A Primer on Time Series Analytics
Landnutzungsklassifikation WS 18/19

Patrick Schafer

URL: https://hu.berlin/landnutzung



Agenda

* Time Series
* Pre-Processing

* Representations & Classifiers
* Whole-Series
e Shapelets
 Dictionary (Bag-of-Patterns)

* Next steps:
* Today: choose a topic
e Before 30.11.18: meet me to discuss topic

* 07.12.18 15-16 Uhr: Flash presentation, RUD 25 4.410
* Present ideas and your topic in 5min

https://hu.berlin.de/landnutzung



From satellite images to Land Cover Classification
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Satellite Images Time Series Land-Cover Map (Classes)

Tan, Chang Wei, Geoffrey |. Webb, and Francois Petitjean. "Indexing and classifying gigabytes of time series under time warping." Proceedings of
the 2017 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2017.
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Time Series Definition

* Definition: A Time Series is a sequence (ordered collection) of n
real values at time stamps (¢4, ..., t,,):

T = (y1-,¥n)

e Time Series may be univariate or multivariate
* Univariate: a single value y; is associated with each time stamp ¢t;.

* Multivariate: m values y; = (k4, ... k;) are associated with each time
stamp t;.

* The dimensionality of a time series refers to the number of values
at each time stamp

https://hu.berlin.de/landnutzung
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Raw Multivariate Time Series

30
- 1. Hand tip left, X coordinate
IV| ‘ o . ° e 28 —-= 2. Hand tip left, Y coordinate
ultivariate Time Series (M TS - S e
26 ~— 4. Hand tip right, X coordinate

—-+= 5. Hand tip right, Y coordinate
24 === 6. Hand tip right, Z coordinate

—— 7. Elbow left, X coordinate
~+= 8. Elbow left, Y coordinate

* Arise when interconnected streams record & =2 o Eloow et 2 coordinae
data Over time: 20 . Elbow right, X coordinate

—-=11. Elbow right, ¥ coordinate

18 === 12. Elbow right, Z coordinate
13. Wrist left, X coordinate
. . . 16 14. Wrist left, Y coordinate
* Weather observations: humidity, 15. Wit lf, Z cordinte
14 = 16. Wrist right, X coordinate
te m p e rat ure — -~ 17. Wrist right, Y coordinate
12 === 18, Wrist right, Z coordinate
—— 19. Thumb left, X coordinate
10 === 20. Thumb left, Y coordinate

=== 21. Thumb left, Z coordinate
=~ 22. Thumb right, X coordinate

* Satellite images: different reflectances | | |
(sensors) AT el

* Gesture recognition of users performing
isolated gestures: 8 sensors recording o
X/y/z coordinates (Figure to the right)
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MTS are characterized by

1.

Interplay of dimensions:
Individual features vs. interplay
of features in different
dimensions

Phase invariance:

Signals may not be synchronized
in time / characteristic features
may appear anywhere

Irrelevant data/dimensions:
Only small periods in time and
in a few dimensions may contain
relevant information
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4. Hand tip right, X coordinate
5. Hand tip right, Y coordinate
6. Hand tip right, Z coordinate
7. Elbow left, X coordinate

8. Elbow left, Y coordinate

9. Elbow left, Z coordinate

10. Elbow right, X coordinate
11. Elbow right, ¥ coordinate
12. Elbow right, Z coordinate
13. Wrist left, X coordinate
14, Wrist left, Y coordinate
15. Wrist left, Z coordinate
16. Wrist right, X coordinate
17. Wrist right, Y coordinate
18. Wrist right, Z coordinate
19. Thumb left, X coordinate
20. Thumb left, ¥ coordinate
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22, Thumb right, X coordinate
23. Thumb right, Y coordinate
24, Thumb right, Z coordinate



Pre-processing



Pre-processing: Normalization

* Time series need to be normalized, especially when different kinds of sensors
are used to record the data

* Normalization puts the data on the same scale to make comparisons
meaningful (i.e. Fahrenheit and Celsius)

* Two methods are commonly used:

* Range-based normalization:
preserves relationship between samples

e Z-normalization:
looses relationship between samples,
can be useful when min/max values are unknown



