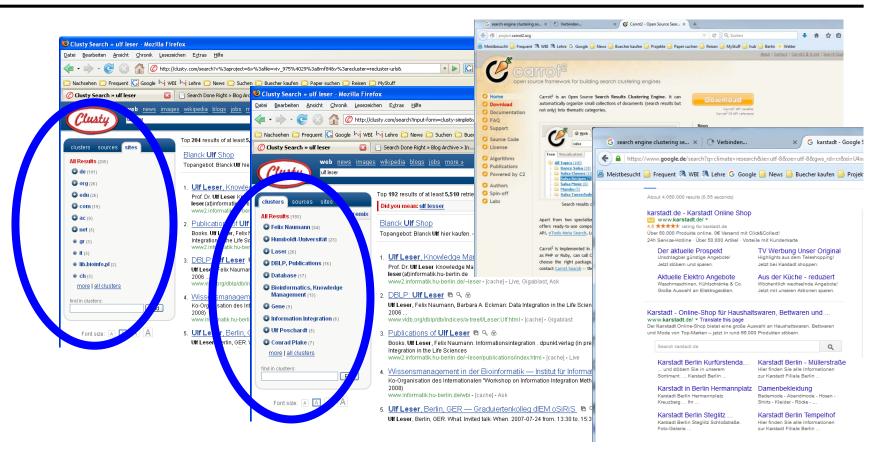


Maschinelle Sprachverarbeitung Text Clustering

- (Text) clustering
- Cluster quality
- Clustering algorithms
- Application

Processing Search Results

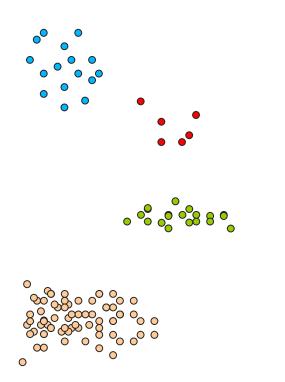


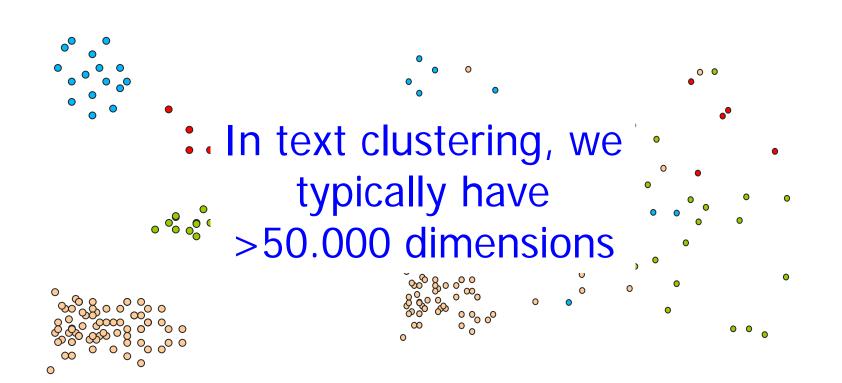
 "... The research breakthrough was labeling the clusters, i.e., grouping search results into folder topics ..."

– [Clusty.com blog]

- Clustering groups objects (docs) into (usually disjoint) sets
- Intuitively, each set should contain objects that are similar to each other and dissimilar to objects in any other set
 - We need a similarity or distance function
 - That is the only text-specific bit the rest is "just" clustering
- Often called "unsupervised learning"
 - We don't know how many sets/classes there are (if there are any)
 - We don't know how those sets should look like

Nice





Text Clustering Applications

- Explorative data analysis
 - Learn about the structure within your document collection
- Corpus preprocessing
 - Clustering provides a "semantic index" to a corpus
 - Group docs into clusters to ease navigation
 - Retrieval speed: Index only one representative per cluster
- Processing of search results
 - Cluster all hits into groups of similar hits (in particular: duplicates)
- Improving recall

. . .

- Return doc and all members of its cluster
- Has similarity to automatic relevance feedback using top-k docs
- Word sense disambiguation
 - The different senses of a word should appear as clusters

- Clustering requires a distance function
 - Should always be a metric
 - $d(x,x)=0, d(x,y)=d(y,x), d(x,y) \le d(x,z)+d(z,y)$
- In contrast to search, we compare two docs
 - And not a document and a query
- · Nevertheless, often the same methods are used
 - Vector space , TF*IDF, cosine distance

$$sim(d_1, d_2) = \cos(d_1, d_2) = \frac{d_1 O d_2}{|d_1| * |d_2|} = \frac{\sum (d_1[i] * d_2[i])}{\sqrt{\sum d_1[i]^2} * \sqrt{\sum d_2[i]^2}}$$

Clustering Speed

- In Information Retrieval
 - We compare a vector of 100K dimensions with ~3 non-null values (query) with one with ~500 non-null values (nnv)
 - Use inverted files to pick docs that have an overlap with the query
- In clustering
 - We compare a vector with ~500 nnv with one with ~500 nnv
 - We need to compare many (all) docs with many (all) docs
 - Depends on the clustering algorithm
 - Inverted files offer much less speed-up
- Feature selection or dimensionality reduction is essential
 - E.g., use the 1.000 "most descriptive" terms
 - E.g., perform Latent Semantic Indexing (LSI) before clustering

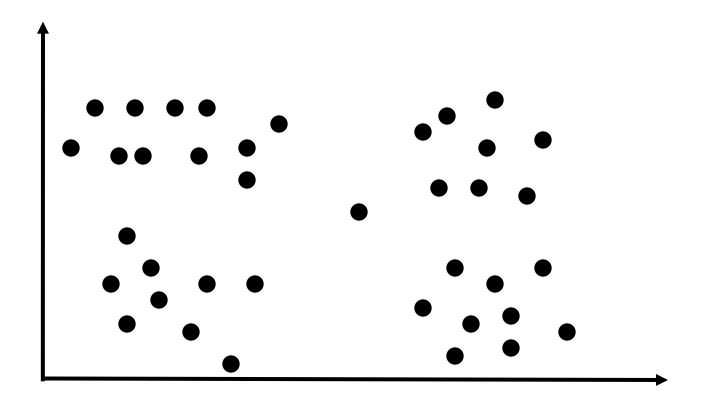
Cluster Labels (Finding Key Phrases)

