

Master Seminar WS 18/19 Blockseminar

Patrick Schäfer

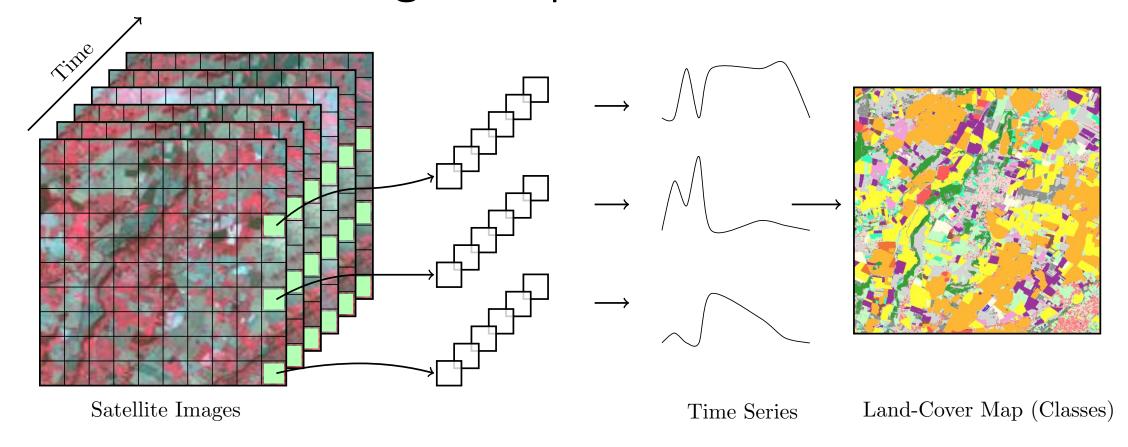
Friday, 01.02.2019

URL: https://hu.berlin/landnutzung

Agenda

- Today:
 - Blockseminar (1.2.19 15-18 Uhr, RUD 25 4.410)
 - Present your topic (30 min)
 - Some Dataset Information
 - Results of the Competition

From satellite images to pixel time series



From: Tan, Chang Wei, Geoffrey I. Webb, and François Petitjean. "Indexing and classifying gigabytes of time series under time warping." *Proceedings of the 2017 SIAM International Conference on Data Mining.* Society for Industrial and Applied Mathematics, 2017.

NDVI time-series

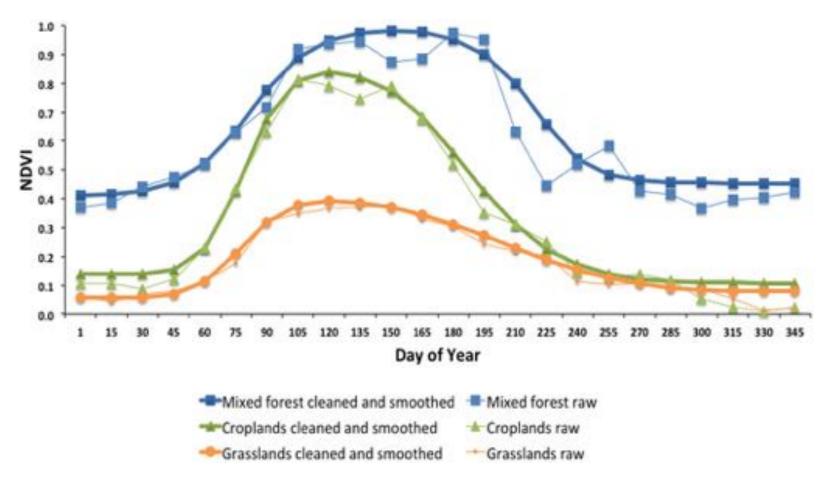


Fig. 3. Raw, and cleaned and smoothed NDVI time-series of mixed forest, croplands, and grasslands.

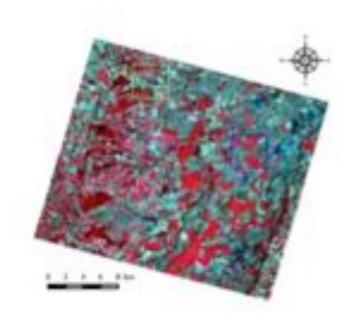
From: He, Yaqian, Eungul Lee, and Timothy A. Warner. "A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data." *Remote Sensing of Environment* 199 (2017): 201-217.

