure travis to

use build automation

.travis.yml:
language: java
jdk: - oraclejdk8
sudo: false
script: mvn clean verify

2. Configure build
automation

pom.xml for Maven (Java)

build.gradle for Gradle (Java)

...

1. Write Unit Tests

Unit-Tests	&	Continuous Integration 21

Demo:	Continuous Integration

Repository:
https://github.com/hu-berlin-semesterprojekte/cidemo

https://github.com/hu-berlin-semesterprojekte/cidemo

Unit-Tests	&	Continuous Integration 22

Further	Reading
• unit tests in Java using JUnit:

http://www.frankwestphal.de/UnitTestingmitJUnit.html
• build automation in Java using Maven:

https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

• unit tests in Unity using Unity Test Tools:
https://unity3d.com/learn/tutorials/topics/production/unity-test-tools

• continuous integration in Unity using GitHub and Travis CI:
https://stablekernel.com/continuous-integration-for-unity-5-using-travisci/

http://www.frankwestphal.de/UnitTestingmitJUnit.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://unity3d.com/learn/tutorials/topics/production/unity-test-tools
https://stablekernel.com/continuous-integration-for-unity-5-using-travisci/

Unit-Tests	&	Continuous Integration 23

Next	steps
• familiarize yourself with unit tests & continuous integration

– further reading (→ last slide)

– start testing and integrating (→ user story “Continuous Integration”)

• this week (w/o POs)
– finalize tasks in your sprint backlog (incl. tests, code review)

– mid-week: technical refinement for the new user stories

• Next Monday, 13:30
– Sprint #1 Review Meeting; bring a laptop & presentable prototype

– Sprint #2 Sprint planning; kickoff; present your Sprint Backlog

• Further technical talks…

• Questions?