- For user interaction, clusters need to have a name
- Names should capture the topic (semantic) of the cluster
- Some possibilities
 - Chose term with highest TF*IDF value in cluster
 - E.g. TF computed as average or considering all docs in cluster as one
 - Chose term with highest TF*IDF value in cluster centre
 - Apply statistical test to find terms whose TF*IDF distribution deviates the most between clusters
 - E.g: t-Test (assuming normal distribution), Kullback–Leibler divergence
 - Requires comparison of each cluster with each cluster for each term
 - Only possible when strict pre-filtering was applied
 - Report top-K token or top-K terms (by whatever method)

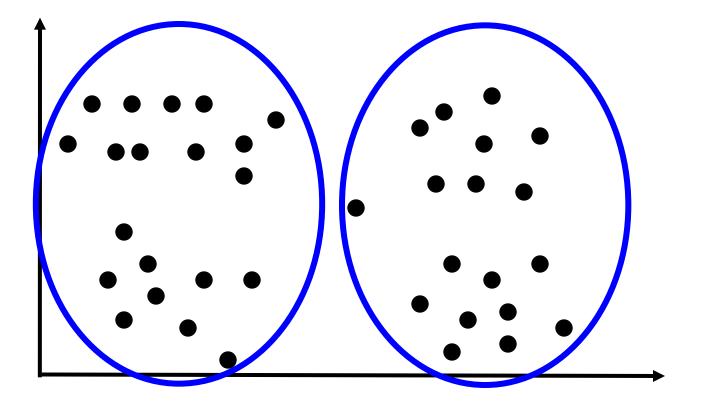
. . .

- (Text) clustering
- Cluster quality
- Clustering algorithms
- Application

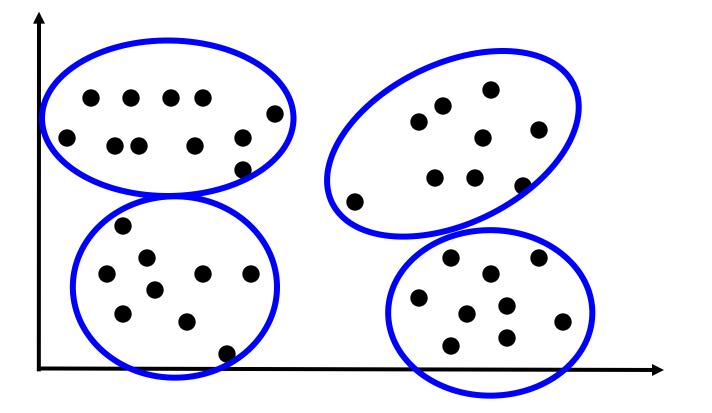
How many Clusters?



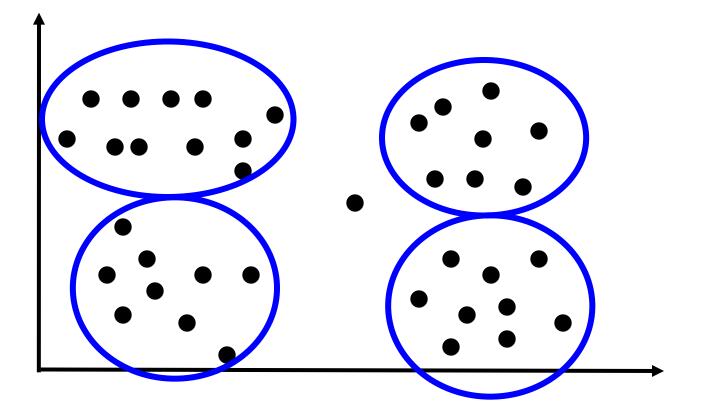
Maybe 2?



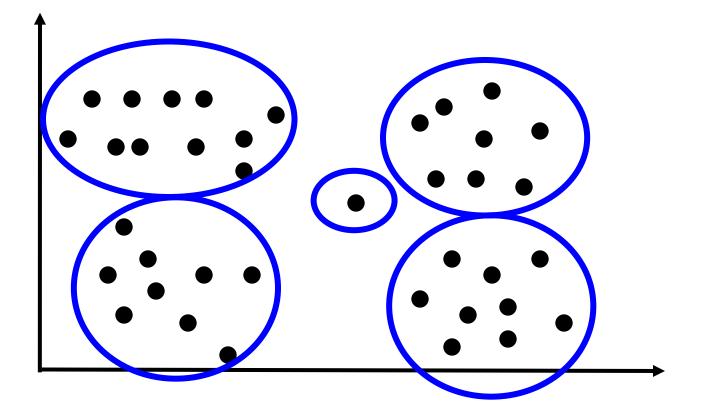
Maybe 4?



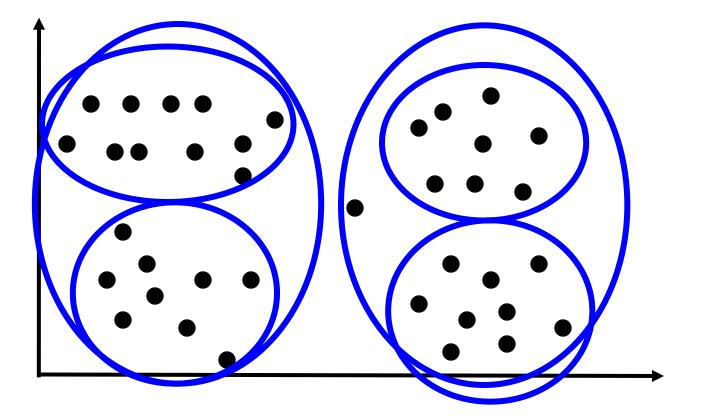
Maybe 4 and One Outlier?



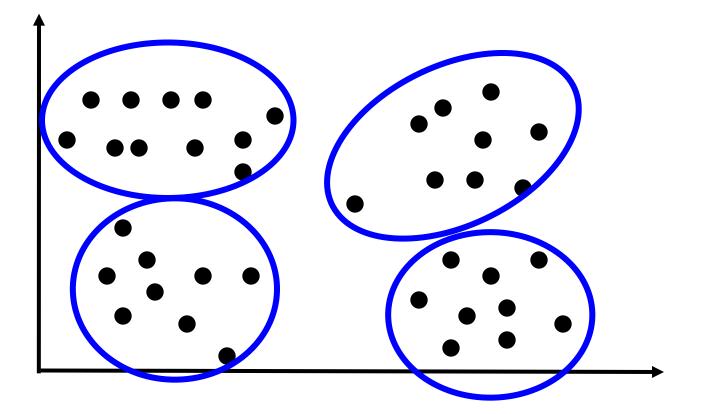
Maybe 5?



