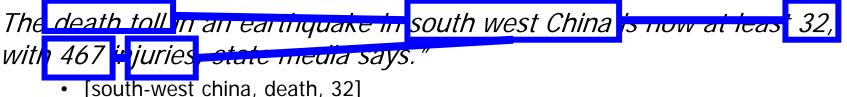


Text Analytics Relationship Extraction

- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Protein-Protein-Interactions

- Very often, entities in a sentence are in a certain relationship to each other: Relationship extraction (RE)
 - Price of a product
 - CEO of a company
 - Who bought what?
 - Who talked to whom?
 - Of which band is this song?
 - Which proteins interact with which other proteins?
 - ...
- Usually, RE depends on pre-recognized entities
 - Can be modelled as joint inference problem not here

Z-100 an orabinomannan extracted from Mycobacterium tuberculosis that has various immunomodulatory activities, such as the induction of interleukin 12, interferon gamma (IFN-gamma) and beta-chemokines. The effects of *Z-100* on human immunodeficiency virus type 1 (HIV-1) replication in human monocyte-derived macrophages (MDMs) are investigated in this paper. In MDMs, *Z-100* markedly suppressed the replication of not only macrophage-tropic (M-tropic) HIV-1 strain (HIV-1JR-CSF), but also HIV-1 pseudotypes that possessed amphotropic Moloney murine leukemia virus or vesicular stomatitis virus G envelopes *Z-100* v as found to infinite HIV-1 expression, even when added 24 h after infection. In addition, it substantially inhibited the expression of the pNL43lucDeltaenv ...



- [south-west china, injury, 467]

What to Extract? Types of RE Problems

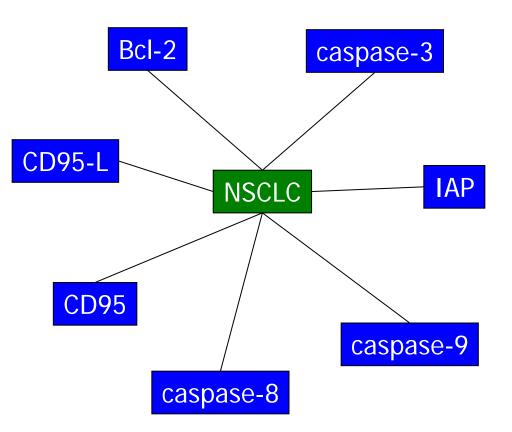
- Only the entities that have a certain relation to each other
 - Output: Tuples (mostly pairs) of entities with fixed semantics
 - Semantics usually implicitly defined through training corpus
- Entity tuples and roles within relationship (direction)
 Who killed whom? Who bought whom?
- Entity tuples and relationship type
 - Detect entities and deduce semantics of their relation (of any)
 - Simplest: Verb of the sentence containing the entities
 - More advanced: Verb combining subject (E1) with object (E2)
 - But also nouns (interaction) and adjectives (interacting) can express semantics
- Modifier of a relationship
 - Hedging: Might, could, should, not, ...

Is it Hard?

- Recognizing entities is difficult
 - Assume precision=0.8 for NER
 - Then, even a perfect binary RE has expected quality of only 64%
 - The higher the arity of the relationship, the worse
 - Often, RE is evaluated on a corpus pre-annotated with entities
- Sentences may contain more than one pair / relationship
- Relationships may span sentences (co-references)
- Enumerations in sentences (and, or)
 - "Oracle bought MySQL and RDB, while MySQL previously bought Adabas, which was then re-bought by SAP"
 - "TF-a must up-regulate RAS or b-RAF to induce this behavior"

- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Protein-Protein-Interactions

"NSCLC often becomes resistant to chemotherapy due to multiple defects found in expression of CD95-L, CD95 and members of the BcI-2 and IAP family, as well as caspase-8, -9 and -3 as examined by immunohistochemistry, ..."



