
Patrick Schäfer

A Primer on Time Series Analytics
Landnutzungsklassifikation WS 18/19

URL: https://hu.berlin/landnutzung

Agenda

• Time Series

• Pre-Processing

• Representations & Classifiers

• Whole-Series

• Shapelets

• Dictionary (Bag-of-Patterns)

• Next steps:

• Today: choose a topic
• Before 30.11.18: meet me to discuss topic

• 07.12.18 15-16 Uhr: Flash presentation, RUD 25 4.410
• Present ideas and your topic in 5min

2https://hu.berlin.de/landnutzung

From satellite images to Land Cover Classification

Ti
m
e

Satellite Images Time Series Land-Cover Map (Classes)

Figure 2: Production of a time series datasets from satellite image series.

periodic behaviour which can be slightly modulated
by weather artifacts. These modulations result in
distortions of canonical temporal profiles that are well
handled by DTW [20]. (2) Time series are too short for
Bag-of-word-type approaches [28, 29] to perform best.

NN-DTW cannot scale to the typical size of satellite
datasets where it is common to have 100 million example
time series [9, 10]. This is because to classify each
query time series, we have to scan the entire 100 million
training dataset. Even making the most of lower-
bounding [12, 15], this is completely infeasible. Figure 3
illustrates this point: while all datasets of the standard
archive of time series [7] can be classified in less than
30 minutes, creating a temporal land-cover map for just
a city like Houston (16 million time series) assuming a
bare minimum of 1 million training examples would take
about a year to complete. To create a land-cover map of
Texas (7 billion time series) with a reasonable training
dataset of 100 million samples would require 30k years
of computation.

With these motivations, this work tackles Con-

tract Time Series Classification, where we would
like to produce the most accurate classifier under a con-
tracted time (obviously significantly smaller than run-
ning the NN-DTW). We propose a new algorithm that
e�ciently indexes the training database using a hierar-
chical K-means tree structure specifically designed for
DTW. We will show that our algorithm reduces the time
per query while retaining similar error to the state of the
art, NN-DTW.

This paper is organized as follows. In section 2, we
review some background and define the problem state-
ment for our work. Then in section 3 we introduce and
describe our approach. Section 4 shows the empirical
evaluation for our approach. Lastly, section 5 o↵ers
some direction for our future work and we conclude our
work in section 6.

2 Background and Motivation

2.1 Time Series Classification Many time se-
ries classification algorithms in the literature such as
Shapelets [23, 33], 1-NN BOSS [28] and SAX-VSM [29]
have been shown to be competitive (and sometimes su-
perior) to the state of the art, NN-DTW.

Nonetheless, as explained in the introduction, clas-
sification of the Satellite Image Time Series (SITS) is
better tackled by NN-DTW. NN-DTW has been shown
to be extremely competitive for many other applications
[4, 19, 20, 22, 24, 30, 31]. It has been argued that the
widespread utility of NN-DTW is due to time series data
having autocorrelated values, resulting in high apparent
but low intrinsic dimensionality. Experimental compar-
ison of DTW to most other highly cited distance mea-
sures on many datasets concluded that DTW almost
always outperforms other measures [30].

Figure 3: Average NN-DTW Classification Time on
di↵erent datasets

Tan, Chang Wei, Geoffrey I. Webb, and François Petitjean. "Indexing and classifying gigabytes of time series under time warping." Proceedings of
the 2017 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2017.

3https://hu.berlin.de/landnutzung

Time Series Definition

• Definition: A Time Series is a sequence (ordered collection) of n
real values at time stamps !", … , !% :

& = (", … , ()

• Time Series may be univariate or multivariate
• Univariate: a single value *+ is associated with each time stamp ,+.
• Multivariate: - values *+ = (/", …/0) are associated with each time

stamp ,+.

• The dimensionality of a time series refers to the number of values
at each time stamp

4https://hu.berlin.de/landnutzung

Multivariate Time Series (MTS)
• Arise when interconnected streams record

data over time:

• Weather observations: humidity,
temperature

• Satellite images: different reflectances
(sensors)

• Gesture recognition of users performing
isolated gestures: 8 sensors recording
x/y/z coordinates (Figure to the right)

5https://hu.berlin.de/landnutzung

MTS are characterized by

1. Interplay of dimensions:
Individual features vs. interplay
of features in different
dimensions

2. Phase invariance:
Signals may not be synchronized
in time / characteristic features
may appear anywhere

3. Irrelevant data/dimensions:
Only small periods in time and
in a few dimensions may contain
relevant information

6https://hu.berlin.de/landnutzung

Pre-processing

7https://hu.berlin.de/landnutzung

Pre-processing: Normalization

• Time series need to be normalized, especially when different kinds of sensors
are used to record the data
• Normalization puts the data on the same scale to make comparisons

meaningful (i.e. Fahrenheit and Celsius)
• Two methods are commonly used:
• Range-based normalization:

preserves relationship between samples
• Z-normalization:

looses relationship between samples,
can be useful when min/max values are unknown

8https://hu.berlin.de/landnutzung

Pre-processing: Range-based normalization

• Range-based normalization:
The minimum and maximum values over all time series !"# are determined,
then each value of a time series $ = &',… , &* is mapped to range [0,1] by:

+,-./_-1+2 ! = 345, … , 346

with 3′8 = 9:;<86
=>? ;<86

9https://hu.berlin.de/landnutzung

Pre-processing: Z-Normalization

• Zero-mean-normalization:
Let ! and " be the mean and
standard deviation of the time series
= %&,… , %) , then

*+,-. / = 012, … , 013
with 0′5 = 6789

:

10
https://jmotif.github.io/sax-
vsm_site/morea/algorithm/znorm.htmlhttps://hu.berlin.de/landnutzung

Pre-Processing: Missing Data

• It is common for time series to contain missing data
• Possible directions:

1. Remove all records with missing entries, which is not practical when
all data contains missing values

2. Impute missing values, but imputation error affects overall
classification accuracy

3. Use a model that works with missing data

11https://hu.berlin.de/landnutzung

Imputation Methods

• mean,
• median,
• last observation carried forward,
• next observation carried backward,
• spline interpolation,
• linear interpolation

https://hu.berlin.de/landnutzung 12

Pre-processing: Imputation

• Linear interpolation estimates the (missing) values at
the desired time stamps by fitting a line
• Linear interpolation: !"#$ and !" are values of the

time series at times %&#$ and %&

!'() = !"#$ +
%'() − %&#$ - !" − !"#$

%& − %&#$

%&#$ %&%'()

!"#$

!"
!'()

missing
data

13

Equally
spaced

https://hu.berlin.de/landnutzung

Pre-processing: Noise Removal
• Remove short-term fluctuation and noise
• Binning (Averaging):
• Divide the data into disjoint intervals of size !. Then

calculate the mean values T = $%& … $%(, with * = +
, ,

in each interval: $%- =
∑/01 234 54
12 6/

,
• Reduces the number of points by a factor of !