Recap: Data Preparation

- Regarding feature normalization [1]:
 - [...] In machine learning, the input data are generally standardized by subtracting the mean and divided by the standard deviation for each feature where each time stamp is considered as a separate feature [...]
 - In machine learning, the input data are generally z-normalized by subtracting the mean and divided by the standard deviation for each time series. [...] z-normalization [...] leads to a loss of the significance of the magnitude that it is recognized as crucial for vegetation mapping, e.g. the corn will have higher NDVI values than other summer crops.

Recap: Train/Test dataset

- A massive land cover pixel time series (TS) dataset
 - 46 geometrically and radio-metrically corrected images taken by FORMOSAT-2
 - Train data: 6 mio pixels TS, 2,4GB
 - Test data (hold-back, kaggle): 20.000 pixels
 - 46 time stamps between 06.2 and 29.11.2006
 - 3 surface reflectances: Near-Infra-Red, Red, Green
 - In total 3x46 values per pixel time series
- Contains missing values ,?'
- Overall, 24 land cover classes, labelled by experts
- Note: This data is provided for the class only and it has to be deleted once the seminar is over



https://arxiv.org/pdf/1811.10166.pdf

Recap: 24 Class Labels

prairie temporaire is mapped to #0 ble is mapped to #1 pre is mapped to #2 feuillus is mapped to #3 tournesol is mapped to #4 mais ensillage is mapped to #5 jachere is mapped to #6 bati dense is mapped to #7 bati diffus is mapped to #8 friche is mapped to #9 resineux is mapped to #10 sorgho is mapped to #11

pois is mapped to #12 orge is mapped to #13 bati indu is mapped to #14 soja is mapped to #15 eau is mapped to #16 eucalyptus is mapped to #17 colza is mapped to #18 lac is mapped to #19 peupliers is mapped to #20 mais is mapped to #21 graviere is mapped to #22 surface minerale is mapped to #23

Competition

Kaggle: Public Leaderboard

*	Team Name	Kernel	Team Memi	bers	Score @	Entries	Last
9	Best Found Model (XGBoost)				0.77240		
1	Distributed Multivariate BoP		73	9	0.73750	13	5d
9	Random Forest Benchmark				0.73200		
2	non-time-series-based			9	0.72860	9	5d
3	Univariate Dictionary-based		9	9	0.72780	18	2d
4	deep learning			9	0.67510	4	16d
5	UnivariateShapelets			9	0.62700	18	5d
9	1-NN Manhattan Distance BFI				0.62270		
6	DTW		9	9	0.59340	6	6d
0	1-NN Manhattan Distance Na				0.54810		

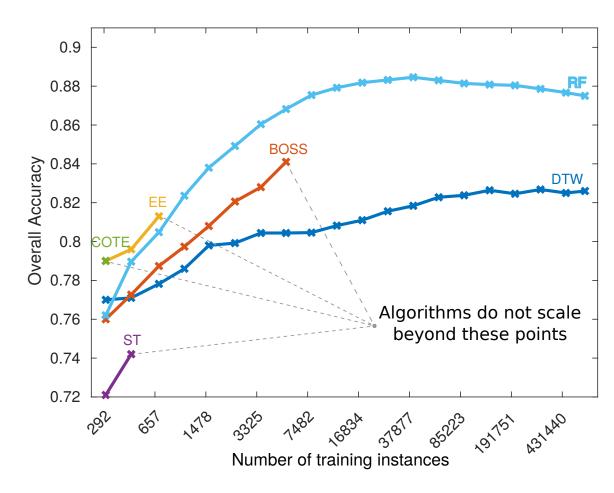
Kaggle: Private Leaderboard

*	Team Name	Kernel	Team Mem	bers	Score ©	Entries	Last
9	Best Found Model (XGBoost)				0.77350		
1	Distributed Multivariate BoP		160	9	0.73960	13	8d
9	Random Forest Benchmark				0.73880		
2	Univariate Dictionary-based		9	9	0.73010	18	3d
3	non-time-series-based			9	0.72930	9	5d
4	deep learning			9	0.67870	4	16d
9	1-NN Manhattan Distance BFI				0.63060		
5	UnivariateShapelets			9	0.62890	18	6d
6	DTW		9	9	0.59419	6	7d
0	1-NN Manhattan Distance Na				0.55230		

