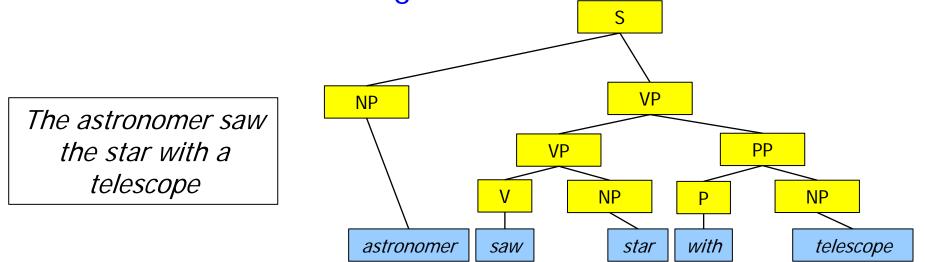
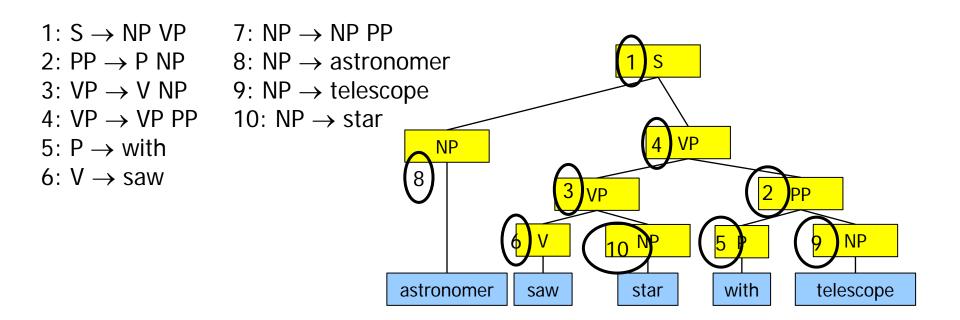
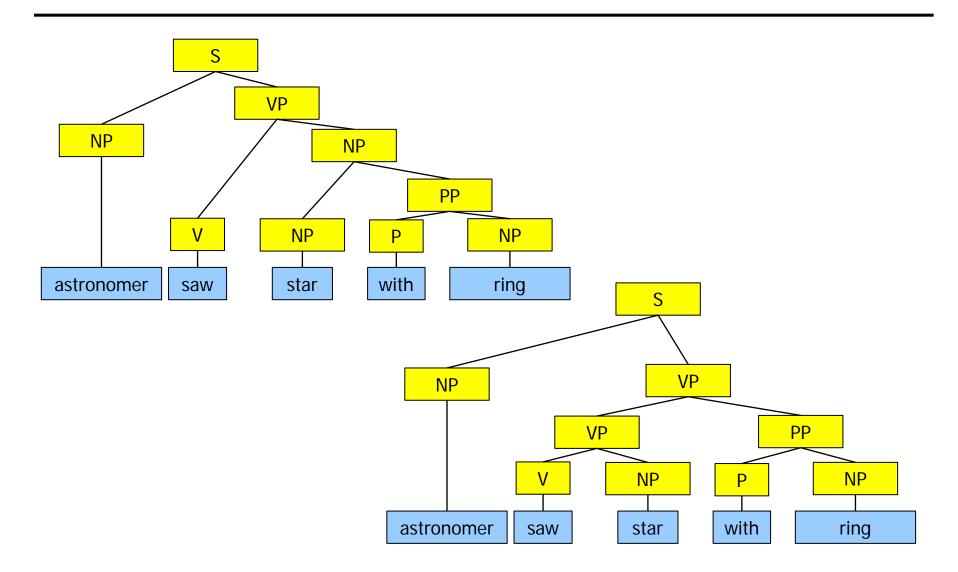