• Smoothing (Moving-Averages)
• Divide the data into overlapping intervals of size k over

which the averages are calculated
• Thus, the average is computed at each time stamp
7&, 7, , 78, 7,9& , … rather than only at the interval

intersections 7&, 7, , 7,9&, 78, , … 14https://hu.berlin.de/landnutzung

Time Series Analytics
Representations and Classifiers

15https://hu.berlin.de/landnutzung

Time Series Approaches

• Time series approaches are composed of
• a time series representation, and
• a classifier

• Representations can be divided into:
• Global: Using the whole time series
• Local: Using sub-sequences

• Shapelets: absence or presence of characteristic substructures
• Bag-of-Patterns (Dictionaries): frequency of occurrences of substructures

• Any base-classifier can then be trained on this feature space (embedding)
16https://hu.berlin.de/landnutzung

A List of Approaches

• (non-time series) based-Classifiers
• SVM, logistic regression, random

forests/decision trees, gradient
boosting trees, XGBoost

• Whole-Series-based Classifiers
• 1-NN Dynamic Time Warping
• 1-NN Euclidean Distance
• Proximity Forests

• Shapelet-based Classifiers
• Univariate: Fast Shapelets (FS), Learning

Shapelets (LS), Shapelet Transform (ST)
• Multivariate: gRSF

• Dictionary-based Classifiers
• Univariate: BoP, SAX VSM, TSBF, BOSS,

BOSS VS, WEASEL
• Multivariate: SMTS, WEASEL+MUSE,

LPS

• Deep Learning Classifiers
• ResNet, FCN, Encoder, MLP, Time-CNN,

TWIESN, MCDCNN, MCNN, t-LeNet

• Ensembles of Core Classifiers
• Univariate: EE PROP, COTE 17https://hu.berlin.de/landnutzung

1) Whole Series

• Compares two whole time series
• The similarity of time series ! and " is expressed

by a real value using a distance measure:
!, " → ℝ'(
• A similarity measure is the inverse of the

distance measure: it qualifies similar (/dissimilar)
time series by a small (/large) value
• Most common methods are Euclidean distance

(ED) and Dynamic Time Warping Distance (DTW)
• Others: Longest Common Subsequence or Edit

Distance
18https://hu.berlin.de/landnutzung

1) Whole Series: Euclidean Distance (ED)

• Definition: The Euclidean distance between two
time series ! = ($%, … , $() and C =
(*%, … , *(), both of length +, is defined as:

,-. !, / = 0
1
$1 − *1 3

• The ED applies a linear alignment of the time axis
• ED cannot cope with variable length time series
• ED runtime is O(n)

19https://hu.berlin.de/landnutzung

1) Whole Series: Dynamic Time Warping (DTW)

• Dynamic Time Warping applies an elastic

transformation of the time axis to detect similar

shapes that have a different phase

• This is essentially a peak-to-peak and valley-to-

valley alignment of two time series

• Intuition: An extension of the ED, which uses two
indices ! and " representing both time axis

• Find indices (i,j) such that total distance is

minimal:

#$%& ',) = +
(-,.)

0- − 2.
3

20https://hu.berlin.de/landnutzung

1) Whole Series: Classification

1. Most common: 1-Nearest Neighbour
• Find the one sample that minimizes distance to the

to-be-labelled sample and use it’s class label

2. Distance-Space-Embedding + classifier:
• Build a matrix ! on pairwise distances between all

time series in "#$%&'
• Train classification model on this !
• To predict a novel sample (:

• Compute distance from S to all samples T in "#$%&'
• This results in the feature vector:
V = + (, -. , + (, -/ , …+ (, -1 2

• Predict the label for this vector V using trained model
21https://hu.berlin.de/landnutzung

long time series C

slide along

sliding window S

Query Q

Similarity D(Q,S)

most similar subsequence

Query Q

Query QQuery Q

Similarity D(Q,S)

dataset DStime series T
Whole Matching

Subsequence Matching

{+ -4, -. , + -4, -/ , …+ -., -.5 }
+ -.5, -. , + -.5, -/ , …+ -.5, -.5

-4 -.5

-. -7

! =
+ -., -. , + -., -/ , …+ -., -1

… ,… ,…
+ -1, -. , + -1, -/ , …+ -1, -1

Pairwise distances

Subsequence vs Whole Series

• We wish distinguish between two kinds of
plants: what features should one use?

• The contour of a leaf can in fact be
interpreted as a time series

• Instead of using the entire shapes, it is
better to only compare small subsections

• Here: the defining difference is that Urtica
dioica has a stem that connects to the leaf
at almost 90 degrees

22

Time Series Shapelets: A New Primitive for Data Mining
Lexiang Ye

Dept. of Computer Science & Engineering
University of California, Riverside, CA 92521

lexiangy@cs.ucr.edu

Eamonn Keogh
Dept. of Computer Science & Engineering
University of California, Riverside, CA 92521

eamonn@cs.ucr.edu

ABSTRACT
Classification of time series has been attracting great interest over
the past decade. Recent empirical evidence has strongly suggested
that the simple nearest neighbor algorithm is very difficult to beat
for most time series problems. While this may be considered good
news, given the simplicity of implementing the nearest neighbor
algorithm, there are some negative consequences of this. First, the
nearest neighbor algorithm requires storing and searching the
entire dataset, resulting in a time and space complexity that limits
its applicability, especially on resource-limited sensors. Second,
beyond mere classification accuracy, we often wish to gain some
insight into the data.
In this work we introduce a new time series primitive, time series
shapelets, which addresses these limitations. Informally, shapelets
are time series subsequences which are in some sense maximally
representative of a class. As we shall show with extensive
empirical evaluations in diverse domains, algorithms based on the
time series shapelet primitives can be interpretable, more accurate
and significantly faster than state-of-the-art classifiers.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining

General Terms
Algorithms, Experimentation

1. INTRODUCTION
While the last decade has seen a huge interest in time series
classification, to date the most accurate and robust method is the
simple nearest neighbor algorithm [4][12][14]. While the nearest
neighbor algorithm has the advantages of simplicity and not
requiring extensive parameter tuning, it does have several
important disadvantages. Chief among these are its space and time
requirements, and the fact that it does not tell us anything about
why a particular object was assigned to a particular class.

In this work we present a novel time series data mining primitive
called time series shapelets. Informally, shapelets are time series
subsequences which are in some sense maximally representative
of a class. While we believe shapelets can have many uses in data
mining, one obvious implication of them is to mitigate the two
weaknesses of the nearest neighbor algorithm noted above.

Because we are defining and solving a new problem, we will take
some time to consider a detailed motivating example. Figure 1
shows some examples of leaves from two classes, Urtica dioica
(stinging nettles) and Verbena urticifolia. These two plants are
commonly confused, hence the colloquial name “false nettle” for
Verbena urticifolia.