Topic	Approach
(non-time series)	Feature Extraction/Selection: (a) Statistische Werte (TSFresh), NDVI, saisonale Features (Frühling, Sommer, Winter), Moving Averages, insgesamt 738 features => 700 Feature-Reduktion, jeder Fold gleiche Anzahl Samples/Klasse. (b) Autoencoder: supervised, Dense NN, kombiniert (70 Features), einzeln (40 Features) Classifier: Random Forests (200 trees)
Whole-Series	Features/Preprocessing: Imputation (linear), 3 bands: red, green, NIR Classifier: 1-NN, multivariates DTW / ED Probleme: Warping Window noch nicht getestet, NDVI
Univariate Shapelet	Features/Preprocessing: Interpolation (zero filling, linear, bfill), MinMax-Normierung auf -1 und 1 (teils problematisch) Classifier: Fast Shapelets (Shapelet Discovery) Probleme: z-normalisierung, 0-Filling
Univariate Dictionary	Features/Preprocessing: NDVI, Interpolation (0 filling best on train data) Classifier: SFA, WEASEL Probleme: Bebauung schwer zu unterscheiden (Green-Index im NDVI fehlt)
Multivariate Dictionary	Features/Preprocessing: NDVI, Range Normalization, Time-Synchronization (2 Tages-Intervalle, gleiche Intervalllängen vergleichen), Backward-Fill Classifier: SAX (keine Mean-Bildung) und Bag-of-Pattern pro Channel, Random Forests classifier, Concurrent implementation Probleme: Skalierbarkeit (Memory),
Deep Learning	Feature/Processing: TinyDNN (days) / Keras (Minutes), Red, Green, NIR, NDVI Classifier: TimeCNN, ResNet, FCN

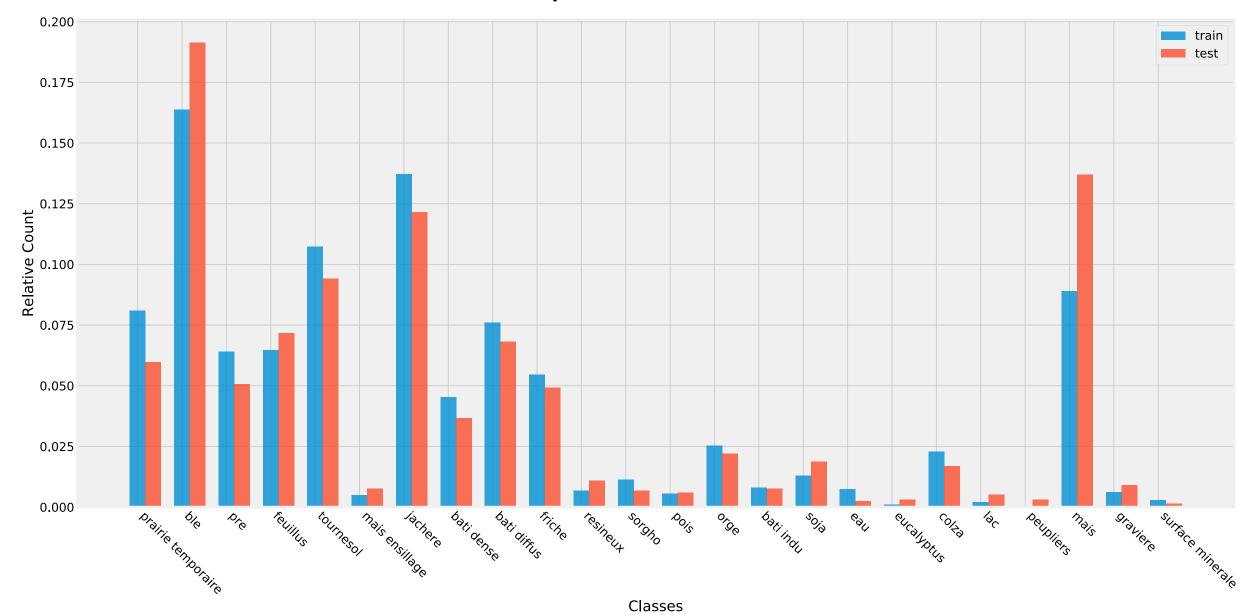
Recap: Accuracy...