Maybe 4 and 2 – at Different Levels?



Which Distance Measure did you Use?



- There is no "true" number of clusters
- In real data sets, one cannot determine the number of clusters by "looking at the data"
 - Too many dimensions
 - Clustering should help you in looking at the data
- We need to define the quality of a clustering
- Ideally, this quality score peaks at the intuitively best number of clusters

- We frequently will have to compute the distance between a point o and a cluster c, d(o,c)
 - And sometimes distances between clusters see hier. clustering
- Various methods
 - Distance to numerical center of a cluster
 - Distance to the most central point of a cluster
 - Average distance to all points in cluster

$$d(o,c) = d(o,c_{mean})$$

$$d(o,c) = d(o,c_{median})$$

$$d(o,c) = \sum_{p \in c} d(o,p) * \frac{1}{|c|}$$

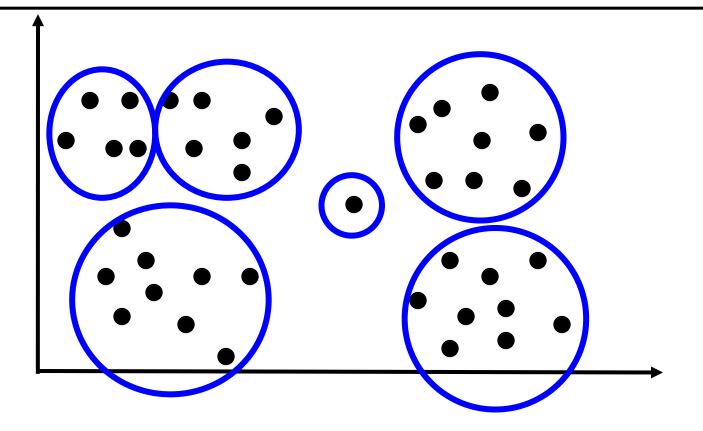
- Compute average distance between its objects
- Definition

Let f be a clustering of a set of objects O into a set C of classes with |C|=k. The k-score q_k of f is

$$q_k(f) = \sum_{i=1..kf} \sum_{(o)=c_i} d(o, c_i)$$

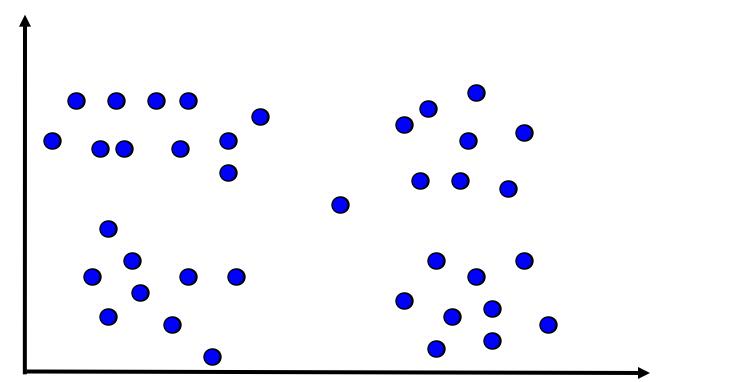
• Any measure for point-to-cluster distance may be used

6-Score



- Certainly better than the 2/4/5-score we have seen
- Thus: Chose the k with the best k-score?

Disadvantage



- Always has a trivially optimal solution: k=|O|
- Points in a cluster should be close to each other but also far away from points in other clusters
- Still useful to compare different clusterings for the same k

Silhouette

- Alternative: Silhouette
 - Punish points that are not "uniquely" assigned to one cluster
 - Captures how clearly points are part of their cluster
- Definition

Let f: $O \rightarrow C$ with |C| arbitrary. We define

- Inner score: in(o) = d(o, f(o))
- Outer score: $out(o) = min(d(o,c_i))$ with $c_i \neq f(o)$

- The silhouette of o, s(o), is defined as $s(o) = \frac{out(o) - in(o)}{max(in(o), out(o))}$

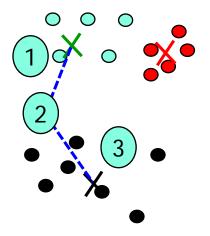
- The silhouette of f, s(f), is defined as

$$s(f) = \sum s(o)$$

Intuition

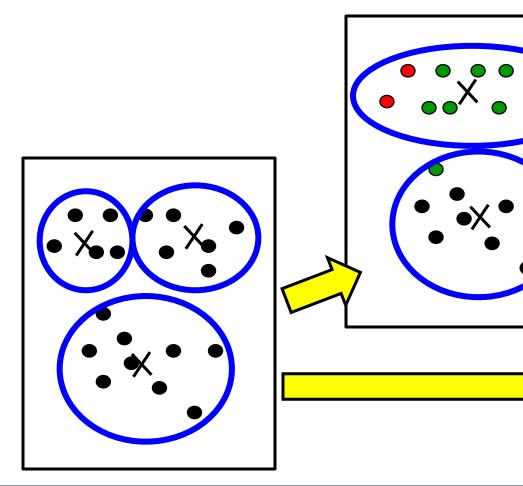
$$s(o) = \frac{out(o) - in(o)}{\max(in(o), out(o))}$$

- It holds: $-1 \leq s(0) \leq 1$
 - $s(o) \approx 0$: Point right between two cluster (2)
 - s(o) ~ 1: Point very close to only one (1)
 (its own) cluster

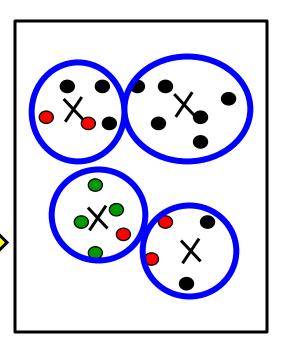


- s(o) ~ -1: Point far away from its own cluster (3)
- Computing the silhouette is in O(kmn)
 - If clusters are represented by centroids
 - m: Dimensionality, n: Number of objects, k: Number of clusters
 - Compare each object to each centroid

• Silhouette is not always better / worse for more clusters

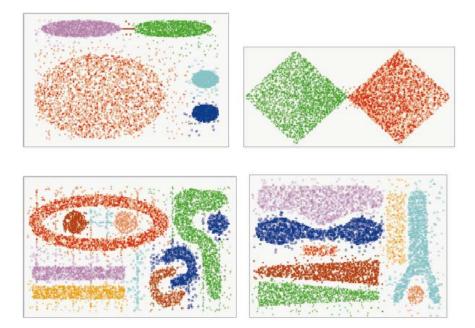


- s(o) probably higher
- s(o) probably lower



Not the End

- In general, clusters need not be hyper-spheres
- Clusters need not even have convex shapes
- Cluster centre need not be part of a cluster
- Requires completely different quality metrics
- Definition must fit to the data/application
- Not used in text clustering
 - To my knowledge