Pre-processing: Range-based normalization

* Range-based normalization:
The minimum and maximum values over all time series TeD are determined,
then each value of a time series T = (yy, ..., ¥,,) is mapped to range [0,1] by:

range_norm(T) — (}"1: ""y,n)

yi—min

with y'; =

max —min



Pre-processing: Z-Normalization

Raw data

e Zero-mean-normalization:
Let 1 and o be the mean and
standard deviation of the time series

T = (yq ...,¥5), then i —

znorm(T) = (y’l, . y’n)

_ o Vi—H | /
with y/; = 22 7\,

time

https://jmotif.github.io/sax-
vsm_site/morea/algorithm/znorm.html



Pre-Processing: Missing Data

* It is common for time series to contain missing data

* Possible directions:
1. Remove all records with missing entries, which is not practical when
all data contains missing values
2. Impute missing values, but imputation error affects overall
classification accuracy
3. Use a model that works with missing data



Imputation Methods

°* mean,
* median,

* last observation carried forward,

* next observation carried backward,
* spline interpolation,

* linear interpolation



Equally

Pre-processing: Imputation spaced
* Linear interpolation estimates the (missing) values at s

the desired time stamps by fitting a line

* Linear interpolation: y;_; and y; are values of the
time series at times t;_; and t;

(tnew o ti—l) ) (yj _ yj—l)
ti —ti—1

Ynew = Yj-1 T

https://hu.berlin.de/landnutzung 13



Pre-processing: Noise Removal

e Remove short-term fluctuation and noise
* Binning (Averaging):

 Divide the data into disjoint intervals of size k. Then
calculate the mean values T = (J; ... y,), withw = %,
Zﬁk(i—l)ﬂ Yj

k
e Reduces the number of points by a factor of k

in each interval: y; =

* Smoothing (Moving-Averages)

* Divide the data into overlapping intervals of size k over
which the averages are calculated

* Thus, the average is computed at each time stamp
[t1, txl, [t2, tx+1], ... rather than only at the interval
intersections [ty, tx ], [tk+1, 2k ), -

1.0
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Time Series Analytics

Representations and Classifiers

https://hu.berlin.de/landnutzung
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Time Series Approaches

* Time series approaches are composed of
* a time series representation, and
* a classifier

* Representations can be divided into:
e Global: Using the whole time series

* Local: Using sub-sequences

* Shapelets: absence or presence of characteristic substructures
» Bag-of-Patterns (Dictionaries): frequency of occurrences of substructures

* Any base-classifier can then be trained on this feature space (embedding)



A List of Approaches

* (non-time series) based-Classifiers * Dictionary-based Classifiers
* SVM, logistic regression, random * Univariate: BoP, SAX VSM, TSBF, BOSS,
forests/decision trees, gradient BOSS VS, WEASEL
boosting trees, XGBoost * Multivariate: SMTS, WEASEL+MUSE,
 Whole-Series-based Classifiers LPS
* 1-NN Dynamic Time Warping
 1-NN Euclidean Distance * Deep Learning Classifiers
* Proximity Forests  ResNet, FCN, Encoder, MLP, Time-CNN,

» Shapelet-based Classifiers TWIESN, MCDENN, MCNN, t-LeNet

* Univariate: Fast Shapelets (FS), Learning N
Shapelets (LS), Shapelet Transform (ST)  * Ensembles of Core Classifiers

* Multivariate: gRSF o Univariate: EE PROP, COTE



1) Whole Series

* Compares two whole time series /\~

* The similarity of time series Q and T is expressed
by a real value using a distance measure:

D(Q, T) » R{ /\_ Distance
* A similarity measure is the inverse of the

distance measure: it qualifies similar (/dissimilar) A

time series by a small (/large) value

Euclidean

* Most common methods are Euclidean distance DIW

(ED) and Dynamic Time Warping Distance (DTW) -/\-
e Others: Longest Common Subsequence or Edit
Distance

https://hu.berlin.de/landnutzung 18



1) Whole Series: Euclidean Distance (ED)

Euclidean Distance

* Definition: The Euclidean distance between two s
time series Q = (q4,...,qn) and C =
(¢cq, ..., Cyp), both of length n, is defined as:

Dgp(Q,C) = Z(ql — Cl')z _4
N

0 10 20 30 40

* The ED applies a linear alignment of the time axis
* ED cannot cope with variable length time series
* ED runtime is O(n)

https://hu.berlin.de/landnutzung 19



1) Whole Series: Dynamic Time Warping (DTW)

Warped Time Series A & B

* Dynamic Time Warping applies an elastic
transformation of the time axis to detect similar
shapes that have a different phase

* This is essentially a peak-to-peak and valley-to-
valley alignment of two time series

* Intuition: An extension of the ED, which uses two
indices i and j representing both time axis

* Find indices (i,j) such that total distance is
minimal:

Dprw (Q,C) = Z(Qi — Cj)z
N (G))

https://hu.berlin.de/landnutzung 20



1) Whole Series: Classification

time series T dataset DS
- Query Q T T
1. Most common: 1-Nearest Neighbour ' Y 1\(‘ W Wt Wt 5
* Find the one sample that minimizes distance to the Similarity D(Q.S)
to-be-labelled sample and use it’s class label ‘\/4;6 ‘Vl\' [\"1 m \’YTH,
2. Distance-Space-Embedding + classifier: /

d(TlOJ Tl)l d(T10; TZ)) d(T10» T

 Build a matrix M on pairwise distances between all
P (d(Ts, Ty), d(Te, Ty), . d(T1, Tro)}

time series in D¢ygin

* Train classification model on this M \
* To predict a novel sample S:
 Compute distance from S to all samples Tin Dy, 4in { d(Ty, T1), d(T1, T2), ... d(Ty, Ty) }
: : M = ey ey s
* This results in the feature vector: 1
V = [d(S’ Tl)' d(S’ Tz), d(S, TN)]T d(TN; Tl)i d(TNJ TZ)) d(TN; TN)

* Predict the label for this vector V using trained model Pairwise distances

https://hu.berlin.de/landnutzung 21



Subsequence vs Whole Series

* We wish distinguish between two kinds of
plants: what features should one use?

 The contour of a leaf can in fact be
interpreted as a time series

* Instead of using the entire shapes, it is
better to only compare small subsections

* Here: the defining difference is that Urtica
dioica has a stem that connects to the leaf
at almost 90 degrees

Ye, Lexiang et al.. "Time series shapelets: a new primitive for data mining." SIGKDD

2009.
https://hu.berlin.de/landnutzung

Verbena urticifolia

Figure 1: Samples of leaves from two species. Note that several
leaves have the insect-bite damage

Figure 2: A shape can be converted into a one dimensional “time
series” representation. The reason for the highlighted section of the
time series will be made apparent shortly

—
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2. Shapelet-based

* Shapelets are time series sub-sequences
that are maximally representative of a class

label

* Shapelets are interpretable, but training
does not scale to large datasets due to high
computational complexity (cubic to bi- e O . PeIetS: @ now primitve
guadratic in TS length)

* Representatives:

e Univariate: Shapelet Transform (ST), Learning
Shapelets (LS), Fast Shapelets (FS)

e Multivariate: gRSF

Verbena urticifolia Urtica dioica

https://hu.berlin.de/landnutzung 23



Shapelet

slide along

Shapelet Distance ist(S.R) e

Y

sliding window S most similar subsequence

* Measure the distance between any two sub-
sequences S and R:

l

dist(S,R) = (si —mi)°.

=1

* Slide subsequence S over the time series R,
and search offset i with minimal distance to S:

di,s = min dist(S, R).
REW'L',Z

 Computational complexity:
O(l(n — 1)) for Shapelet length.L ... y



2. Shapelet-based: Classification

1. Decision Tree: B i ,\ I
* Branching based on the distance to a Shapelet T
Does Q have a subsequence within
a distance 5.1 of shape m ? Leaf Decision Tree
. . yes/m\no
2. Shapelet-Distance-Embedding o
. Verbena urticifolia Urtica dioica
* Measure the distance between k Shapelets

Ye, Lexiang et al.. "Time series shapelets: a new primitive

and each time series in Dtrain for data mining." SIGKDD 2009.
* Train classification model on this Matrix