Co-occurrence: 28 relationships, 21 false positives

- All pairs of entities appearing together in a context
 - A sentence, a paragraph, a window of n words
 - Larger context: Higher recall (e.g. across sentences), lower precision
 - Best context size for a given relationship can be learned
- General, co-RE yields high recall yet poor precision
 - Problems with enumerations, nested structures, long sentences, ...
 - Completely agnostic to relationship type
- Improvement: Pre-filtering sentences for "type'ness"
 - For instance, filter by a set of verbs or trigger words
- A fine-tuned co-RE is a reasonable baseline

- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Protein-Protein-Interactions

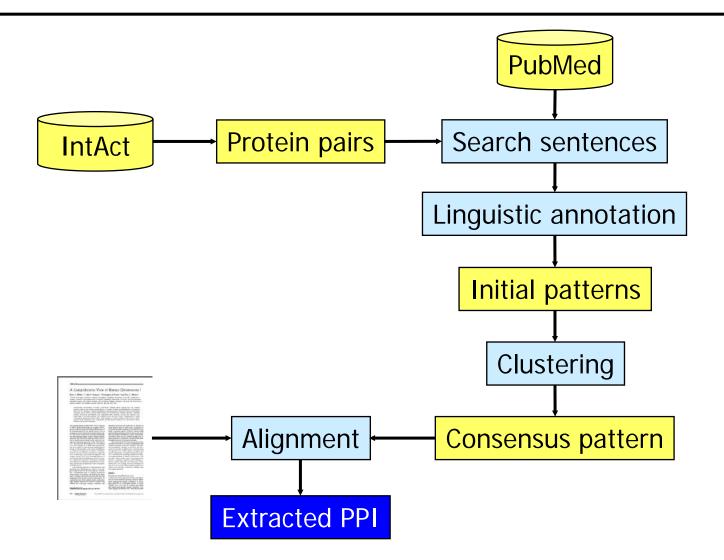
Pattern-Based Approaches to RE

- Language pattern (aka Hearst Pattern)
 - Look at words occurring in sentences expressing a relationship
 - ... GENE regulates expression of GENE ...
 - ... GENE is strongly suppressed by GENE ...
 - Adding part-of-speech
 - ... GENE VRB NOM PRP GENE ...
 - ... GENE is ADV VRB PRP GENE ...
- Different levels of generality
 - ... GENE .* VRB .* GENE
 - Simple rule, high recall, low precision
 - … GENE [is] ADV? {regulat|suppres} NOM? PRP GENE
 - Complex rules, lower recall, higher precision
- Balanced precision/recall requires many rules

- Most pattern-based systems work on hand-crafted sets of pattern
 - Recall: Users love pattern/rule-based approaches
 - Good recall quickly requires hundreds of pattern large effort
 - Need to be created for any type of relationship
 - Protein-protein, gene-disease, disease-drug, ...
- One idea: Learn patterns from weakly labeled data
 - Semi-supervised learning
 - More specific term: Distant supervision
 - User-friendly: Patterns can be inspected, removed, modified, ...

- Assume we seek protein-protein-interactions (PPI)
- Fortunately, there exist databases of PPIs, e.g. IntAct
- Hypothesis: If a pair of proteins known to interact (from IntAct) co-occur in a sentence, then this sentences expresses a PPI
- Can be used to quickly find thousands of relevant sentences
- Sentences are then turned into patterns
- These patterns can be matched against new text to find novel PPI

AliBaba Workflow (Hakenberg et al. 06, 07, 08, 09)

