Neural Networks and Word Embeddings

Ulf Leser, Humboldt-Universität zu Berlin
Table of Contents

• A brief introduction to Neural Networks
• Word Semantics
• Word Embeddings with Word2Vec
• Applications
Artificial Neural Networks (ANN)

- A method for **non-linear classification**
- Quite old, always present, extremely hyped since ~2015
- Inspired by biological neural networks

Sources: https://stackoverflow.com
http://neuralnetworksanddeeplearning.com
https://allen institute.uk
Concepts

Source: http://www.opennn.net/
Usage

- Objects are described as **sets of features**
- Binary classification: One output unit and a threshold
 - Multi-class: One output unit per class producing the probability of belonging to this class
- Training: **Find weights** for all connections between units such that **the error of the output** on the training data is minimized
 - Performed backwards through the network: Training
- Application: Compute output based on to-be-classified input using the learned weights
 - Performed forward through the network: **Prediction**
Many Design Choices

• Activation (aggregation) function?
• Number of hidden layers?
• Number of units per hidden layer?
• Connections only between adjacent layers?
• Only “forward” connections?
• Loss function for learning
• Central issue: “Learnability”
 - Different choices lead to different problems
 - Especially back-links increase complexity (and expressiveness)
Classical Examples

• **Perceptron**
 - Dead for some time: XOR problem

• **Feed-forward ANN**
 - Directional, level-wise information flow
 - Can learn almost arbitrary functions (depending on AF)

• **Recurrent ANN (RNN)**
 - Information may flow back
 - Can learn state for sequential inputs (like in NER)

• **Convolutional neural networks**

• **AutoEncoder**

• …
... and many more variations

Source: http://www.asimovinstitute.org/
Non-Linear Activation Functions

- How can we learn this decision (XOR)?
- **No linear combination** of x_1, x_2 will work
 - There is no straight line partitioning the space in the correct “green” and “yellow” parts
- Trick: Use a two-level ANN and a non-linear AF

```
\begin{align*}
\text{"Rectified linear activation":} & \quad \text{out} = \max(0, W^T x + c) + b \\
h_1 &= \max(0, x_1 + x_2 + 0) \\
h_2 &= \max(0, x_1 + x_2 - 1) \\
y &= \max(0, h_1 - 2h_2)
\end{align*}
```

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>h_1</th>
<th>h_2</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Learning a ANN

• Feedforward (and many other) ANN can be efficiently learned using back-propagation

• Idea
 - Initialize weights at random
 - Compute loss function for training samples
 - Adjust weights level wise along the gradient of the loss function
 - Repeat until convergence
 - Trick: Fast and repeated computation of the gradients

• Variation of stochastic gradient descent (SGD)
Deep Learning

- ANN for long did not outperform other yet faster methods
- Two trends since roughly 2012
 - Build deeper networks – more and wider hidden layers capture more signals
 - It is not true that “more is always better”
 - Still much art (not science) in tuning hyper-parameters
 - Learn on much more data
 - Deep learning is only good if a lot training data is available
 - Include unsupervised data – pre-training to obtain good initial weights
 - Both require much longer training times – prohibitive in the past
 - Today: Optimized algorithms, stronger machines, accelerators (GPU), distributed learning, pre-trained models, …

- Now very successful in machine translation, image recognition, gaming, machine reading, …
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A very brief introduction to Neural Networks</td>
</tr>
<tr>
<td>• Word Semantic</td>
</tr>
<tr>
<td>• Word Embeddings with Word2Vec</td>
</tr>
<tr>
<td>• Applications</td>
</tr>
</tbody>
</table>
Word Semantics

- All approaches we considered so far consider two tokens as different whenever they have different spelling
 - No shades: Equal or not, dimensions in VSM are orthogonal
 - King, princess, earl, milk, butter, cow, white, crown, emperor, …
- This makes models very specific – bad generalization
 - If we know that \(p(\text{milk}|\text{cow}) \) is high, this doesn’t tell us that \(p(\text{butter}|\text{cow}) \) is probably also high (higher than \(p(\text{crown}|\text{cow}) \))
 - We have to see all words sufficiently often during training – seeing semantically similar words doesn’t help
- Humans do compare words in a multi-facetted way
 - King is similar to princess to earl to queen, but not to cow
 - But both are mammals
 - King uses crowns much more often than cows
- How can we capture word semantics to derive meaningful similarity scores?
Knowledge-based: WordNet, Wikipedia, ...