Source: [FPPS96]

- Text clustering
- Cluster quality
- Clustering algorithms
 - Hierarchical clustering
 - K-means
 - Soft clustering: EM algorithm
- Application

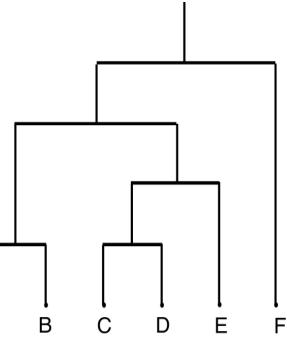
Classes of Cluster Algorithms

- Hierarchical clustering
 - Iteratively creates a hierarchy of clusters
 - Bottom-Up: Start from |O| cluster and merge until only 1 remains
 - Top-Down: Start from one cluster and split
 - (... or until some stop criterion is met)
- Partitioning
 - Heuristically partition all objects in k clusters
 - Guess a first partitioning and improve iteratively
 - k is a parameter of the method, not a result
- Other
 - Graph-Theoretic: Min-Cut (partitioning) etc.
 - Density-base clustering

— ...

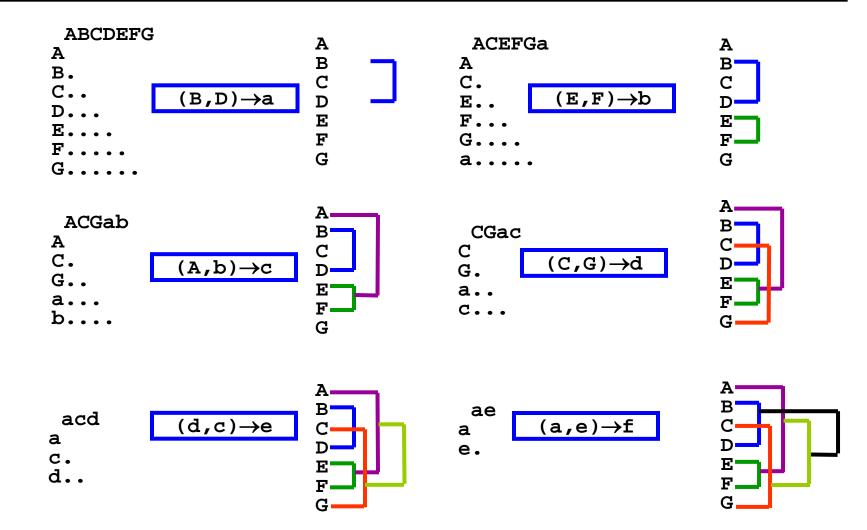
Hierarchical Clustering

- Also called UPGMA: Unweighted Pair-group method with arithmetic mean
- Computes a binary tree (dendrogram)
- Algorithm
 - Compute distance matrix M (autsch expensive)
 - Choose pair d₁, d₂ with smallest distance
 - Define x as centre point of d₁ and d₂
 - Coordinates need not be computed
 - Remove d_1 , d_2 from M
 - Insert x into M
 - Distance between x and any d in M: Average distance between d₁ and d and d₂ and d
 - Loop until M has size 2x2

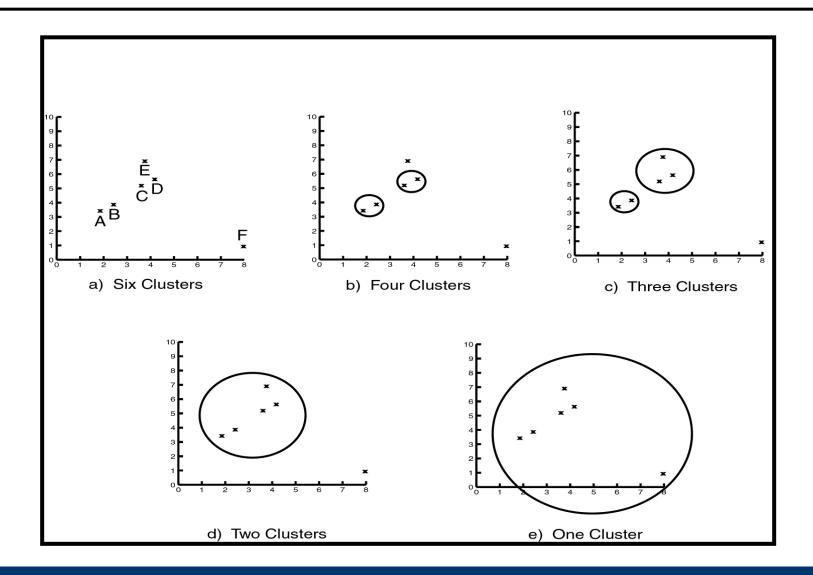


Α

Example



Visual

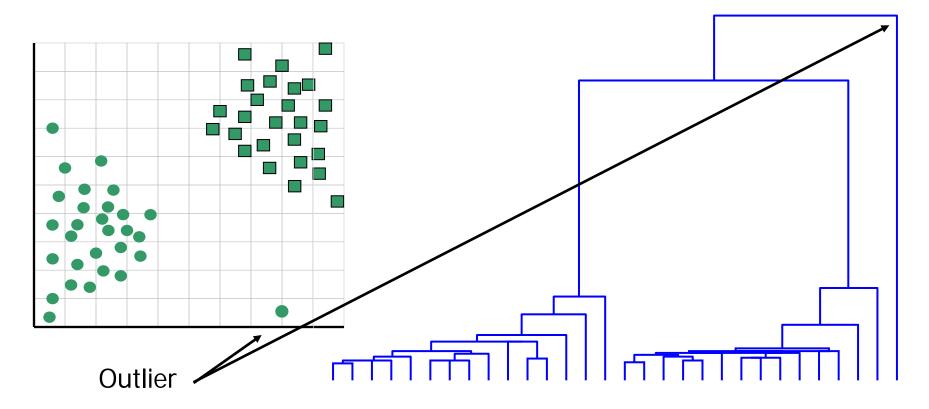


Intuition

- Hierarchical clustering organizes a doc collection
- Ideally, hierarchical clustering directly creates a hierarchical and intuitive directory of the corpus
- Not easy
 - Many, many ways to group objects – hierarchical clustering will choose just one
 - No guarantee that clusters make sense semantically
 - Problem of finding labels
 (= directory names)