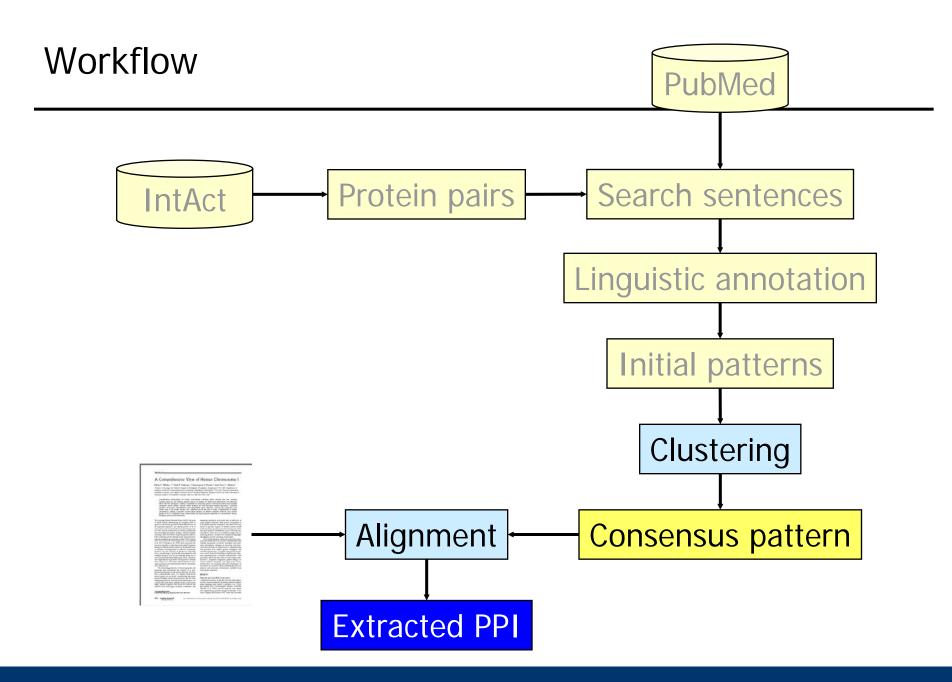


- Extract all pairs of proteins from IntAct
 - Only the names, not the evidence / links
 - All these interactions are assumed to be real
- Find all sentences in PubMed with a pair and an "interaction word"
 - "... FADD immediately activates procaspase-8 ..."
- Extract core phrases
 - Width: Parameter
 - "...show that FADD immediately activates procaspase-8 during..."
- Annotate with linguistic information

• Multi-layered pattern

Original token FADD		immediately	activates	procaspase-8	
Class / POS	PTN	ADV	ADV VRB I		
Word stem PTN		immediat	activat	PTN	

- Initial pattern set, one from each matching sentence
 - Highly specific
 - Can be used immediately, but results in low recall
- We need to generalize
 - Find clusters of similar patterns
 - For each cluster, generate consensus pattern



- Distance matrix for all pairs of initial patterns
- Hierarchical clustering
- Build consensus pattern using multiple sentence alignment

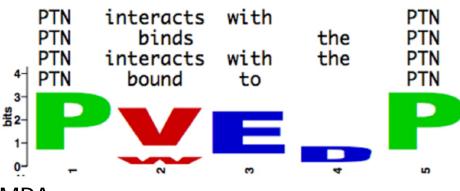
\mathbb{P}_1	PTN	SYM	PTN	IVBD	PTN
\mathbb{P}_2	PTN	CC	PTN	IVBD	PTN
P_3	PTN	SYM	PTN	IVB	PTN
P_4	PTN	CC	PTN	IVBD	PTN
P_5	PTN	CC	PTN	IVBD	PTN
P_c	$PTN_{5/5}$	$CC_{3/5} SYM_{2/5} $	$PTN_{5/5}$	$IVB_{1/5} IVBD_{4/5} $	$PTN_{5/5}$

Similarity of Language Patterns

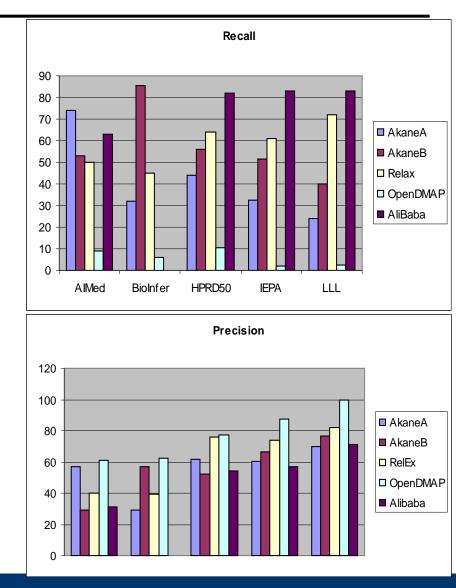
- What is the "distance" between two multi-layer pattern?
- Many notions of distance are possible (e.g. Jaccard)
- We use sentence alignment
 - Find the minimal set of operations (insert, delete, rename token) that transforms one sentence into the other
 - The size of this set is used as distance (=edit distance)
 - Can be solved efficiently using dynamic programming
 - Reality: Slightly more complicated due to the three layers of a pattern

		NN	VBZ	DT	PTN	CC	PTN	IVBD	DT	PTN
	0	0	0	0 🖌	0	0 🗙	0	0	0 💌	0
PTN	0	0	0	0	4 🗙	0	4	0	0	4
CC	0	0	0	0 ĸ	0	5.6 🗙	0	0	0	0
PTN	0	0	0	0	4	0	9.6 🖈	0	0	0
IVBD	0	0	0	0 ĸ	0	0 🗙	0	12.4 🗲	- 10.4 🖈	0
PTN	0	0	0	0	4	0	4	1.4^{\top}	1.4	14.4

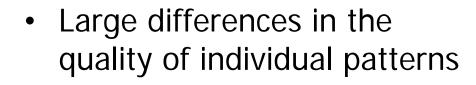
- A cluster consists of k patterns (of poss. different lengths)
- Many ways to find a consensus (e.g., the median pattern)
- We use multiple pattern alignment (MPA)
 - Arranges all patterns in a table such that the least number of empty cells and none-pure columns emerge
 - Dynamic programming
 - But: Exponential in k
 - Use greedy approximation
- Each MPA is turned into a pattern
 - The pattern is as long as the MPA
 - In each position, it defines weights to matches according to the distribution of values in the MPA