Figure 1: Samples of leaves from two species. Note that several
leaves have the insect-bite damage

Suppose we wish to build a classifier to distinguish these two
plants; what features should we use? Since the intra-variability of
color and size within each class completely dwarfs the inter-
variability between classes, our best hope is based on the shapes
of the leaves. However, as we can see in Figure 1, the differences
in the global shape are very subtle. Furthermore, it is very
common for leaves to have distortions or “occlusions” due to
insect damage, and these are likely to confuse any global
measures of shape. Instead we attempt the following. We first
convert each leaf into a one-dimensional representation as shown
in Figure 2.

Figure 2: A shape can be converted into a one dimensional “time
series” representation. The reason for the highlighted section of the
time series will be made apparent shortly

Such representations have been successfully used for the
classification, clustering and outlier detection of shapes in recent
years [8]. However, here we find that using a nearest neighbor
classifier with either the (rotation invariant) Euclidean distance or
Dynamic Time Warping (DTW) distance does not significantly
outperform random guessing. The reason for the poor
performance of these otherwise very competitive classifiers seems
to be due to the fact that the data is somewhat noisy (i.e. insect
bites, and different stem lengths), and this noise is enough to
swamp the subtle differences in the shapes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’09, June 29–July 1, 2009, Paris, France
Copyright 2009 ACM 978-1-60558-495-9/09/06.…$5.00.

Verbena urticifolia

Urtica dioica

Verbena urticifolia

Suppose, however, that instead of comparing the entire shapes,
we only compare a small subsection of the shapes from the two
classes that is particularly discriminating. We can call such
subsections shapelets, which invokes the idea of a small “sub-
shape.” For the moment we ignore the details of how to formally
define shapelets, and how to efficiently compute them. In Figure
3, we see the shapelet discovered by searching the small dataset
shown in Figure 1.

Figure 3: Here, the shapelet hinted at in Figure 2 (in both cases
shown with a bold line), is the subsequence that best
discriminates between the two classes

As we can see, the shapelet has “discovered” that the defining
difference between the two species is that Urtica dioica has a stem
that connects to the leaf at almost 90 degrees, whereas the stem of
Verbena urticifolia connects to the leaf at a much shallower angle.
Having found the shapelet and recorded its distance to the nearest
matching subsequence in all objects in the database, we can build
the simple decision-tree classifier shown in Figure 4.

Verbena urticifolia Urtica dioica
0

I

1

Leaf Decision Tree

Shapelet Dictionary

I
0

1

2

3

5.1

3010 200

Does Q have a subsequence within
a distance 5.1 of shape ?

yes no
I

Verbena urticifolia Urtica dioica
0

I

1

Leaf Decision Tree

Shapelet Dictionary

I
0

1

2

3

0

1

2

3

5.1

3010 200 3010 200 10 200

Does Q have a subsequence within
a distance 5.1 of shape ?

yes no
I

Figure 4: A decision-tree classifier for the leaf problem. The
object to be classified has all of its subsequences compared to the
shapelet, and if any subsequence is less than (the empirically
determined value of) 5.1, it is classified as Verbena urticifolia

The reader will immediately see that this method of classification
has many potential advantages over current methods:
x Shapelets can provide interpretable results, which may
help domain practitioners better understand their data. For
example, in Figure 3 we see that the shapelet can be summarized
as the following: “Urtica dioica has a stem that connects to the
leaf at almost 90 degrees.” Most other state-of-the-art time
series/shape classifiers do not produce interpretable results [4][7].
x Shapelets can be significantly more accurate/robust on
some datasets. This is because they are local features, whereas
most other state-of-the-art time series/shape classifiers consider
global features, which can be brittle to even low levels of noise
and distortions [4]. In our example, leaves which have insect bite
damage are still usually correctly classified.
x Shapelets can be significantly faster at classification
than existing state-of-the-art approaches. The classification time is
just O(ml), where m is the length of the query time series and l is

the length of the shapelet. In contrast, if we use the best
performing global distance measure, rotation invariant DTW
distance [8], the time complexity is on the order of O(km3), where
k is the number of reference objects in the training set. On real-
world problems the speed difference can be greater than three
orders of magnitude.
The leaf example, while from an important real-world problem in
botany, is a contrived and small example to help develop the
reader’s intuitions. However, as we shall show in Section 5, we
can provide extensive empirical evidence for all of these claims,
on a vast array of problems in domains as diverse as
anthropology, human motion analysis, spectrography, and
historical manuscript mining.

2. RELATEDWORK AND BACKGROUND
While there is a vast amount of literature on time series
classification and mining [4][7][14], we believe that the problem
we intend to solve here is unique. The closest work is that of [5].
Here the author also attempts to find local patterns in a time series
which are predictive of a class. However, the author considers the
problem of finding the best such pattern intractable, and thus
resorts to examining a single, randomly chosen instance from each
class, and even then only considering a reduced piecewise
constant approximation of the data. While the author notes “it is
impossible in practice to consider every such subsignal as a
candidate pattern,” this is in fact exactly what we do, aided by
eight years of improvements in CPU time, and, more importantly,
an admissible pruning technique that can prune off more than
99.9% of the calculations (c.f. Section 5.1). Our work may also be
seen as a form of a supervised motif discovery algorithm [3].

2.1 Notation
Table 1 summarizes the notation in the paper; we expand on the
definitions below.

Table 1: Symbol table
Symbol Explanation
T, R time series
S subsequence
m, |T| length of time series
l, |S| length of subsequence
d distance measurement
D time series dataset
A,B class label
I entropy
Î weighted average entropy
sp split strategy
k number of time series objects in dataset
C classifier
S(k) the kth data point in subsequence S

We begin by defining the key terms in the paper. For ease of
exposition, we consider only a two-class problem. However,
extensions to a multiple-class problem are trivial.
Definition 1: Time Series. A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Data points t1,…,tm are typically arranged by temporal order,
spaced at equal time intervals. We are interested in the local
properties of a time series rather than the global properties. A
local subsection of time series is termed as a subsequence.

Verbena urticifolia

Shapelet

Urtica dioica

Time Series Shapelets: A New Primitive for Data Mining
Lexiang Ye

Dept. of Computer Science & Engineering
University of California, Riverside, CA 92521

lexiangy@cs.ucr.edu

Eamonn Keogh
Dept. of Computer Science & Engineering
University of California, Riverside, CA 92521

eamonn@cs.ucr.edu

ABSTRACT
Classification of time series has been attracting great interest over
the past decade. Recent empirical evidence has strongly suggested
that the simple nearest neighbor algorithm is very difficult to beat
for most time series problems. While this may be considered good
news, given the simplicity of implementing the nearest neighbor
algorithm, there are some negative consequences of this. First, the
nearest neighbor algorithm requires storing and searching the
entire dataset, resulting in a time and space complexity that limits
its applicability, especially on resource-limited sensors. Second,
beyond mere classification accuracy, we often wish to gain some
insight into the data.
In this work we introduce a new time series primitive, time series
shapelets, which addresses these limitations. Informally, shapelets
are time series subsequences which are in some sense maximally
representative of a class. As we shall show with extensive
empirical evaluations in diverse domains, algorithms based on the
time series shapelet primitives can be interpretable, more accurate
and significantly faster than state-of-the-art classifiers.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining

General Terms
Algorithms, Experimentation

1. INTRODUCTION
While the last decade has seen a huge interest in time series
classification, to date the most accurate and robust method is the
simple nearest neighbor algorithm [4][12][14]. While the nearest
neighbor algorithm has the advantages of simplicity and not
requiring extensive parameter tuning, it does have several
important disadvantages. Chief among these are its space and time
requirements, and the fact that it does not tell us anything about
why a particular object was assigned to a particular class.