* To predict a novel sample T': d(S1,T1),d(S1, T2), ... d(Sy, Ty)

e Compute distance from T to all k Shapelets M =

* This results in the k-dim feature vector: d(Sk, T1), d(Sk, T2), ... d(Sk, Ty)
V =1[d(T,S;),d(T,S,),..d(T, S )"

* Predict the label for this vector V using the trained kxN Matrix of pairwise distances

model



Shapelet Discovery

Shapelet selectShapelet(
Time Series Dataset D,
WindowLength min,
WindowLength max)

best = 0
bestShapelet = 0@
for 1 = min to max do
candidates = generateCandidates(D,1)
for all subsequence S in candidates do
dist = findDistances(S,D)
quality = evaluateCandidate(S, dist)
if quality > best then
best = quality
bestShapelet = S
return bestShapelet

A shapelet consist of a subsequence of a time
series and a distance threshold

Every subsequence of the time series in the
dataset D is a potential candidate

GenerateCandidates: The Shapelets are found
by an exhaustive search of all subsequence
lengths between min and max

The subsequence distance between a shapelet
candidate and the dataset is calculated and
some measure of quality is used

Typically one uses the Euclidean distance and
Information Gain to measure goodness of a
shapelet



Computational Complexity

* The naive Shapelet discovery algorithm has a computational complexity of
O(N?n3) for dataset size N and time series length n

* The size of the candidate set is O(Nn?)
* Checking one candidate takes O(Nn) when using the Euclidean distance

* This makes the naive algorithm infeasible for most real-world problems

* There are optimizations to speed up Shapelet discovery (at the cost of
accuracy) by using a random candidate set, random projections, and lower
bounding distances



Single occurrence vs frequency of occurrences

* Many signals are inherently periodic/repetitive

(heartbeats, network traffic, weather, ...) S —
* We describe a signal by the frequency of occurrence of — —
patterns :T_ = r"l:?‘-:r:
 Similar to the bag-of-words representation for e —
documents, which is a histogram of word counts B ST S S SIS S
* Problem: how to count the occurrences of real-valued- e
subsequences? AP AMLUN LAASALALMALS AL LI

Lin, Jessica, Rohan Khade, and Yuan Li. "Rotation-invariant similarity in time series using bag-of-patterns

representation." Journal of Intelligent Information Systems 39.2 (201%)5 szﬁ/%]%gflin de/landnutzung )8



The BOSS model

1. Windowing

3. Dictionary-based

* A bag-of-patterns (histogram) of feature [ bec
. . . o . 2. SFA Words
counts is used as input to classification :

* This approach is fast (linear complexity),
noise reducing, but order of
substructures gets lost v

* Representatives:

* Univariate: WEASEL, Bag-of-SFA-Symbols =
(BOSS), Bag-of-Patterns (BoP), Time Series . | | | |
Bag of Features (TSBF) | | | | |

e Multivariate: SMTS, WEASEL+MUSE, LPS

1. Baydogan, M.G., Runger, G.: Learning a symbolic representation for multivariate time series classification. DMKD 29(2), 400—422 (2015)
2. Schéfer, P., Leser, U.: Fast and Accurate Time Series Classification with WEASEL.'CIKM pp. 637646 (2017)

1000
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Symbolic Fourier Approximation (SFA)

* SFA represents each real valued
subsequence by a word
* SFA is composed of N N >
a) approximation using the Fourier -2 CERCCHCROCRERERED
transform and 7} (o} Tiome (o) 00 90 [ (] Tiome (o) 00 90 [ (] Tiome (o) 00 90
b) a data adaptive discretization Raw: DFT Discretization
0.2679 0 C
* The discretization intervals are 01828 881 ;
learned from the Fourier transformed 0.0051 o c
data distribution 005 e c
-0.082 15.31 B
-0.111 18.7 B
-0.075 18.36 C
-0.032 5.67 B
-0.022 16.84 C
https://hu.berlin.de/landnutzung io'?zg -8.919 [B | 30
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Symbolic Fourier Approximation (SFA)

approximation

a time series | Fourier transform

DFT 189 -473 -489 0.56

.................... > real valued
realy imag: real: imag:

l ] 2 Fourier
0 A 128 152 . coefﬂcients
MCRB e quantisation

3
| | RSN
L P € F
e .. .f 777777 -E' .
(1189 [ 5 o i
¥ P PraREE BT | D A A C
- ' c 0.56 IOOkUP .
2 s - B 7-6—-_----: ..................... s dlscrete
L B ] SFA word
1 ‘A ; 4 characters
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s 0
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c 2
( 3
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real; imag, real, imag,
9 9 https://hu.berlin.de/landnutzung
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Algorithm