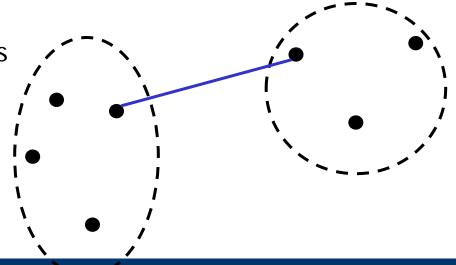
Branch Length

- Use branch length to symbolize distance
- Outlier detection



Variations

- We used the distance between the centers of two clusters to decide about distance between clusters
- Other alternatives (incurring different complexities)
 - Single Link: Distance of the two closest docs in both clusters
 - Complete Link:
 Distance of the two furthest docs
 - Average Link: Average distance between pairs of docs from both clusters
 - Centroid:
 Distance between centre points

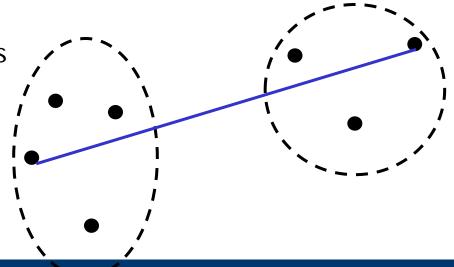


Variations

- We used the distance between the centers of two clusters to decide about distance between clusters
- Other alternatives (incurring different complexities)
 - Single Link: Distance of the two closest docs in both clusters
 - Complete Link:

Distance of the two furthest docs

- Average Link: Average distance between pairs of docs from both clusters
- Centroid:
 Distance between centre points

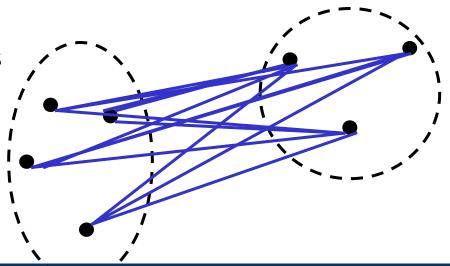


Variations

- We used the distance between the centers of two clusters to decide about distance between clusters
- Other alternatives (incurring different complexities)
 - Single Link: Distance of the two closest docs in both clusters
 - Complete Link:
 Distance of the two furthest docs
 - Average Link:

Average distance between pairs of docs from both clusters

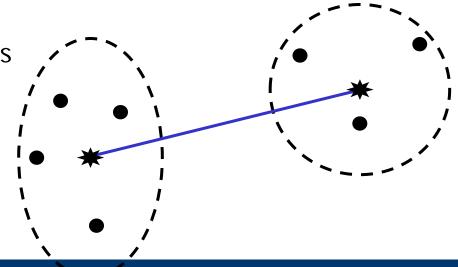
Centroid:
 Distance between centre points



Variations

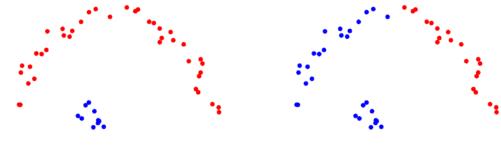
- We used the distance between the centers of two clusters to decide about distance between clusters
- Other alternatives (incurring different complexities)
 - Single Link: Distance of the two closest docs in both clusters
 - Complete Link:
 Distance of the two furthest docs
 - Average Link:
 Average distance between pairs of docs from both clusters
 - Centroid:

Distance between centre points



Comparison

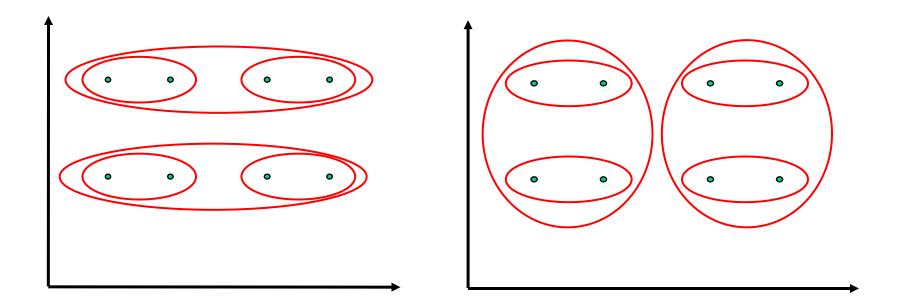
- Single-link
 - Optimizes a local criterion (only look at the closest pair)
 - Similar to computing a minimal spanning tree
 - With cuts at most expensive branches as going down the hierarchy
 - Creates elongated clusters (chaining effect)
- Complete-link
 - Optimizes a global criterion (look at the worst pair)
 - Creates more compact, "more" convex, spherical clusters



Single Linkage

Complete Linkage

Single-link versus Complete-link



Advantages

- Simple and intuitive
- Number of clusters is not an input of the method
- Usually good quality clusters (which clusters?)
- Disadvantage
 - Does not really generate clusters
 - Very expensive; let n=|O|, m=|K|
 - Computing M requires O(n²) space and O(mn²) time
 - Naïve implementation requires O(m*n²*log(n))
 - Can be achieved in O(m*n²) (SLINK, CLINK)
 - Not applicable as such to large doc sets

- Text clustering
- Cluster quality
- Clustering algorithms
 - Hierarchical clustering
 - K-means
 - Soft clustering: EM algorithm
- Application

- Clustering in graph-theoretic concepts
- Definition

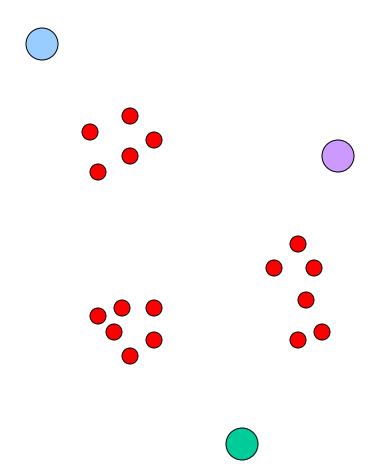
Let G = (V, E) be a complete, weighted, undirected graph with V = O and $w(o_1, o_2) = sim(o_1, o_2)$.