In this work we present a novel time series data mining primitive
called time series shapelets. Informally, shapelets are time series
subsequences which are in some sense maximally representative
of a class. While we believe shapelets can have many uses in data
mining, one obvious implication of them is to mitigate the two
weaknesses of the nearest neighbor algorithm noted above.

Because we are defining and solving a new problem, we will take
some time to consider a detailed motivating example. Figure 1
shows some examples of leaves from two classes, Urtica dioica
(stinging nettles) and Verbena urticifolia. These two plants are
commonly confused, hence the colloquial name “false nettle” for
Verbena urticifolia.

Figure 1: Samples of leaves from two species. Note that several
leaves have the insect-bite damage

Suppose we wish to build a classifier to distinguish these two
plants; what features should we use? Since the intra-variability of
color and size within each class completely dwarfs the inter-
variability between classes, our best hope is based on the shapes
of the leaves. However, as we can see in Figure 1, the differences
in the global shape are very subtle. Furthermore, it is very
common for leaves to have distortions or “occlusions” due to
insect damage, and these are likely to confuse any global
measures of shape. Instead we attempt the following. We first
convert each leaf into a one-dimensional representation as shown
in Figure 2.

Figure 2: A shape can be converted into a one dimensional “time
series” representation. The reason for the highlighted section of the
time series will be made apparent shortly

Such representations have been successfully used for the
classification, clustering and outlier detection of shapes in recent
years [8]. However, here we find that using a nearest neighbor
classifier with either the (rotation invariant) Euclidean distance or
Dynamic Time Warping (DTW) distance does not significantly
outperform random guessing. The reason for the poor
performance of these otherwise very competitive classifiers seems
to be due to the fact that the data is somewhat noisy (i.e. insect
bites, and different stem lengths), and this noise is enough to
swamp the subtle differences in the shapes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’09, June 29–July 1, 2009, Paris, France
Copyright 2009 ACM 978-1-60558-495-9/09/06.…$5.00.

Verbena urticifolia

Urtica dioica

Verbena urticifolia

Ye, Lexiang et al.. "Time series shapelets: a new primitive for data mining." SIGKDD
2009.

https://hu.berlin.de/landnutzung

2. Shapelet-based

• Shapelets are time series sub-sequences
that are maximally representative of a class
label

• Shapelets are interpretable, but training
does not scale to large datasets due to high
computational complexity (cubic to bi-
quadratic in TS length)

• Representatives:
• Univariate: Shapelet Transform (ST), Learning

Shapelets (LS), Fast Shapelets (FS)
• Multivariate: gRSF

23

Suppose, however, that instead of comparing the entire shapes,
we only compare a small subsection of the shapes from the two
classes that is particularly discriminating. We can call such
subsections shapelets, which invokes the idea of a small “sub-
shape.” For the moment we ignore the details of how to formally
define shapelets, and how to efficiently compute them. In Figure
3, we see the shapelet discovered by searching the small dataset
shown in Figure 1.

Figure 3: Here, the shapelet hinted at in Figure 2 (in both cases
shown with a bold line), is the subsequence that best
discriminates between the two classes

As we can see, the shapelet has “discovered” that the defining
difference between the two species is that Urtica dioica has a stem
that connects to the leaf at almost 90 degrees, whereas the stem of
Verbena urticifolia connects to the leaf at a much shallower angle.
Having found the shapelet and recorded its distance to the nearest
matching subsequence in all objects in the database, we can build
the simple decision-tree classifier shown in Figure 4.

Verbena urticifolia Urtica dioica
0

I

1

Leaf Decision Tree

Shapelet Dictionary

I
0

1

2

3

5.1

3010 200

Does Q have a subsequence within
a distance 5.1 of shape ?

yes no
I

Verbena urticifolia Urtica dioica
0

I

1

Leaf Decision Tree

Shapelet Dictionary

I
0

1

2

3

0

1

2

3

5.1

3010 200 3010 200 10 200

Does Q have a subsequence within
a distance 5.1 of shape ?

yes no
I

Figure 4: A decision-tree classifier for the leaf problem. The
object to be classified has all of its subsequences compared to the
shapelet, and if any subsequence is less than (the empirically
determined value of) 5.1, it is classified as Verbena urticifolia

The reader will immediately see that this method of classification
has many potential advantages over current methods:
x Shapelets can provide interpretable results, which may
help domain practitioners better understand their data. For
example, in Figure 3 we see that the shapelet can be summarized
as the following: “Urtica dioica has a stem that connects to the
leaf at almost 90 degrees.” Most other state-of-the-art time
series/shape classifiers do not produce interpretable results [4][7].
x Shapelets can be significantly more accurate/robust on
some datasets. This is because they are local features, whereas
most other state-of-the-art time series/shape classifiers consider
global features, which can be brittle to even low levels of noise
and distortions [4]. In our example, leaves which have insect bite
damage are still usually correctly classified.
x Shapelets can be significantly faster at classification
than existing state-of-the-art approaches. The classification time is
just O(ml), where m is the length of the query time series and l is

the length of the shapelet. In contrast, if we use the best
performing global distance measure, rotation invariant DTW
distance [8], the time complexity is on the order of O(km3), where
k is the number of reference objects in the training set. On real-
world problems the speed difference can be greater than three
orders of magnitude.
The leaf example, while from an important real-world problem in
botany, is a contrived and small example to help develop the
reader’s intuitions. However, as we shall show in Section 5, we
can provide extensive empirical evidence for all of these claims,
on a vast array of problems in domains as diverse as
anthropology, human motion analysis, spectrography, and
historical manuscript mining.

2. RELATEDWORK AND BACKGROUND
While there is a vast amount of literature on time series
classification and mining [4][7][14], we believe that the problem
we intend to solve here is unique. The closest work is that of [5].
Here the author also attempts to find local patterns in a time series
which are predictive of a class. However, the author considers the
problem of finding the best such pattern intractable, and thus
resorts to examining a single, randomly chosen instance from each
class, and even then only considering a reduced piecewise
constant approximation of the data. While the author notes “it is
impossible in practice to consider every such subsignal as a
candidate pattern,” this is in fact exactly what we do, aided by
eight years of improvements in CPU time, and, more importantly,
an admissible pruning technique that can prune off more than
99.9% of the calculations (c.f. Section 5.1). Our work may also be
seen as a form of a supervised motif discovery algorithm [3].