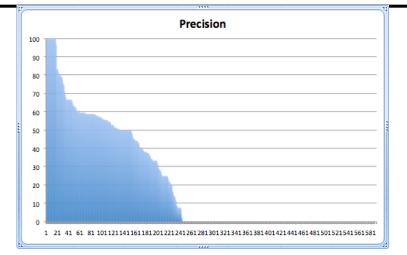


- Some results
 - AliBaba: Very good recall, acceptable precision
 - OpenDMAP: Very good precision, very low recall
 - RelEx: Best in F-measure
- Our advantage
 - Patterns are learned automatically
 - Simple tuning towards higher precision / higher recall
 - Adaptable to new problems

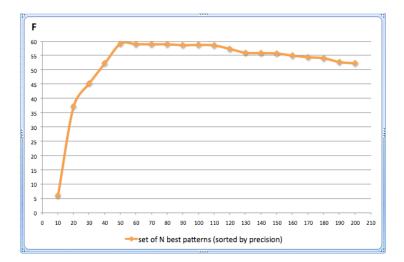


Good and Bad Patterns (BioNLP09)





Using only the best pattern

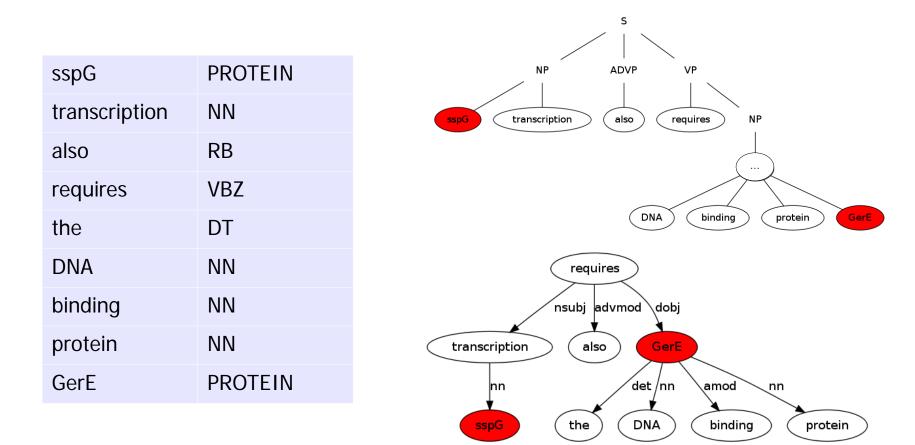


- Systems like AliBaba require a set of positive pairs as input
- These might not always be available in large quantities
 Or in satisfying quality
- Bootstrapping
 - Start with a small set of high quality pairs
 - Apply to corpus and rank all extracted relations by confidence
 - Add relations with highest confidence to the set of positive pairs
 - Systems: Dare [XUL08], SnowBall [AH00], TextRunner [BCS+07]
- The trick is the scoring of extracted relations
 - Use confidence of the extraction algorithm, number of times a particular pair is extracted, background knowledge, ...
 - Choosing the wrong relationships creates more and more garbage
 - Semantic drift increases after each iteration

- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Protein-Protein-Interactions

- Idea: Classify each pair of entities
 - Consider each entity pair (in a sentence) as an object
 - Compute a feature vector for this object
 - POS tags, distance, words, words in between, path in the dependency tree connecting the two, neighborhood, trigger words, ...
 - Learn a model from training data
 - Classify each object as having the relationship or not
- Any classification method can be used
- Finding the best features is essential
- As always in ML: Beware of overfitting

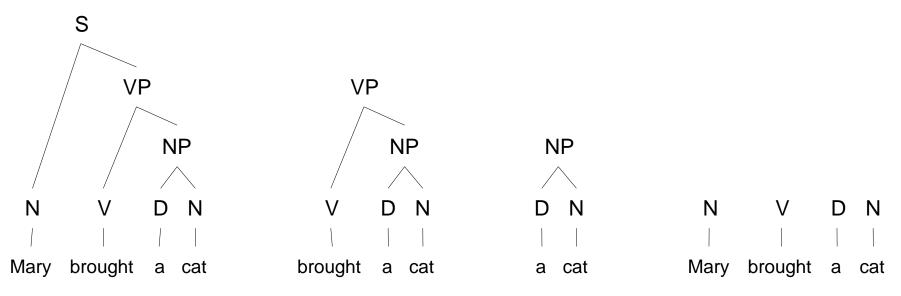
SsgG transcription also requires the DNA binding protein GerE