- Competitors
 - DTW (warping window size is fixed at 25%)
 - Elastic Ensemble
 - BOSS
 - Shapelet Transform
 - COTE
- Only NDVI features
- Only 1000 test samples
- Limit at 24 hours single core runtime
- Normalization?
- Using (inefficient) codes from www.timeseriesclassification.com



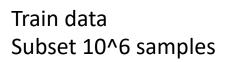
[1] https://arxiv.org/pdf/1811.10166.pdf

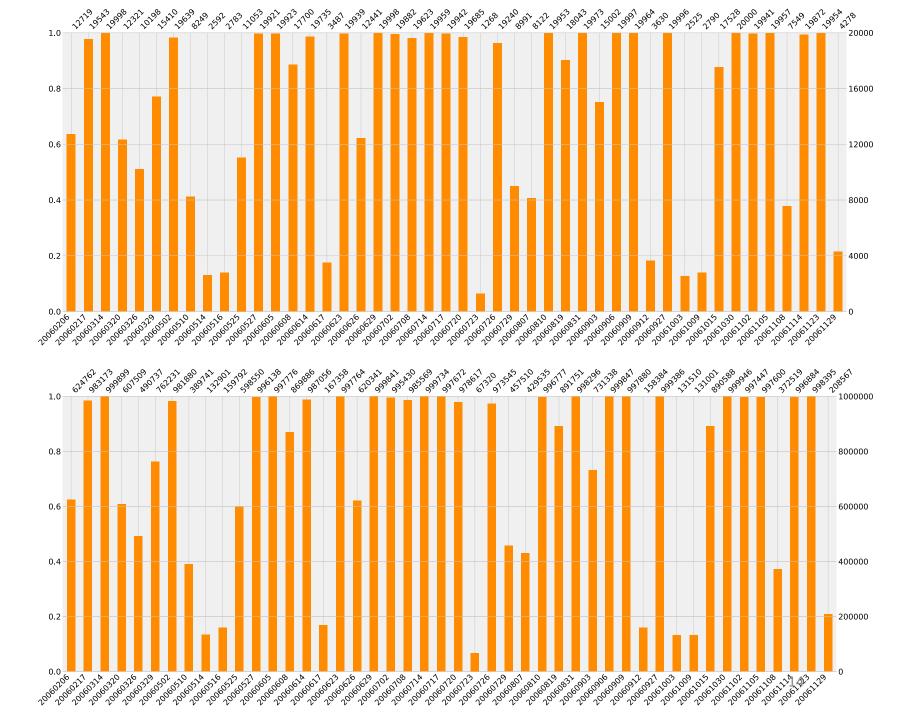
Class Distribution: Test / Train



Missing Values Train / Test

Test data 20.000 samples





My best found model

- Pre-processing / imputation method used:
 - Backward-fill using last value
 - Forward-fill using last value
 - No normalization applied
- Feature Engineering [1]:

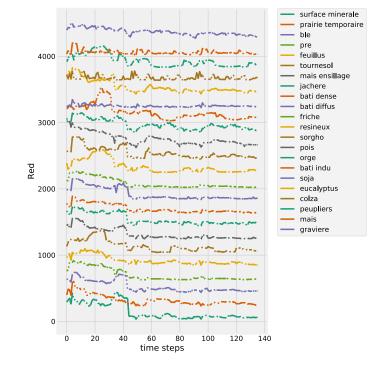
• 3 Spectral Bands: Red, Green, NIR

• NDVI (with red): (NIR-red)/ (NIR+red)

• NDWI (with green): (NIR-green) / (NIR+green)

Chlorophyll Vegetation Index: (NIR*red) / (green^2)

- Classifiers:
 - Random Forests with 1000 trees, all samples: **75.4% on Kaggle**
 - Gradient Boosting with 1000 trees, 10^6 samples: 76.8% on Kaggle