2.1 Notation
Table 1 summarizes the notation in the paper; we expand on the
definitions below.

Table 1: Symbol table
Symbol Explanation
T, R time series
S subsequence
m, |T| length of time series
l, |S| length of subsequence
d distance measurement
D time series dataset
A,B class label
I entropy
Î weighted average entropy
sp split strategy
k number of time series objects in dataset
C classifier
S(k) the kth data point in subsequence S

We begin by defining the key terms in the paper. For ease of
exposition, we consider only a two-class problem. However,
extensions to a multiple-class problem are trivial.
Definition 1: Time Series. A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Data points t1,…,tm are typically arranged by temporal order,
spaced at equal time intervals. We are interested in the local
properties of a time series rather than the global properties. A
local subsection of time series is termed as a subsequence.

Verbena urticifolia

Shapelet

Urtica dioica

Ye, Lexiang et al.. "Time series shapelets: a new primitive
for data mining." SIGKDD 2009.

https://hu.berlin.de/landnutzung

Shapelet Distance

• Measure the distance between any two sub-
sequences S and R:

• Slide subsequence S over the time series R,
and search offset i with minimal distance to S:

• Computational complexity:
! " # − " for Shapelet length " 24

2.2.2 Measuring Distances
We denote the Euclidean distance between two subse-

quences S and R of length l as

dist(S, R) =
lX

i=1

(si � ri)
2
.

The distance between a subsequence S of length l and time se-
ries Ti is the minimum distance between S and all normalised
subsequences of Ti of length l, i.e.

di,S = min
R2Wi,l

dist(S, R).

We generate all distances between a candidate shapelet S

and all series in T to generate a list of n distances,

DS =< d1,S , d2,S , . . . , dn,s > .

Note that since di,S is a minima, [20] propose speeding up
the calculation of di,S with an early abandon.

2.2.3 Measuring The Quality of a Shapelet
The original shapelet papers use information gain to de-

termine the quality of a shapelet [19, 20, 13]. This involves
sorting the distance list DS , then evaluating the information
gain on the class values for each possible split value. [20]
propose an early abandon on calculating DS through main-
taining an upper bound on the quality of the candidate whilst
generating DS . If this upper bound falls below the best found
so far, the calculation of DS can be abandoned. After each
di,S is found, the current best information gain split is calcu-
lated and the upper bound is found by assuming the most
optimistic division of the remaining distances.

3. SHAPELET TRANSFORM
The transformation we propose handles shapelets in three

distinct stages, Firstly, the algorithm conducts a single scan
of the data to extract the best k shapelets. Note that whilst
k is a parameter to set, it is simply a cut-o↵ value for the
maximum number of shapelets to store and has no e↵ect on
the quality of the individual shapelets that are extracted.
Secondly, an appropriate value for the number of shapelets
to use in the final transformed data set is estimated using
a simple cross-validation approach. Finally, a new trans-
formed data set is created where each attribute represents
a shapelet, and the value of each attribute is the distance
from the shapelet to the original series. The key motivation
for transforming the data in this way is that we can disas-
sociate shapelet finding from building a classifier, allowing
the transformed data set to be used in conjunction with any
classifier.

3.1 Alternative Quality Measure
As discussed in Section 2.2, the original shapelet decision

tree uses information gain to assess the quality of a candidate.
The motivation for this is two-fold; firstly, information gain
is suitable for identifying how to produce a partition of the
data, which is essential when it is necessary to recursively
divide the data. Secondly, it is possible to use information
gain in conjunction with the upper bounding/early aban-
don technique described in [20]. We use an alternative to
information gain for the following reasons.

Firstly, since we are trying to generate a set of shapelets
from the entire data set, our concern is not necessarily how

well a candidate splits the data. Rather, we are concerned
with how the distribution of the distances of the alternative
classes di↵er. To elaborate, if we have the list of distances DS ,
rather than find the best way of partitioning DS we address
the issue of how di↵erent are the lists D

1
S , D

2
S , . . . , D

c
S , where

D
j
S contains all the distances from the candidate to time

series of class j.
Secondly, the upper bounding technique for information

gain relies on identifying the ideal partition of a number of
unevaluated distances. However, the utility of this approach
degrades with multi-class problems, as a simple binary split
is impossible with 3 or more class values. In the most pes-
simistic cases, all possible optimistic combinations of uneval-
uated distances must be considered and can quickly become
untenable.

There are several alternative approaches we could adopt
to assess the di↵erence in distributions between the class
distances. The simplest approach, which we adopt, is to use
the F-statistic used for the di↵erence of means in an ANOVA.
Whilst a non-parametric test, such as multiple-sample Mann-
Whitney, would possibly be more robust, the fact that we
are not actually performing a hypothesis test (but instead
using the test statistic as a comparative metric) means the
reduced power of the F-statistic in the face of outliers is less
of a problem. Hence the assessCandidate method we use is
simply the F-statistic of a fixed e↵ects ANOVA.

3.2 Shapelet Generation
The process of extracting the k best shapelets is defined

in Algorithm 2.

Algorithm 2 ShapeletCachedSelection(T , min, max, k)

1: kShapelets = ;;
2: C = classLabels(T);
3: for all time series Ti in T do
4: shapelets = ;;
5: for l = min to max do
6: Wi,l = generateCandidates(Ti, min, max);
7: for all subsequence S in Wi,l do
8: DS = findDistances(S, Wi,l);
9: quality = assessCandidate(S, DS);

10: shapelets.add(S, quality);
11: end for
12: end for
13: sortByQuality(shapelets);
14: removeSelfSimilar(shapelets);
15: kShapelets = merge(k, kShapelets, shapelets);
16: end for
17: return kShapelets;

The algorithm begins by processing the data in a very
similar manner to the original shapelet selection algorithm
of [20], defined earlier in Algorithm 1. For each series in the
data set, all subsequences of all possible lengths according to
the min and max length parameters are visited. However,
unlike Algorithm 1, where all candidates are assessed and
only the best is stored, the caching algorithm stores all
candidates for a given time series along with their associated
quality measures (line 10). Once all candidates of a series
have been assessed, the candidates are sorted in order of
fitness and self-similar shapelets are removed. We define
two shapelets as being self-similar if they are taken from the
same series and have any overlapping indices. Once we have

2.2.2 Measuring Distances
We denote the Euclidean distance between two subse-

quences S and R of length l as

dist(S, R) =
lX

i=1

(si � ri)
2
.

The distance between a subsequence S of length l and time se-
ries Ti is the minimum distance between S and all normalised
subsequences of Ti of length l, i.e.

di,S = min
R2Wi,l

dist(S, R).