- A k-cut of G is a set S of edges such G'=(V,E\S) has k connected components.
- A min-k-cut of G is a k-cut of G such that w(S) is minimal
- Notes
 - Every k-cut is a clustering of G into k clusters
 - We use distance, not similarity, and maximize, not minimize
 - Finding a min-k-cut is in O(|V|^k^2)
 - Not feasible in practice

- Probably the most popular clustering algorithm
- Heuristic for solving the min-k-cut problem
- Requires the number k of clusters to be predefined
- Algorithm
 - Fix k
 - Guess k cluster centers
 - Can use k randomly chosen docs or k random points in feature-space
 - Loop forever
 - Assign all docs to their closest cluster center
 - If no doc has changed its assignment, stop
 - K-Means always converges, but possibly very slowly
 - Alternative: Stop once sufficiently few docs have changed their assignment
 - Otherwise, compute new cluster centers

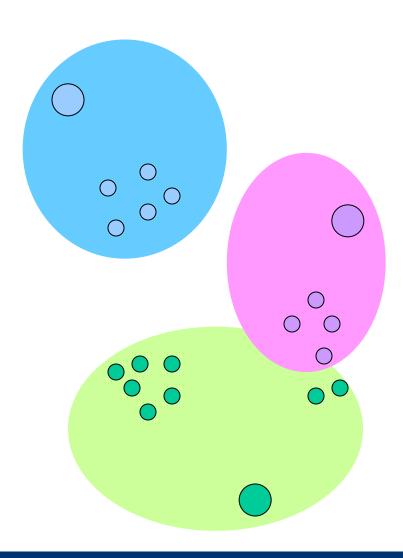
Example 1

- k=3
- Choose random start points

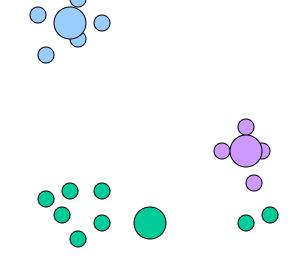


Quelle: Stanford, CS 262 Computational Genomics

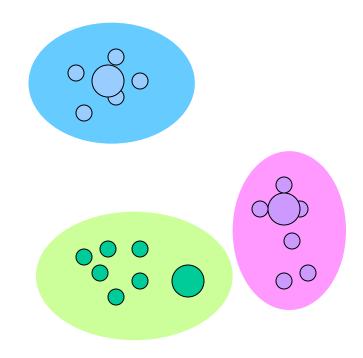
• Assign docs to closest cluster centre



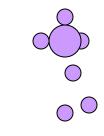
Compute new cluster centre



Example 4

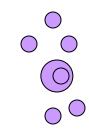


Example 5



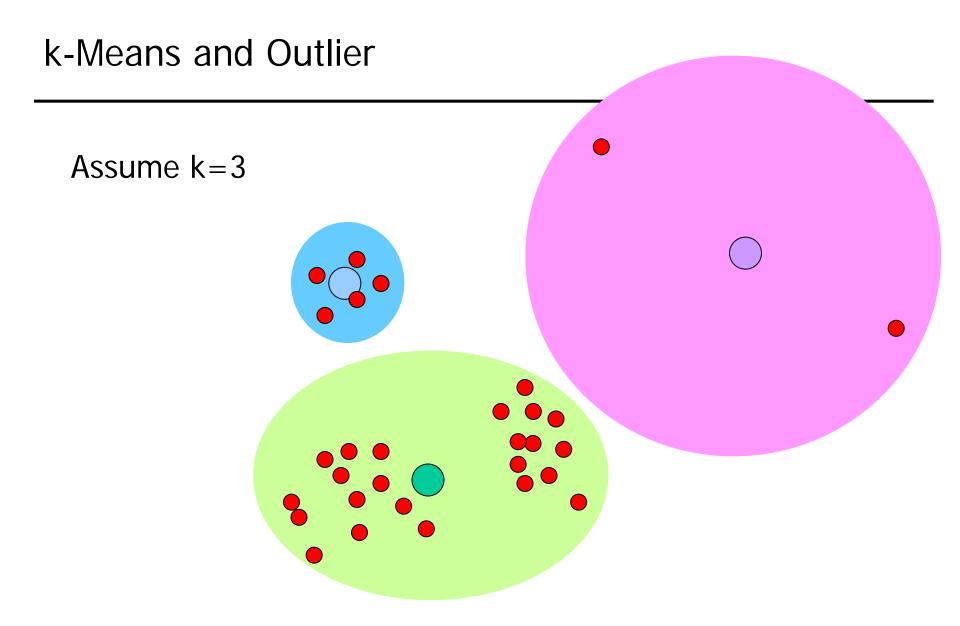
Ulf Leser: Maschinelle Sprachverarbeitung

• Converged



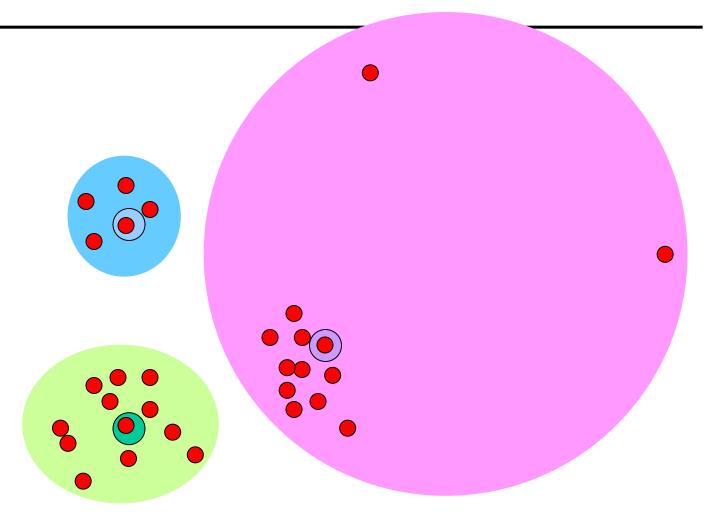
Properties

- Usually, k-Means converges quite fast
- Reasonable complexity: O(l*k*n*m)
 - Let I be the number of iterations
 - Assignment: n*k distance computations with O(m) each
 - New centers: Summing up n vectors of size m in k partitions
 - L can be (exponentially) large, but in is small in practice (<100)
- Choosing the "right" start points is important
 - k-Means is a greedy heuristic and only finds local optima
 - Option 1: Start several times with different start points
 - Option 2: Compute hierarchical clustering on small random sample and choose cluster centers as start points ("Buckshot" algorithm)
- How to choose k?
 - Try for different k and compare quality score(s)