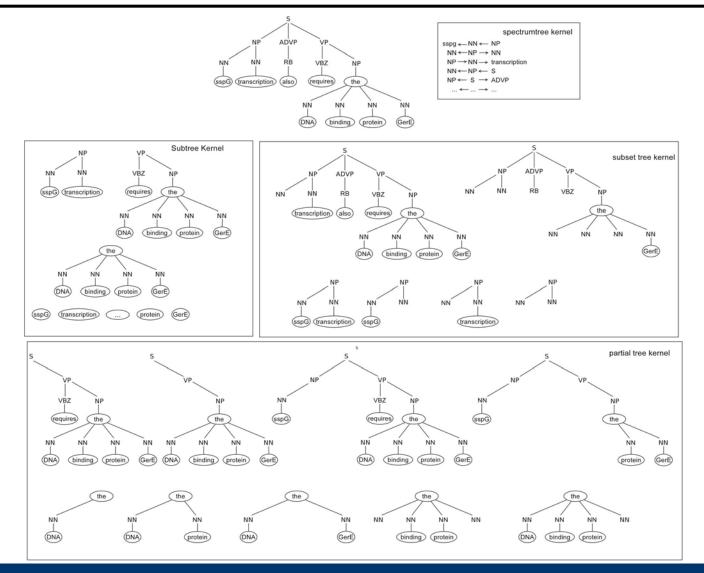
- How can we represent dependency (or syntax) trees in a feature vector such that similar trees lead to similar vectors?
- Elegant way: Kernel Trick
 - The learning problem in SVMs can be rewritten such that objects need not be explicitly described by features
 - Instead, one has to define a Kernel function computing the similarity of two objects
 - This function (and the object representations) is treated as a black box by the SVM
- We need a similarity measure for trees

Convolution Kernels

- General idea: Measure similarity of dependency trees in terms of common substructures
- One idea: All subtrees
 - Compute all subtrees of both objects, then use SET-similarity
- Alternatives: All subgraphs, all edges, all ...



Convolution Kernels - representations



Tikk et al. 2010

- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Work by L. Döhling, partly based on S. Pietschmann
 - Protein-Protein-Interactions
 - Work by P. Thomas, D. Tikk, and I. Solt

Text Mining for the GFZ Earthquake Task Force

- Measures in case of an earthquake depend on the expected extend of damage
 - Here: Expected number of people injured / killed
- Early information typically is reported in news, but highly inconsistent and quickly changing
- Project: Find and aggregate such information automatically
- Cast into a 5-ary RE problem
 - Who? (People, Students, ...)
 - How many? (many, some, 12, ten, ..)
 - What? (killed, trapped, injured, ...)
 - Negated? (not, ...)
 - Modifier for "how many"? (at least, more than, ...)

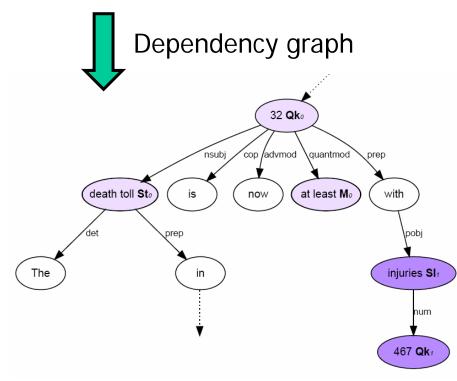
- "The death toll in an earthquake in south west China is now at least 32, with 467 injuries, media say."
 - [Who, How many, What, Negated, Injured]
 - [-, 32, death, -, "at least"]
 - [-, 467, injuries, -, -]

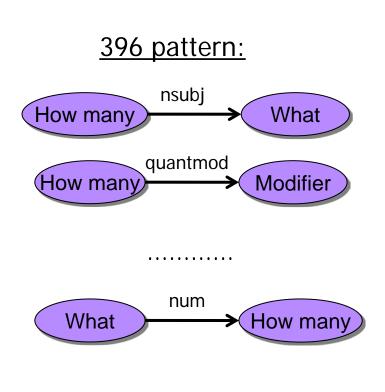
Extracting n-Ary Relationships

- Option 1: Use co-occurrence
 - Whenever a sentence contains one entity of each requested type, extract the relationship
 - If for one type there are >1 entity: Chose closest (to what?)
 - Neglects grammar/semantic of sentences
 - If entities have a strong semantic relationship and are not highly ambiguous, this works quite well
 - Locations are easily assigned a role in a relationship, numbers not
- Option 2: Use n-ary patterns
- Option 3: Use classification
- Option 4: Map into many binary RE-problems
 - Compute binary RE's for each pair of the n-ary relationship
 - Aggregate into n-ary relations