Histogram BOSSTransform( * The basis algorithm extracts sliding windows
TimeSeries sample , of length w

WindowLength w,

Wordlength I, * Each sliding window is transformed to a word

Symbol .

ympole c) of length | and c symbols using SFA
Histogram boss = {}
for subsequence S in sliding windows(sample, w) * Numerosity reduction removes duplicates:

String word=SFA(S, 1, c) bce bee bee bee bee bee bee bee cee cec bee beb

. . , bcb beb beb

if word != lastWord // numerosity reduction b '

ecomes:
boss[word]++ // increase counts bee ccc bee beb

lastWord = word
return boss * The words are added to a histogram



Runtime

The runtime is dominated by the DFT of each window

* There are n-w+1 sliding windows of length w
* The Fourier transform has to be applied to each window, thus O (n w logw)

But sliding windows overlap!

Using the Momentary Fourier transform computations of overlapping
windows can be saved

This results in a runtime of just O(n + w logw)



How to use Bag-of-Patterns for Classification

* 1-Nearest-Neighbour search over
histograms

* TF-IDF model on histograms

e Or using a classifier:

* Obtain histograms and train a classifier on
these histograms

* Predict a novel time series based on its
histogram using the model

https://hu.berlin.de/landnutzung
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4. Deep Learning-based

* Deep Learning was successful in many U
domains reaching human
performance level

* End-to-end NN approaches in TSCare U
based on Convolutional Neural I
Networks (CNN), Fully Connected

Input

In'[ixn

| Glbal Poaling |
I Saftmax I

E

|.*]

B \R
S AN+ Rell [

Networks (FC), or Recurrent Neural
Networks (RNN)

* Representatives: ResNet, FCN, Top to bottom: MLP, FCN, ResNet
Encoder, MLP, Time-CNN, TWIESN,
MCDCNN, MCNN, t-LeNet.

1. Fawaz, Hassan Ismail, et al. "Deep learning for time series classification: a review." arXiv preprint arXiv:1809.04356 (2018).

https://hu.berlin.de/landnutzung 35



Perceptrons

* The most basic architecture of a neural network
is called perceptron

* |t consists of two layers of nodes: input nodes
(data points) and a single output node

* The perceptron performs a mathematical

=
o WiXy+ WXy +
A WsXs+W,;X4+ b

output .

computation on the inputs T = (xq, ... X):
y=f(w-T+b) |
with w being a set of weights, bias term b and e Sigmotd Funcior eX

activation function f

* An activation function (e.g. Sigmoid) is used to
filter the output of the perceptron to [0,1]

* This gives a probability estimate

* Temporal values are independently treated
frcl)m each other, thus the temporal information
is lost

http://blog.kaggle.com/2017/11/27/introduction-to-neural-networks/



Multi Layer Perceptrons (MLP)

Most simple and traditional architecture of dee
NN, also known as Fully-Connected Network (FC)

MLP have hidden layers in addition to inputs and
output nodes

Fully-connected: Every perceptron is connected to
every perceptron in the previous layer

Connections are still modelled by weights:
y=f(w-T+b)

The output gives a probability estimate

Learning:

The inputs for the training instances are
fed into the neural network. The error on the training
data is estimated

We update the model‘s weights in a
backward pass such that the train error is minimized

Still temporal information is lost

4 >\
S R Output Layer

http://blog.kaggle.com/2017/11/27/introduction-to-neural-networks/



Multiclass Classification (“Softmax Layer”)

* Extends the network for multiclass O N 9
classification using multiple output nodes NS AGANNY <V>
* Each output node corresponds to one
class
. 7 ) { > uuuuuu _
* The Softmax function maps the outputs, O <

such that these sumup to 1

* This gives probability estimates per class:
{p(class,), ...,p(classy)}



Fully Convolutional Neural Network

* A convolution can be seen as applying
and sliding a filter over the time series

e Results in a filtered time series

 Several (128 to 256) filters are applied
to learn multiple discriminative features

* These filters are trained automatically Fig. 3: Fully Consolutions! Neural Network architectur
USI ng a feed_fo rwa rd pass fOI |Owed by 1. Fawaz, Hassan Ismail, et al. "Deep learning for time series
b a C k_ p ro p a gat i O N classification: a review." arXiv preprint arXiv:1809.04356 (2018).