We generate all distances between a candidate shapelet S

and all series in T to generate a list of n distances,

DS =< d1,S , d2,S , . . . , dn,s > .

Note that since di,S is a minima, [20] propose speeding up
the calculation of di,S with an early abandon.

2.2.3 Measuring The Quality of a Shapelet
The original shapelet papers use information gain to de-

termine the quality of a shapelet [19, 20, 13]. This involves
sorting the distance list DS , then evaluating the information
gain on the class values for each possible split value. [20]
propose an early abandon on calculating DS through main-
taining an upper bound on the quality of the candidate whilst
generating DS . If this upper bound falls below the best found
so far, the calculation of DS can be abandoned. After each
di,S is found, the current best information gain split is calcu-
lated and the upper bound is found by assuming the most
optimistic division of the remaining distances.

3. SHAPELET TRANSFORM
The transformation we propose handles shapelets in three

distinct stages, Firstly, the algorithm conducts a single scan
of the data to extract the best k shapelets. Note that whilst
k is a parameter to set, it is simply a cut-o↵ value for the
maximum number of shapelets to store and has no e↵ect on
the quality of the individual shapelets that are extracted.
Secondly, an appropriate value for the number of shapelets
to use in the final transformed data set is estimated using
a simple cross-validation approach. Finally, a new trans-
formed data set is created where each attribute represents
a shapelet, and the value of each attribute is the distance
from the shapelet to the original series. The key motivation
for transforming the data in this way is that we can disas-
sociate shapelet finding from building a classifier, allowing
the transformed data set to be used in conjunction with any
classifier.

3.1 Alternative Quality Measure
As discussed in Section 2.2, the original shapelet decision

tree uses information gain to assess the quality of a candidate.
The motivation for this is two-fold; firstly, information gain
is suitable for identifying how to produce a partition of the
data, which is essential when it is necessary to recursively
divide the data. Secondly, it is possible to use information
gain in conjunction with the upper bounding/early aban-
don technique described in [20]. We use an alternative to
information gain for the following reasons.

Firstly, since we are trying to generate a set of shapelets
from the entire data set, our concern is not necessarily how

well a candidate splits the data. Rather, we are concerned
with how the distribution of the distances of the alternative
classes di↵er. To elaborate, if we have the list of distances DS ,
rather than find the best way of partitioning DS we address
the issue of how di↵erent are the lists D

1
S , D

2
S , . . . , D

c
S , where

D
j
S contains all the distances from the candidate to time

series of class j.
Secondly, the upper bounding technique for information

gain relies on identifying the ideal partition of a number of
unevaluated distances. However, the utility of this approach
degrades with multi-class problems, as a simple binary split
is impossible with 3 or more class values. In the most pes-
simistic cases, all possible optimistic combinations of uneval-
uated distances must be considered and can quickly become
untenable.

There are several alternative approaches we could adopt
to assess the di↵erence in distributions between the class
distances. The simplest approach, which we adopt, is to use
the F-statistic used for the di↵erence of means in an ANOVA.
Whilst a non-parametric test, such as multiple-sample Mann-
Whitney, would possibly be more robust, the fact that we
are not actually performing a hypothesis test (but instead
using the test statistic as a comparative metric) means the
reduced power of the F-statistic in the face of outliers is less
of a problem. Hence the assessCandidate method we use is
simply the F-statistic of a fixed e↵ects ANOVA.

3.2 Shapelet Generation
The process of extracting the k best shapelets is defined

in Algorithm 2.

Algorithm 2 ShapeletCachedSelection(T , min, max, k)

1: kShapelets = ;;
2: C = classLabels(T);
3: for all time series Ti in T do
4: shapelets = ;;
5: for l = min to max do
6: Wi,l = generateCandidates(Ti, min, max);
7: for all subsequence S in Wi,l do
8: DS = findDistances(S, Wi,l);
9: quality = assessCandidate(S, DS);

10: shapelets.add(S, quality);
11: end for
12: end for
13: sortByQuality(shapelets);
14: removeSelfSimilar(shapelets);
15: kShapelets = merge(k, kShapelets, shapelets);
16: end for
17: return kShapelets;

The algorithm begins by processing the data in a very
similar manner to the original shapelet selection algorithm
of [20], defined earlier in Algorithm 1. For each series in the
data set, all subsequences of all possible lengths according to
the min and max length parameters are visited. However,
unlike Algorithm 1, where all candidates are assessed and
only the best is stored, the caching algorithm stores all
candidates for a given time series along with their associated
quality measures (line 10). Once all candidates of a series
have been assessed, the candidates are sorted in order of
fitness and self-similar shapelets are removed. We define
two shapelets as being self-similar if they are taken from the
same series and have any overlapping indices. Once we have

long time series C

slide along

sliding window S

Query Q

Similarity D(Q,S)

most similar subsequence

Query Q

Query QQuery Q

Similarity D(Q,S)

dataset DStime series T
Whole Matching

Subsequence Matching

Shapelet

dist(S,R) time series R

https://hu.berlin.de/landnutzung

2. Shapelet-based: Classification

1. Decision Tree:
• Branching based on the distance to a Shapelet

2. Shapelet-Distance-Embedding
• Measure the distance between k Shapelets

and each time series in !"#$%&
• Train classification model on this Matrix
• To predict a novel sample ':

• Compute distance from T to all k Shapelets
• This results in the k-dim feature vector:
V = * ', ,- , * ', ,. , …* ', ,0 1

• Predict the label for this vector V using the trained
model 25

2 =
* ,-, '- , * ,-, '. , …* ,-, '3

…
* ,0, '- , * ,0, '. , …* ,0, '3

kxN Matrix of pairwise distances

Suppose, however, that instead of comparing the entire shapes,
we only compare a small subsection of the shapes from the two
classes that is particularly discriminating. We can call such
subsections shapelets, which invokes the idea of a small “sub-
shape.” For the moment we ignore the details of how to formally
define shapelets, and how to efficiently compute them. In Figure
3, we see the shapelet discovered by searching the small dataset
shown in Figure 1.

Figure 3: Here, the shapelet hinted at in Figure 2 (in both cases
shown with a bold line), is the subsequence that best
discriminates between the two classes

As we can see, the shapelet has “discovered” that the defining
difference between the two species is that Urtica dioica has a stem
that connects to the leaf at almost 90 degrees, whereas the stem of
Verbena urticifolia connects to the leaf at a much shallower angle.
Having found the shapelet and recorded its distance to the nearest
matching subsequence in all objects in the database, we can build
the simple decision-tree classifier shown in Figure 4.