- Chose the doc in the middle of a cluster as representative
 - Kaufman, Rousseeuw (1990): "Partitioning around medoids (pam)."
 in *Finding groups in data: an introduction to cluster analysis*
- Advantage
 - Less sensitive to outliers
 - Also works for non-metric spaces as no "new" center point needs to be computed
- Disadvantage: Increased complexity
 - Finding the median doc requires computing all pair-wise distances in each cluster in each round
 - Overall complexity is O(n³) in each step
 - We can save re-computations at the expense of more space

k-Medoid and Outlier



- Text clustering
- Cluster quality
- Clustering algorithms
 - Hierarchical clustering
 - K-means
 - Soft clustering: EM algorithm
- Application

- We assumed docs are assigned to exactly one cluster
- Probabilistic interpretation: All docs pertain to all clusters with a certain probability
- Generative model
 - Assume we have k "doc-producing" devices
 - Such as authors, topics, ...
 - Each device produces docs that are normally distributed in feature space with device-specific mean and variance
 - Assume that k devices produced |D| documents
 - Clustering: Re-discovery of mean and variance of each device
- Solution: Expectation Maximization Algorithm (EM)

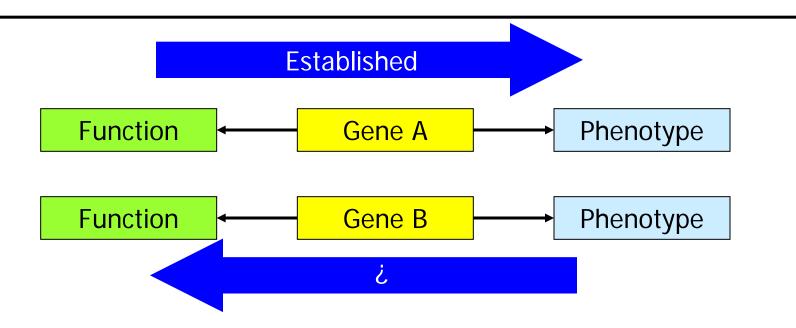
- EM optimizes set of parameters P of a multivariate normal distribution (mean and variance, k clusters) given the data
- Iterative process with two phases
 - Guess an initial P
 - Expectation: Assign all docs its most likely generator based on P
 - Maximization: Compute new optimal P based on assignment
 - Using MLE or other estimation techniques
 - Iterate through both steps until convergence
- Finds a local optimum, convergence guaranteed
- K-Means: Special case of EM
 - Clusters with different means but equal variance
 - K-Means assumes all clusters have the same error model

- Text clustering
- Cluster quality
- Clustering algorithms
- Application
 - Clustering Phenotypes

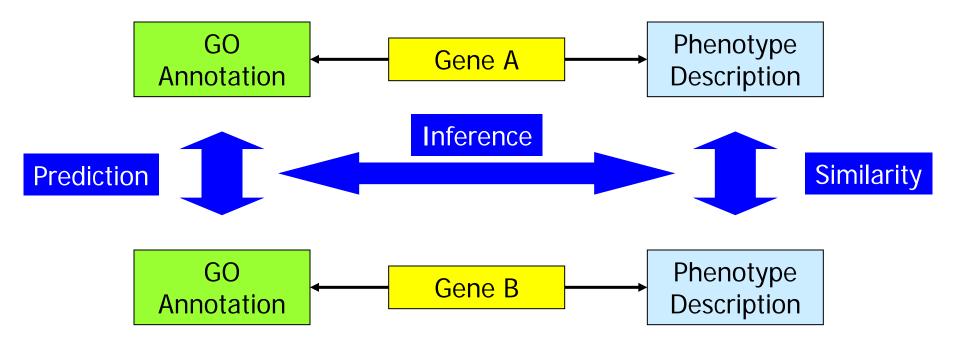
Mining Phenotypes for Function Prediction

Source: http://www.guy-sports.com/humor/videos/powerpoint_presentation_dogs.htm

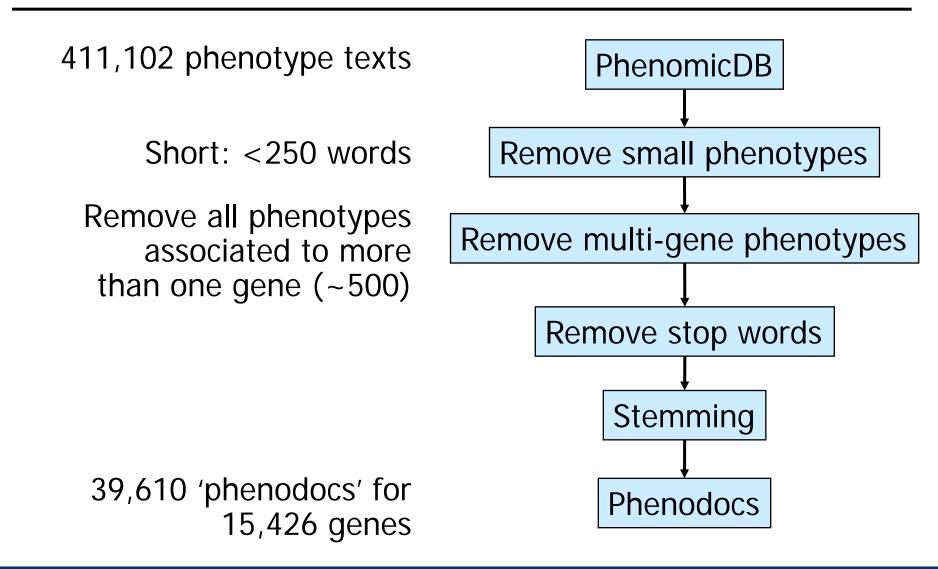
Mining Phenotypes: General Idea



- Known: Genes with sim. functions produce sim. phenotypes
- Question: If genes generate very similar phenotypes do they have the same functions?
 - Groth et al. (2008). "Mining phenotypes for gene function prediction." BMC Bioinformatics 9: 136.