- Let’s dream: A comprehensive resource of all words and their relationships
 - Specialization, synonymy, partonomy, relatedness, is_required_for, develops_into, is_possible_with, ...

- Example: WordNet
 - Roughly 150K concepts, 200K senses, 117K synsets
 - Specialization, partonomy, antonomy

- Can be turned into a semantic similarity measure, e.g., length of shortest path between two concepts

- Problem: Incomplete, costly, outdated
 - Especially in specific domains like Biomedicine

- Much research to automatically expand WordNet, but no real breakthrough
Distributional Semantics

• „You shall know a word by the company it keeps” [Firth, 1957]
 – The distribution of words co-occurring (context) with a given word X is characteristic for X
 – To learn about X, look at its context
 – If X and Y are semantically similar, also their contexts are similar
 – If X and Y are a bit different, also their contexts will be a bit different
 – Holds in all domains and all corpora of sufficient size
• Central idea: Represent a word by its context
• For similarity: Compare contexts, not strings
• How can we do this efficiently and effectively?
Naive Approach

- Given a large corpus D and a vocabulary K
- Define a context window (typically sentence)
- Represent every $k \in K$ as a $|K|$-dimensional vector v_k
 - Find set W of all context windows containing k
 - For every $k' \neq k$, count frequency of k' in W: $v_k[k'] = \text{freq}(k', W)$
 - May be normalized, e.g. tf^*idf
- Similarity: Compute cosine similarity between word-vectors
- Problem: Our model for each $d \in D$ grew from $|K|$ to $|K|^2$
 - Infeasible
 - We need an efficient and conservative dimensionality reduction
 - Efficient: Fast to compute; conservative: Distances are preserved
Latent Semantic Indexing

• Recall from Information Retrieval …
• Goal: Represent documents as a distribution over concepts
 - “Concepts” should be computed automatically
 - LSI models concepts as linear combinations of document/term vectors with certain properties
 - Number of concepts is a hyper parameter
 - Search in concept space, not in term space
• Start from term-document matrix M
• Approximate M by a particular M'
 - M' has much less dimensions than M
 - M' should abstract from terms to concepts
 - M' should be such that $M'^t q \approx M^t q$
 • Produce the least error among all M' of the same dimensionality
Singular Value Decomposition (SVD)

- SVD decomposes a matrix into $M = X \cdot S \cdot Y^t$
 - S is the diagonal matrix of the singular values of M in descending order and has size $r \times r$ (with $r=\text{rank}(M)$)
 - X is the matrix of Eigenvectors of $M \cdot M^t$
 - Y is the matrix of Eigenvectors of $M^t \cdot M$
 - This decomposition is unique and can be computed in $O(r^3)$
 - Use approximations in practice
Approximating M

- LSI: Use SVD to approximate M
- Fix some $s < r$; Compute $M_s = X_s \cdot S_s \cdot Y_s^t$
 - X_s: First s columns in X
 - S_s: First s columns and first s rows in S
 - Y_s: First s rows in Y
- M_s is the matrix where $\|M - M_s\|_2$ is minimal
- Columns in Y_s^t are low-dimensional representations of docs
Usage and Problem

• We can apply the same math to the term-term correlation matrix (computed as $M^t M^t$)
• This would yield low-dimensional vectors for each term
• But: We cannot compute anything that requires $O(|K|^3)$
Table of Contents

• A very brief introduction to Neural Networks
• Word Semantic
• Word Embeddings (with Word2Vec)
• Applications
Word Embeddings

- Very popular technique since app. 2015
- Goal: Learning word vectors ("word embeddings")
 - Low dimensional – typically 100-500 (a hyper parameter)
 - Unsupervised learning – may use extremely large corpora
 - Specific techniques to scale-up training (e.g. GPUs)
 - Can be precomputed and used without re-training in apps
- Approach: Use Machine Learning, not algebra
 - Though the border is not clear at all
Word2Vec [Mikolov et al. 2013]