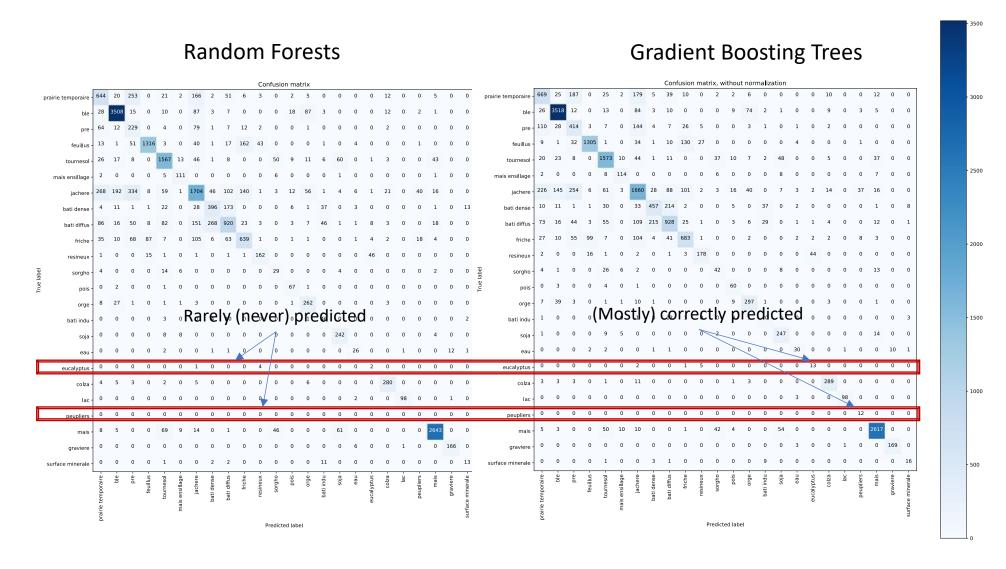


Classification-Report: Sensitivity

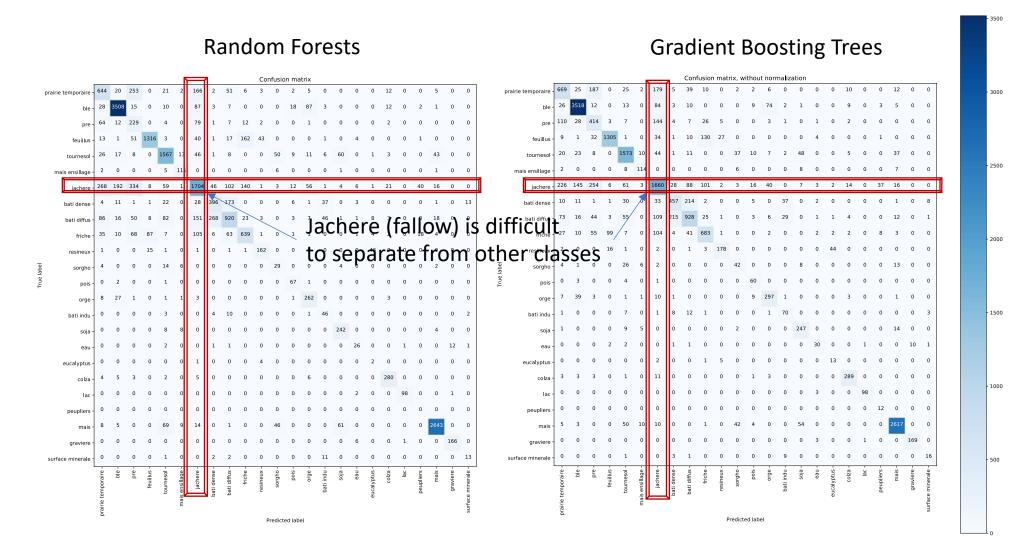
- GBT much better at representing underrepresented (low support) classes
- Most prominent class: peupliers with 0% for RF and 33% for GB