- Entity identification
 - Word lists for Who? What? Negated? Modified?
 - Regular expression for "How many"?
 - Problem: Highly ambiguous, finds any number, many matches
- Binary relationships
 - Learn paths in dependency trees between all correct pairs of entities within a gold standard corpus
- Aggregation
 - Assemble a graph from all binary relationships
 - Cliques in this graph are n-ary relationships

The death toll in an earthquake in south west China is now at least 32, with 467 injuries, media say."

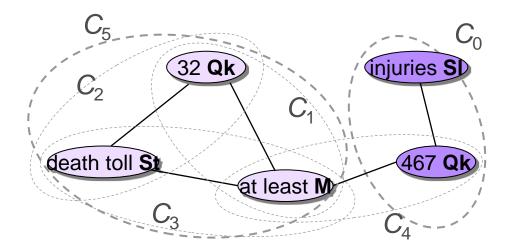




From Binary to 5-ary Relationships

- Build graph from extracted binary relations
- Find maximal cliques

The death toll in an earthquake in south west China is now at least 32, with 467 injuries, media say."



Many Further Tricks

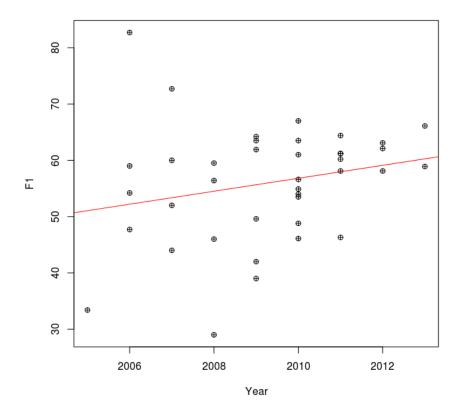
		$\operatorname{BestConfigP}$	BestConfigR	BestConfigF1		
IgnoreCase4NER		_	+	_		
UseStem4NER		—	+	_		
Dependenzschema		Collapsed	Basis, CCprocessed	Basis		
IgnoreCase4RE		*	_	*		
UseStem4RE		+	—	*		
UsePOS4RE		—	+	_		
IgnoreEntitySubtype		+	+	—		
IgnoreDepDirection		_	+	+		
IgnoreDepType		_	+	+		
		RE				
	Р	R	F1	$\mathrm{FP}/\mathrm{TP}/\mathrm{FN}$		
Standard Dest Careford			.568] .597[.527;.664]	/ /		
BestConfigP	.793[.715;.8	855] <u>.563[</u> .484;	.638] .658[.589;.722]	28/107/83		
BestConfigR BestConfigF1	.523[.459;.9	.629; .711	.781] .603[.541;.660]	123/135/55		
			.672] .673[.607;.732]	1 1		

- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Work by L. Döhling, partly based on S. Pietschmann
 - Protein-Protein-Interactions
 - Work by P. Thomas, D. Tikk, and I. Solt

- Collins, M. and Duffy, N. (2001). Convolution kernels for natural language.
- Vishwanathan, S., Smola, A. (2002): Fast kernels on strings and trees
- Moschitti, A. (2006): Efficient convolution kernels for dependency and constituent syntactic trees.
- Kuboyama, T. et al. (2007). A spectrum tree kernel.
- Erkan, G. et al. (2007). Semi-supervised classification for extracting protein interaction sentences using dependency parsing
- Giuliano, C et al. (2007). Kernel Methods for Semantic Relation Extraction
- Airola, A. et al. (2008). All-paths graph kernel for protein-protein interaction extraction
- Palaga, P (2009). Extracting Relations from Biomedical Texts Using Syntactic Information, Magisterarbeit, HU Berlin

• ...