- Recall language models
 - Goal: Given a prefix of a sentence, predict next word
 - Can be understood as multi-class classification problem
 - As many classes as words
 - We computed word probabilities using a simple N-gram model

- Idea of Word2Vec
 - Cast the problem as classification
 - Given the context of a word – predict the word
 - Obviously related to language modelling
 - Note the “context” – we are close to word embeddings

K2 is the second mountain in the world.
Architecture

- Fix dimensionality N, let $V=|K|$
- Fix context size $C+1$
- Solve problem by a 1-layer ANN
 - Input: C vectors of size V (context)
 - Hidden layer: N units
 - Output: V-dimensional layer (target)
- Parameters to learn
 - Input-hidden: $V*N$ weights
 - “Parameter tying”
 - Hidden-output: $N*V$ weights
- Activation functions
 - Hidden units: Weighted sum
 - Output units: softmax
Learning Word2Vec

- Obtain a very large corpus
- Train ANN as usual
 - Random initialization
 - For every context / word
 - Use context as input, word as target
 - All in one-hot representation
 - Compute output, loss and gradient
 - Adjust weights
 - Iterate until convergence
Two Options: CBOW or Skip-Gram

- Continuous Bag of Words: Predict word from its context
- Skip-Gram: **Predict context** from its center word
 - That's actually one predictor per output word
 - Tends to produce more accurate results given large corpus
Word Embeddings?

- Nice – but where are our word embeddings?
- Look at the output layer
 - Every word is one output unit
 - With N incoming weights
 - These weights form the word vector for the output word
 - The hidden units are the „concepts“
- Of course: Works only for known words
 - Alternative: Character level input
Does it Work?

- king - man ~ queen - woman
- walking - walked ~ swimming - swam
- Russia - Moscow ~ Vietnam - Hanoi
- man - computer programmer ~ woman - homemaker
- father - doctor ~ mother - nurse
Table of Contents

• A very brief introduction to Neural Networks
• Word Semantic
• Word Embeddings with Word2Vec
• Applications
Applications of Word Embeddings

• Word Embeddings can be used in essentially all places where words are represented as vectors
• Own experience: An extra 1-5% in F-measure (for NER)
 – That’s a lot! Much more effect than classification method
• Very active research area – new papers appear daily
• “Best” methods still rather unclear
• Some examples
Word Embeddings and NER

• Recall NER using token classification
 - Token is represented as feature vector, classes are IOB
 - Features encode the token itself and context words
 • Traditionally: All in one-hot encoding

• Using word embeddings: Represent token and context words using their (precomputed) embeddings
 - Advantage: If token is semantically similar to a token tagged in the training data – additional evidence
 - In the traditional model, the lack of semantics was circumvented by using syntactic features (greek letters, certain suffixes, case, …) presumably correlated to word semantics
 - Now, we can directly encode word semantics
Word Embeddings and Text Classification

• Recall, for instance, a SVM for classification
 - Every document is a vector of features (tf*idf)
 - SVM finds max-margin separating hyperplane (binary classification)
 - Hyperplane is some linear combination of feature values, i.e. words

• Classification and word embeddings
 - Not so simple; we cannot give a SVM a vector instead of a value
 • Wouldn’t help: SVM doesn’t compare values in different dimensions
 - Simple: **Sum up all word vectors** in a doc
 • Generates a low dimensional, “semantically aggregated” doc vector
 - Alternative: Directly learn “doc embeddings”
 - Alternative: Cluster embeddings per doc and use matching quality between clusters as distance in k-NN [or as kernel for a SVM]
 - Alternative: Compute minimal matching between sets of embeddings of two docs and use as distance in k-NN
Literature

 – See http://www.deeplearningbook.org/
• Mikolov, Sutskever, Chen, Corrado, Dean, J. (2013): “Distributed representations of words and phrases and their compositionality”, Advances in neural information processing systems
 – >6000 citations until 12/2017
• Mikolov, Chen, Corrado, Dean (2013): “Efficient estimation of word representations in vector space”. arXiv:1301.3781