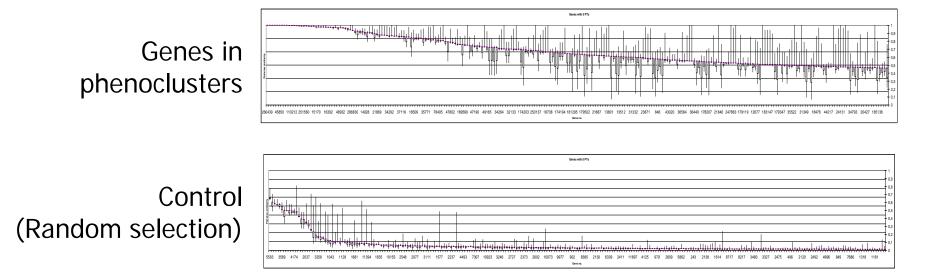


Phenodocs



- Hierarchical clustering would require
 ~ 40.000*40.000 = 1.600.000.000 comparisons
- K-Means: Simple, iterative algorithm
- Number of clusters must be predefined
 - We experimented with 250 ... 3000 clusters

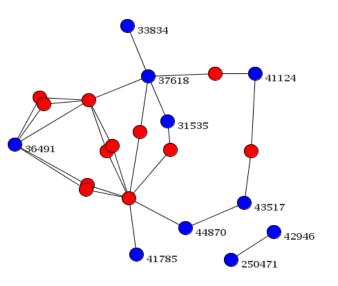
Properties: Phenodoc Similarity of Genes



- Pair-wise similarity scores of phenodocs of genes in the same cluster, sorted by score
- Result: Phenodocs of genes in phenoclusters are highly similar to each other

PPI: Inter-Connectedness

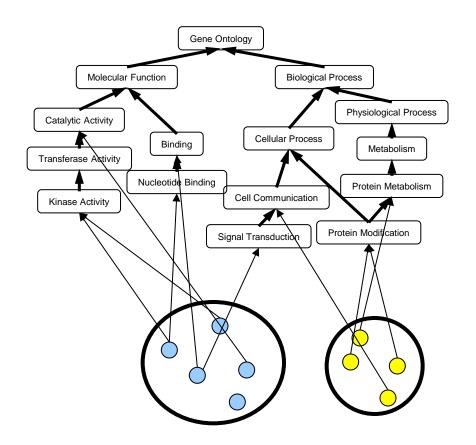
- Interacting proteins often share function
- PPI from BIOGRID database
 Not at all a complete dataset
- In >200 clusters, >30% of genes interact with each other
- Control (random groups): 3 clusters
- Result: Genes in phenoclusters interact with each other much more often than expected by chance



Proteins and interactions from BioGrid. Red proteins have no phenotypes in PhenomicDB

Coherence of Functional Annotation

- Comparison of GO annotation of genes in phenoclusters
 - Data from Entrez Gene
 - Similarity of two GO terms: Normalized number of shared ancestors
 - Similarity of two genes: Average of the top-k GO pairs
- >200 clusters with score >0.4
 - Control: 2 clusters
- Results: Genes in phenoclusters have a much higher coherence in functional annotation than expected by chance



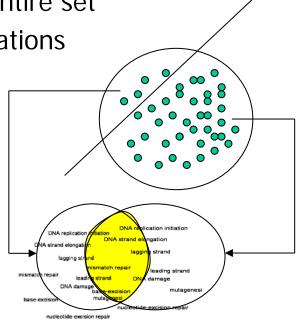
Function Prediction

- Can increased functional coherence of clusters be exploited for function prediction?
- Approach
 - Compute phenoclusters
 - For each cluster, compute set of associated genes (gene cluster)
 - In each gene cluster, predict frequent GO terms to all genes
 - Frequent: annotated to >50% of genes in the cluster
- Some filtering of clusters required / useful
 - Filter 1: Only clusters with >2 members and at least one common GO term
 - Filter 2: Only clusters with GO coherence>0.4
 - Filter 3: Only clusters with PPI-connectedness >33%

- ...

Evaluation

- How can we know how good we are?
- Cross-validation
 - Separate genes in training (90%) and test (10%)
 - Remove annotation from genes in test set
 - Build clusters and predict functions on entire set
 - Compare predicted with removed annotations
 - Precision and recall
 - Repeat and average results
 - Macro-average
- Note: This punishes new and potentially valid annotations



Results for Different Filters

	(Filter 1)	(Filter 1 & Filter 2)	(Filter 1 & Filter 3)
# of clusters	196	74	53
# of terms	345	159	102
# of genes	3213	711	409
Precision	67.91%	62.52%	60.52%
Recall	22.98%	26.16%	19.78%

- What if we consider predicted terms to be correct that are a little more general than the removed terms (filter 1)?
 - One step more general: 75.6% precision, 28.7% recall
 - Two steps: 76.3% precision, 30.7% recall
- The less stringent "GO equality", the better the results
 - This is a common "trick" in studies using GO

Results for Different Cluster Sizes

K	250	500	750	1,000	2,750	3,000
Cluster w/ GO-Sim ≥ 1	14 (5.6%)	26 (5.2%)	44 (5.9%)	71 (7.1%)	273 (9.9%)	309 (10.3%)
# Genes	561	781	943	1155	2094	2221
Cluster w/ PPi ≥ 75%	12 (4.8%)	34 (6.8%)	65 (8.7%)	88 (8.8%)	314 (11.4%)	353 (11.8%)
# Genes	785	988	1166	1263	1810	1914
Cluster w/ PPi ≥ 33%	49 (19.6%)	119 (23.8%)	193 (25.7%)	252 (25.2%)	662 (24.1%)	717 (23.9%)
# Genes	3362	4044	4296	4417	4811	4833
Cluster for GO-Pred.	73 (29.2%)	153 (30.6%)	230 (30.7%)	295 (29.5%)	748 (27.2%)	816 (27.2%)
# Genes	3465	4139	4344	4438	5016	5115
# Terms	123	247	383	489	1436	1557
Precision	81.53%	77.16%	74.26%	71.73%	63.92%	62.89%
Recall	16.90%	20.22%	24.45%	26.36%	34.64%	34.61%
Avg. Genes/Cluster	52	26	17	13	4	4

- With increasing k
 - Clusters are smaller
 - Number of predicted terms increases
 - Clusters are more homogeneous
 - Number of genes which receive annotations increases
 - Precision decreases slowly, recall increases
 - Effect of the rapid increase in number of predictions

Selbsttest

- Gegeben der folgende Datensatz. Wenden Sie den hierarchischen Cluster-Algorithmus an und zeichnen Sie die entstandenen Cluster. Verwenden Sie Euklidischen Abstand
- Welche Komplexität hat hierarchisches Clustering? Begründen Sie.
- Beschreiben Sie drei verschiedene Methoden, mit denen man den k-Means Algorithmus initialisieren kann. Was sind Vor-/Nachteile?
- Was ist der Unterschied zwischen k-Means und k-Mediod?
 Wie ändert sich die Komplexität von k-Means zu k-Medoid – und warum?