Verbena urticifolia Urtica dioica
0

I

1

Leaf Decision Tree

Shapelet Dictionary

I
0

1

2

3

5.1

3010 200

Does Q have a subsequence within
a distance 5.1 of shape ?

yes no
I

Verbena urticifolia Urtica dioica
0

I

1

Leaf Decision Tree

Shapelet Dictionary

I
0

1

2

3

0

1

2

3

5.1

3010 200 3010 200 10 200

Does Q have a subsequence within
a distance 5.1 of shape ?

yes no
I

Figure 4: A decision-tree classifier for the leaf problem. The
object to be classified has all of its subsequences compared to the
shapelet, and if any subsequence is less than (the empirically
determined value of) 5.1, it is classified as Verbena urticifolia

The reader will immediately see that this method of classification
has many potential advantages over current methods:
x Shapelets can provide interpretable results, which may
help domain practitioners better understand their data. For
example, in Figure 3 we see that the shapelet can be summarized
as the following: “Urtica dioica has a stem that connects to the
leaf at almost 90 degrees.” Most other state-of-the-art time
series/shape classifiers do not produce interpretable results [4][7].
x Shapelets can be significantly more accurate/robust on
some datasets. This is because they are local features, whereas
most other state-of-the-art time series/shape classifiers consider
global features, which can be brittle to even low levels of noise
and distortions [4]. In our example, leaves which have insect bite
damage are still usually correctly classified.
x Shapelets can be significantly faster at classification
than existing state-of-the-art approaches. The classification time is
just O(ml), where m is the length of the query time series and l is

the length of the shapelet. In contrast, if we use the best
performing global distance measure, rotation invariant DTW
distance [8], the time complexity is on the order of O(km3), where
k is the number of reference objects in the training set. On real-
world problems the speed difference can be greater than three
orders of magnitude.
The leaf example, while from an important real-world problem in
botany, is a contrived and small example to help develop the
reader’s intuitions. However, as we shall show in Section 5, we
can provide extensive empirical evidence for all of these claims,
on a vast array of problems in domains as diverse as
anthropology, human motion analysis, spectrography, and
historical manuscript mining.

2. RELATEDWORK AND BACKGROUND
While there is a vast amount of literature on time series
classification and mining [4][7][14], we believe that the problem
we intend to solve here is unique. The closest work is that of [5].
Here the author also attempts to find local patterns in a time series
which are predictive of a class. However, the author considers the
problem of finding the best such pattern intractable, and thus
resorts to examining a single, randomly chosen instance from each
class, and even then only considering a reduced piecewise
constant approximation of the data. While the author notes “it is
impossible in practice to consider every such subsignal as a
candidate pattern,” this is in fact exactly what we do, aided by
eight years of improvements in CPU time, and, more importantly,
an admissible pruning technique that can prune off more than
99.9% of the calculations (c.f. Section 5.1). Our work may also be
seen as a form of a supervised motif discovery algorithm [3].

2.1 Notation
Table 1 summarizes the notation in the paper; we expand on the
definitions below.

Table 1: Symbol table
Symbol Explanation
T, R time series
S subsequence
m, |T| length of time series
l, |S| length of subsequence
d distance measurement
D time series dataset
A,B class label
I entropy
Î weighted average entropy
sp split strategy
k number of time series objects in dataset
C classifier
S(k) the kth data point in subsequence S

We begin by defining the key terms in the paper. For ease of
exposition, we consider only a two-class problem. However,
extensions to a multiple-class problem are trivial.
Definition 1: Time Series. A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Data points t1,…,tm are typically arranged by temporal order,
spaced at equal time intervals. We are interested in the local
properties of a time series rather than the global properties. A
local subsection of time series is termed as a subsequence.

Verbena urticifolia

Shapelet

Urtica dioica

Ye, Lexiang et al.. "Time series shapelets: a new primitive
for data mining." SIGKDD 2009.

https://hu.berlin.de/landnutzung

Shapelet Discovery
Shapelet selectShapelet(

Time Series Dataset D,
WindowLength min,
WindowLength max)
best = 0
bestShapelet = ∅
for l = min to max do

candidates = generateCandidates(D,l)
for all subsequence S in candidates do

dist = findDistances(S,D)
quality = evaluateCandidate(S, dist)
if quality > best then

best = quality
bestShapelet = S

return bestShapelet

• A shapelet consist of a subsequence of a time
series and a distance threshold

• Every subsequence of the time series in the
dataset D is a potential candidate

• GenerateCandidates: The Shapelets are found
by an exhaustive search of all subsequence
lengths between min and max

• The subsequence distance between a shapelet
candidate and the dataset is calculated and
some measure of quality is used

• Typically one uses the Euclidean distance and
Information Gain to measure goodness of a
shapelet

26https://hu.berlin.de/landnutzung

Computational Complexity

• The naïve Shapelet discovery algorithm has a computational complexity of
! "#$% for dataset size N and time series length n
• The size of the candidate set is O "$#
• Checking one candidate takes !("$) when using the Euclidean distance

• This makes the naïve algorithm infeasible for most real-world problems
• There are optimizations to speed up Shapelet discovery (at the cost of

accuracy) by using a random candidate set, random projections, and lower
bounding distances

27https://hu.berlin.de/landnutzung

Single occurrence vs frequency of occurrences

28

• Many signals are inherently periodic/repetitive
(heartbeats, network traffic, weather, …)

• We describe a signal by the frequency of occurrence of
patterns

• Similar to the bag-of-words representation for
documents, which is a histogram of word counts

• Problem: how to count the occurrences of real-valued-
subsequences?

Lin, Jessica, Rohan Khade, and Yuan Li. "Rotation-invariant similarity in time series using bag-of-patterns
representation." Journal of Intelligent Information Systems 39.2 (2012): 287-315.

https://hu.berlin.de/landnutzung

3. Dictionary-based

• A bag-of-patterns (histogram) of feature
counts is used as input to classification
• This approach is fast (linear complexity),

noise reducing, but order of
substructures gets lost
• Representatives:
• Univariate: WEASEL, Bag-of-SFA-Symbols

(BOSS), Bag-of-Patterns (BoP), Time Series
Bag of Features (TSBF)
• Multivariate: SMTS, WEASEL+MUSE, LPS

29
1. Baydogan, M.G., Runger, G.: Learning a symbolic representation for multivariate time series classification. DMKD 29(2), 400–422 (2015)
2. Schäfer, P., Leser, U.: Fast and Accurate Time Series Classification with WEASEL. CIKM pp. 637–646 (2017)https://hu.berlin.de/landnutzung

Symbolic Fourier Approximation (SFA)

• SFA represents each real valued
subsequence by a word
• SFA is composed of

a) approximation using the Fourier
transform and

b) a data adaptive discretization

• The discretization intervals are
learned from the Fourier transformed
data distribution

DFT
0
-8.81
-20.7
-11.9
-6.28
-8.02
-0.67
15.31
-18.7
-18.36
-5.67
-16.84
-8.919
[...]

Discretization
C
B
B
C
C
D
C
B
B
C
B
C
B
[...]

Raw:
0.2679
0.2480
0.1828
0.0817
0.0051
-0.023
-0.052
-0.082
-0.111
-0.075
-0.032
-0.022
-0.029
[...]