* The network is invariant to the length of
the time series



Recurrent Neural Network

* So far, rarely applied for time series
classification:

e Suffer from vanishing gradient problem on long
time series

* Computationally harder to train

* Thus, not mentioned here... but still
interesting approach



5. Ensembles

* Ensembles combine different time HIVE-COTE
series classifiers using bagging or
majority voting

* Highest accuracy by combining
different representations but high
com pUtatiOnaI com pleX|ty Hive Cote: Ensemble over similarity-/shapelet-

/dictionary-based classifiers

* Representatives:

e Univariate: Elastic Ensemble (EE PROP),
Collective of Transformation Ensembles
(COTE)

1. Bagnall, Anthony, et al. "The great time series classification bake off: a review and experimental evaluation of recent algorithmic
advances." Data Mining and Knowledge Discovery 31.3 (2017): 606-660. https://hu.berlin.de/landnutzung 41



Which approach to use?



Related: A TS challenge
on gesture data

* Participants are given a training set
of labelled multivariate time series
representing isolated gestures
captured with a Kinect system by
different users

e Datasets are 24 dimensional

* AALTD Challenge:
https://aaltd16.irisa.fr/challenge/

Raw Multivariate Time Series
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https://aaltd16.irisa.fr/challenge/

Official leaderboard

The following leaderboard has been computed on the whole test set.

Task 1
Rank Team name Method name Accuracy Number of submitted
runs (max. 10)
1. UCRDMYeh bofSC + randShape 0.961 1
2. Mustafa Baydogan SMTS 0.956 3
- Lemaire-Boullé, Orange Labs Automatic Feature Construction + 0.956 2
Selective Naive Bayes

4. HU-WBI MWSL 0.950 3
5. CIML RC 0.944 3
- UCRDMYeh convNet 0.944 1
- UCRDMYeh bofSC 0.944 1
8. UEA COTE 0.939 4
9. UEA HESCA 0.933 2
- Josif Grabocka LearningShapelets 0.933 1

11 UCRDM pDTWKerSVM + RandSub 0.928 2
- UEA Rotation Forest Benchmark 0.928 3

13. HU-WBI BOSS 0.911 -

14. DDIG httpsz//hus'gfetmgiggé Lad”sdh%‘;tezs””g 0.906 1

44



Related: Challenge on Sattelite Data (Reumon
sland) ahT

* They used satellite time series of Landsat 8 images
collected over Reunion Island in 2014 [1]
e 81714 pixels

10 spectral features: seven reflectance bands and three
vegetation indices (NDVI, NDWI, BI)

* 23 time stamps: 16 days revisit time: | Land coverclass | Semples
. . . . . 1 | Urban Areas T
* 2 spatial-coordinates: longitude and latitude 2| Other builtup surfaces | 323
* 9 land cover classes (manually classified) i Fuzests | 16000
. ] 1 Sparse Vegetation ‘ 16000
* preprocessed: atmospherically corrected, geometrically 5 | Rocksand bace soil | 12042
corrected, and cloud-masked e e— | 5681
Sugarcne craps 7636
R Other crops | 1600
5 Water | 2599

e [1] TiSeLaC Challenge:
(top) The Reunion Island site and (bottom)
httpS //Sltes gOOgIe Com/SIte/dmQI?QSQ!FQELthg the corresponding Land Cover Class®es [1]



https://sites.google.com/site/dinoienco/tiselc

Questions?



Next Steps

* Today: choose a topic
* Before 30.11.18: meet me to discuss topic
* 07.12.18, 15-16 Uhr: Flash presentation, RUD 25 4.410

* Present ideas and your topic in 5min

https://hu.berlin.de/landnutzung
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