	Random For	ests (RF)		Gradient Bo	oosting Trees	(GBT)	
Class Labels	Precision	Recall	F1-score	Precision	Recall	F1-score	Class Support
prairietemporaire	54%	52%	53%	57%	56%	57%	1195
ble	93%	91%	92%	93%	92%	93%	3826
pre	55%	21%	30%	55%	41%	47%	1013
feuillus	79%	93%	85%	84%	91%	87%	1435
tournesol	82%	83%	83%	86%	84%	85%	1882
maisensillage	89%	73%	80%	79%	75%	77%	151
jachere	55%	70%	62%	61%	68%	65%	2430
batidense	56%	54%	55%	56%	63%	59%	731
batidiffus	54%	66%	60%	61%	68%	64%	1363
friche	60%	64%	62%	65%	69%	67%	983
resineux	74%	76%	75%	72%	81%	76%	219
sorgho	38%	15%	22%	41%	31%	36%	134
pois	100%	37%	54%	88%	50%	64%	119
orge	82%	58%	68%	80%	68%	73%	439
batiindu	68%	30%	42%	67%	46%	55%	151
soja	94%	64%	76%	89%	66%	76%	373
eau	53%	53%	53%	62%	61%	62%	49
eucalyptus	50%	6%	11%	62%	21%	31%	62
colza	91%	82%	86%	92%	86%	89%	338
lac	98%	94%	96%	97%	98%	98%	100
peupliers	0%	0%	0%	100%	20%	33%	61
mais	93%	96%	95%	94%	96%	95%	2738
graviere	96%	93%	94%	98%	94%	96%	179
surfacemineral	43%	41%	42%	53%	55%	54%	29
avg/total	75%	75%	74%	78%	77%	77%	20000

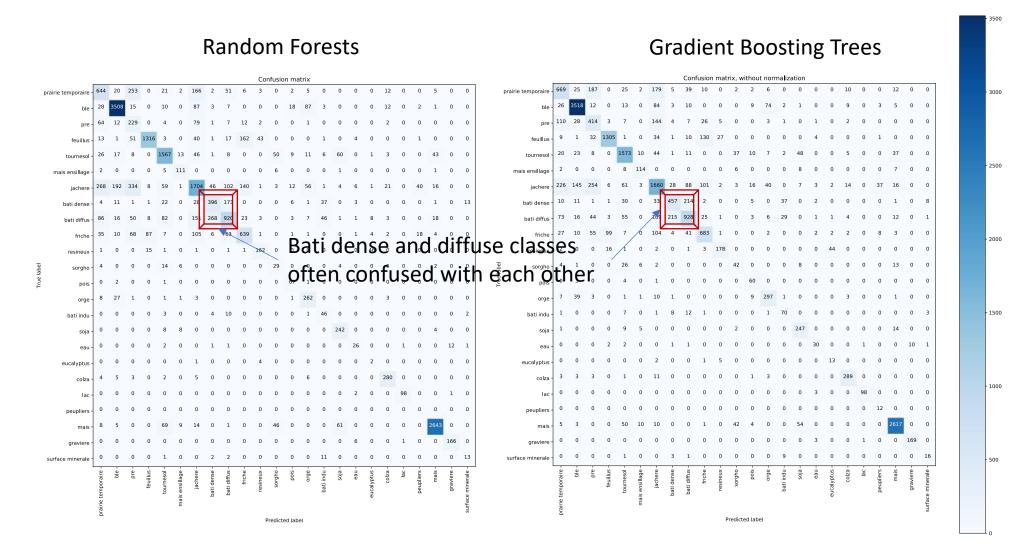
Confusion Matrix



Confusion Matrix



Confusion Matrix



Next steps...

• Please, send me your presentation slides

- Seminar Thesis before 31.03.2019
 - write seminar thesis (~20 pages)
 https://hu.berlin/checkliste_seminar

Hinweise zur Ausarbeitung

- Eine elektronische Version schicken (±20 Seiten)
 - Selbstständigkeitserklärung (einscannen oder abgeben) unterschreiben
- Referenzen:
 - Im Text referenzieren, Liste am Schluss
- Korrekt zitieren
 - Vorsicht vor Übernahme von kompletten Textpassagen oder Abbildungen; wenn, dann deutlich kennzeichnen
 - Aussagen mit Evidenz oder Verweis auf Literatur versehen
- Siehe: https://hu.berlin/checkliste_seminar

Questions?