30https://hu.berlin.de/landnutzung

Symbolic Fourier Approximation (SFA)

31https://hu.berlin.de/landnutzung

Algorithm

Histogram BOSSTransform(
TimeSeries sample ,
WindowLength w,
Wordlength l,
Symbolc c)

Histogram boss = {}

for subsequence S in sliding_windows(sample, w)

String word=SFA(S, l, c)

if word != lastWord // numerosity reduction

boss[word]++ // increase counts

lastWord = word

return boss

• The basis algorithm extracts sliding windows
of length w

• Each sliding window is transformed to a word
of length l and c symbols using SFA

• Numerosity reduction removes duplicates:
bcc bcc bcc bcc bcc bcc bcc bcc ccc ccc bcc bcb
bcb bcb bcb
becomes:
bcc ccc bcc bcb

• The words are added to a histogram

32https://hu.berlin.de/landnutzung

Runtime

• The runtime is dominated by the DFT of each window
• There are n-w+1 sliding windows of length w
• The Fourier transform has to be applied to each window, thus !(# $ log$)

• But sliding windows overlap!
• Using the Momentary Fourier transform computations of overlapping

windows can be saved
• This results in a runtime of just !(# + $ log$)

33https://hu.berlin.de/landnutzung

How to use Bag-of-Patterns for Classification

• 1-Nearest-Neighbour search over
histograms
• TF-IDF model on histograms
• Or using a classifier:
• Obtain histograms and train a classifier on

these histograms
• Predict a novel time series based on its

histogram using the model

34https://hu.berlin.de/landnutzung

4. Deep Learning-based

• Deep Learning was successful in many
domains reaching human
performance level
• End-to-end NN approaches in TSC are

based on Convolutional Neural
Networks (CNN), Fully Connected
Networks (FC), or Recurrent Neural
Networks (RNN)
• Representatives: ResNet, FCN,

Encoder, MLP, Time-CNN, TWIESN,
MCDCNN, MCNN, t-LeNet.

Top to bottom: MLP, FCN, ResNet

1. Fawaz, Hassan Ismail, et al. "Deep learning for time series classification: a review." arXiv preprint arXiv:1809.04356 (2018).
35https://hu.berlin.de/landnutzung

Perceptrons

36

• The most basic architecture of a neural network
is called perceptron
• It consists of two layers of nodes: input nodes

(data points) and a single output node
• The perceptron performs a mathematical

computation on the inputs ! = ($%, … $():* = +(, - ! + /)
with w being a set of weights, bias term b and
activation function f

• An activation function (e.g. Sigmoid) is used to
filter the output of the perceptron to [0,1]
• This gives a probability estimate
• Temporal values are independently treated

from each other, thus the temporal information
is lost

http://blog.kaggle.com/2017/11/27/introduction-to-neural-networks/

https://hu.berlin.de/landnutzung

01
01 + 1

Multi Layer Perceptrons (MLP)

37

• Most simple and traditional architecture of deep
NN, also known as Fully-Connected Network (FC)

• MLP have hidden layers in addition to inputs and
output nodes

• Fully-connected: Every perceptron is connected to
every perceptron in the previous layer

• Connections are still modelled by weights:
! = #(% & ' +))

• The output gives a probability estimate
• Learning:

• Forward pass: The inputs for the training instances are
fed into the neural network. The error on the training
data is estimated

• back-propagation: We update the model‘s weights in a
backward pass such that the train error is minimized

• Still temporal information is lost

http://blog.kaggle.com/2017/11/27/introduction-to-neural-networks/

https://hu.berlin.de/landnutzung

+,
+, + 1

Multiclass Classification (“Softmax Layer”)

• Extends the network for multiclass
classification using multiple output nodes
• Each output node corresponds to one

class
• The Softmax function maps the outputs,

such that these sum up to 1
• This gives probability estimates per class:

{" #$%&&' , … , " #$%&&* }

38https://hu.berlin.de/landnutzung

Fully Convolutional Neural Network

• A convolution can be seen as applying
and sliding a filter over the time series
• Results in a filtered time series
• Several (128 to 256) filters are applied

to learn multiple discriminative features
• These filters are trained automatically

using a feed-forward pass followed by
back-propagation
• The network is invariant to the length of

the time series

39

1. Fawaz, Hassan Ismail, et al. "Deep learning for time series
classification: a review." arXiv preprint arXiv:1809.04356 (2018).

https://hu.berlin.de/landnutzung

Recurrent Neural Network

• So far, rarely applied for time series
classification:
• Suffer from vanishing gradient problem on long

time series
• Computationally harder to train

• Thus, not mentioned here… but still
interesting approach

40https://hu.berlin.de/landnutzung

5. Ensembles

• Ensembles combine different time
series classifiers using bagging or
majority voting
• Highest accuracy by combining

different representations but high
computational complexity
• Representatives:
• Univariate: Elastic Ensemble (EE PROP),

Collective of Transformation Ensembles
(COTE)

Hive Cote: Ensemble over similarity-/shapelet-
/dictionary-based classifiers

1. Bagnall, Anthony, et al. "The great time series classification bake off: a review and experimental evaluation of recent algorithmic
advances." Data Mining and Knowledge Discovery 31.3 (2017): 606-660. 41https://hu.berlin.de/landnutzung

Which approach to use?

42https://hu.berlin.de/landnutzung

Related: A TS challenge
on gesture data
• Participants are given a training set

of labelled multivariate time series
representing isolated gestures
captured with a Kinect system by
different users

• Datasets are 24 dimensional

• AALTD Challenge:
https://aaltd16.irisa.fr/challenge/

43https://hu.berlin.de/landnutzung

https://aaltd16.irisa.fr/challenge/

44https://hu.berlin.de/landnutzung

Related: Challenge on Sattelite Data (Reunion
Island)
• They used satellite time series of Landsat 8 images

collected over Reunion Island in 2014 [1]

• 81714 pixels

• 10 spectral features: seven reflectance bands and three

vegetation indices (NDVI, NDWI, BI)

• 23 time stamps: 16 days revisit time:

• 2 spatial-coordinates: longitude and latitude

• 9 land cover classes (manually classified)

• preprocessed: atmospherically corrected, geometrically

corrected, and cloud-masked

• [1] TiSeLaC Challenge:

https://sites.google.com/site/dinoienco/tiselc
45

(top) The Reunion Island site and (bottom)
the corresponding Land Cover Classes [1]https://hu.berlin.de/landnutzung

https://sites.google.com/site/dinoienco/tiselc

Questions?

46https://hu.berlin.de/landnutzung

Next Steps

• Today: choose a topic
• Before 30.11.18: meet me to discuss topic
• 07.12.18, 15-16 Uhr: Flash presentation, RUD 25 4.410
• Present ideas and your topic in 5min

47https://hu.berlin.de/landnutzung