• More than 60 publications for PPI extraction over last years



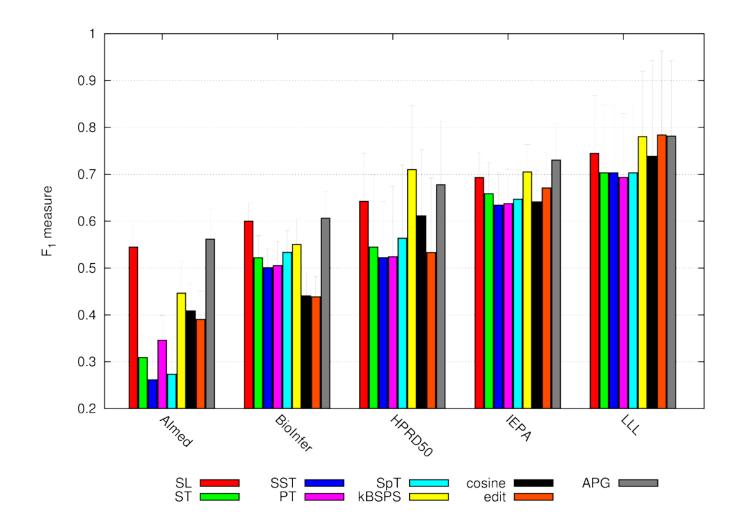
- Single method has different results on different corpora
 - 19% diff on average
 - Many causes, such as diff annotation guidelines or pos/neg ratio
- Gold-standard corpora are differently interpreted
 - 951 to 1071 positive and 4026 to 5631 negative instances
 - Self-interactions are sometimes ignored
- Directed / undirected relations
- Entity blinding is important to find new interactions
 - 3% points increase without entity blinding (Drug-Interactions)
- Cross-validation type?
 - Which folds, how many?

- How to build averages in cross-validation
 - Micro-averaging (accumulate TP,FN,FP of folds)
 - Macro-averaging (average P/R over folds)
- Obtaining hyper parameters: Parameter sweeps in high dimensional parameter space
 - Identifies performance "spikes"
 - Large effect especially on smaller corpora
 - Important (again): Use test-corpus only once

Based on Pyysalo et al. "Why Biomedical Relation Extraction Results are Incomparable and What to do about it"

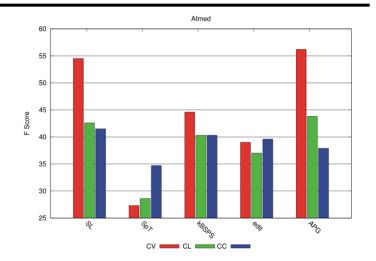
- Very difficult question
 - Different corpora, different evaluation schemes, different parsers, w/o protein identification, w/o parameter tuning, ...
- Reported results sometimes up to 90% F-measure
- Large-scale benchmark
 - 9 methods
 - 5 corpora
 - 3 evaluation schemes
 - Same parser, same treatment of NER, same level of parameter tuning, same folds, same SVM, ...
- Bad news: "Real" performance remains unknown

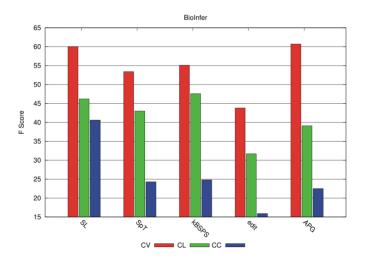
Within-Corpus Cross-Validation (usual method)



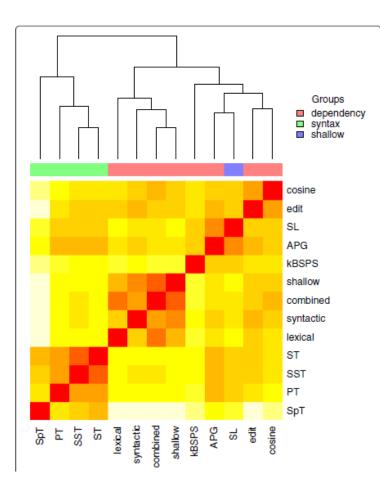
Cross-Learning: ~10% drop in F1

- Best approx. of the real-case
 - Learn on everything available except test data
- Observations
 - APG generally best in CV setting, but not in CL / CC (and very slow!)
 - SL on par with best methods, though using only POS tags
 - kBSP quite good on BioInfer, but not on AIMed
- In CL/CC, simple pattern-based methods perform equally well as convolution kernels





Trick: Ensembles based on Heterogeneous Methods



Combination	Corpus	Р	R	F
Single best				
APG	AlMed	59.9	53.6	56.2
APG	BioInfer	60.2	61.3	60.7
kBSPS	HPRD50	60.0	88.4	70.2
APG	IEPA	66.6	82.6	73.1
kBSPS	LLL	69.9	95.9	79.3
APG+SL+kBSPS	AlMed	58.0	61.1	58.9
	BioInfer	60.3	66.4	63.0
	HPRD50	67.6	76.9	71.4
	IEPA	68.6	85.3	75.4
	LLL	71.7	94.5	80.0

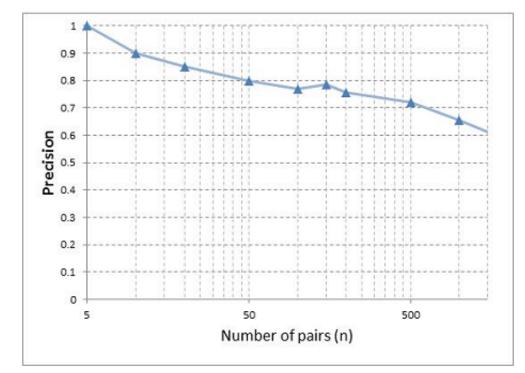
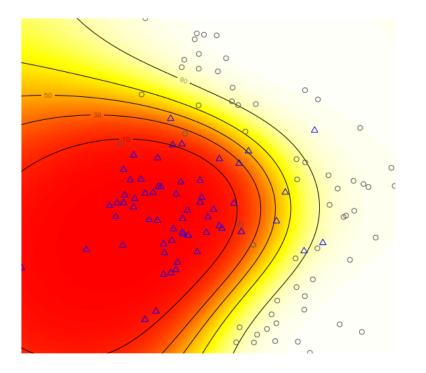
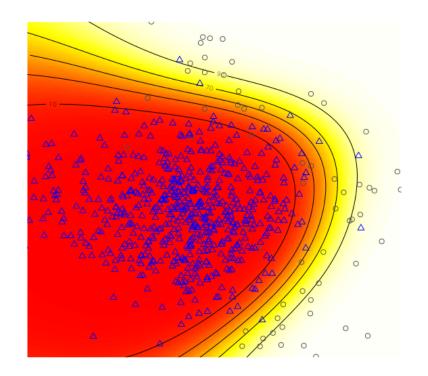


Fig. 4. Precision of our workflow for the *n* most confidently classified and manually curated sentences. Pairs already contained in a regulatory database are ignored (see Table 3).

Classifier tend to predict majority class

 Balanced/Unbalanced data set (same distribution) and learn a classifier





Conclusions

- Unbiased evaluation of ML-based method reveals 5-20% performance drop compared to CV setting
- Highly-tuned ML-based methods not (much) better than "simple" pattern matching
- Large differences between corpora: Extrapolation of performance to new text is very questionable
- Dependency-tree based methods not (much) better than best ones using POS information
- Still: Three methods are best (APG, JSRE/SL, KBSP)
 And JSRE is by-far the fastest
- A large corpus for less biased evaluations is still missing
- Field should focus on more specific questions

Literature

- Thomas, P. (2015). "Robust relationship extraction in the biomedical domain". Dissertation, Humboldt-Universität zu Berlin.
- Thomas, P., Durek, P., Solt, I., Klinger, B., Witzel, F., Schulthess, P., Mayer, Y., Tikk, D., Blüthgen, N. and Leser, U. (2015). "Computer-assisted curation of a human regulatory core network from the biological literature." *Bioinformatics 31(8): 1258-1266.*
- Tikk, D., Solt, I., Thomas, P. and Leser, U. (2013). "A Detailed Error Analysis of 13 Kernel Methods for Protein--Protein Interaction Extraction." *BMC Bioinformatics 14.*
- Tikk, D., Thomas, P., Palaga, P., Hakenberg, J. and Leser, U. (2010). "A comprehensive benchmark of kernel methods to extract protein-protein interactions from literature." *PLOS Computational Biology 6(7).*
- Hakenberg, J., Plake, C., Royer, L., Strobelt, H., Leser, U. and Schroeder, M. (2008).
 "Gene mention normalization and interaction extraction with context models and sentence motifs." *Genome Biol 9 Suppl 2: S14.*
- Pyysalo, S., Airola, A., Heimonen, J., Bjorne, J., Ginter, F. and Salakoski, T. (2008).
 "Comparative analysis of five protein-protein interaction corpora." *BMC Bioinformatics 9 Suppl 3: S6.*

- Give an upper bound on the accuracy of binary relationship extraction based on the accuracy of entity recognition
- How das "co-occurrence-based RE work? Describe tricks to improve the expected performance. For each idea, describe the expected impact on precision and on recall.
- One problem of co-occurrence-based RE are expressions of the form "X is associated to A, B, C, and D". Imagine you had a method to detect such expressions. How could it be used to improve RE?
- Distant supervision for RE users automatically generated training data of unsure quality. Describe three ideas on how such data could be generated.