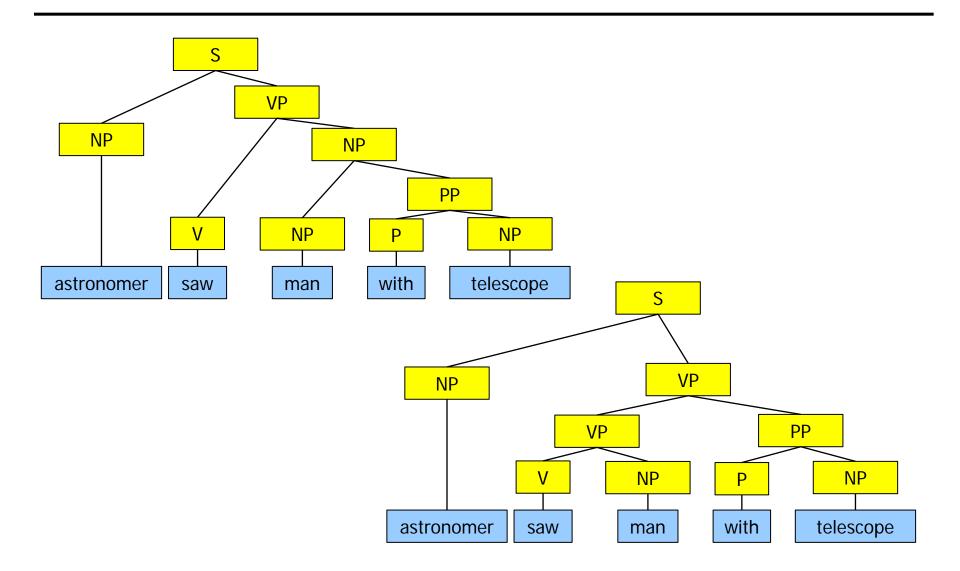
Maschinelle Sprachverarbeitung Parsing with Probabilistic Context-Free Grammar



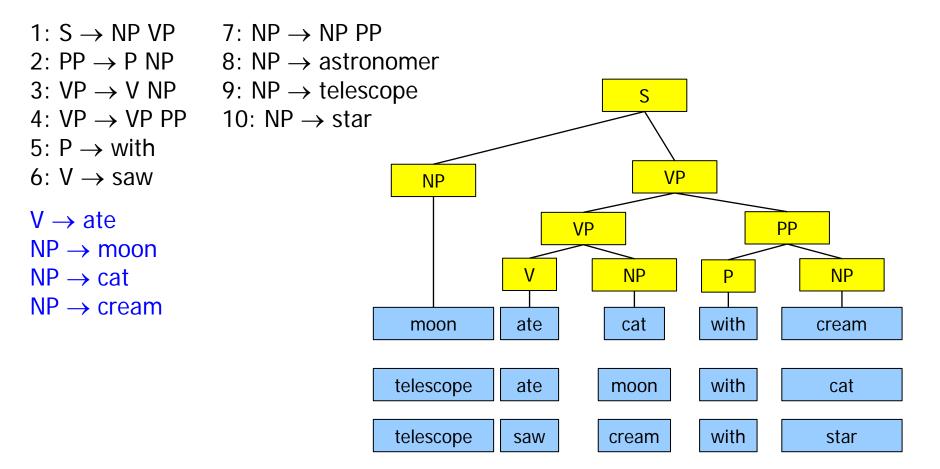
- Phrase-Structure Parse Trees
- Probabilistic Context-Free Grammars
- Parsing with PCFG
- Other Issues in Parsing


- POS tagging studies the plain sequence of words in a sentence
- But sentences have more and non-consecutive structures
- Plenty of linguistic theories exist about the nature and representation of these structures / units / phrases / ...
- Here: Phrase structure grammars


- POS tagging studies the plain sequence of words in a sentence
- But sentences have more and non-consecutive structures
- Plenty of linguistic theories exist about the nature and representation of these structures / units / phrases / ...
- Here: Phrase structure grammars

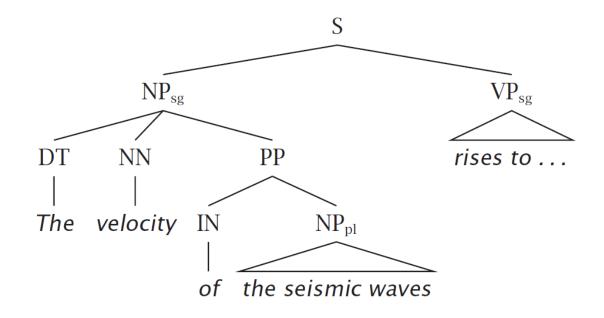

- Builds on assumptions
 - Sentences consist of nested structures
 - There is a fixed set of different structures (phrase types)
 - Nesting can be described by a context-free grammar

Ambiguity?



Problem 1: Ambiguity!

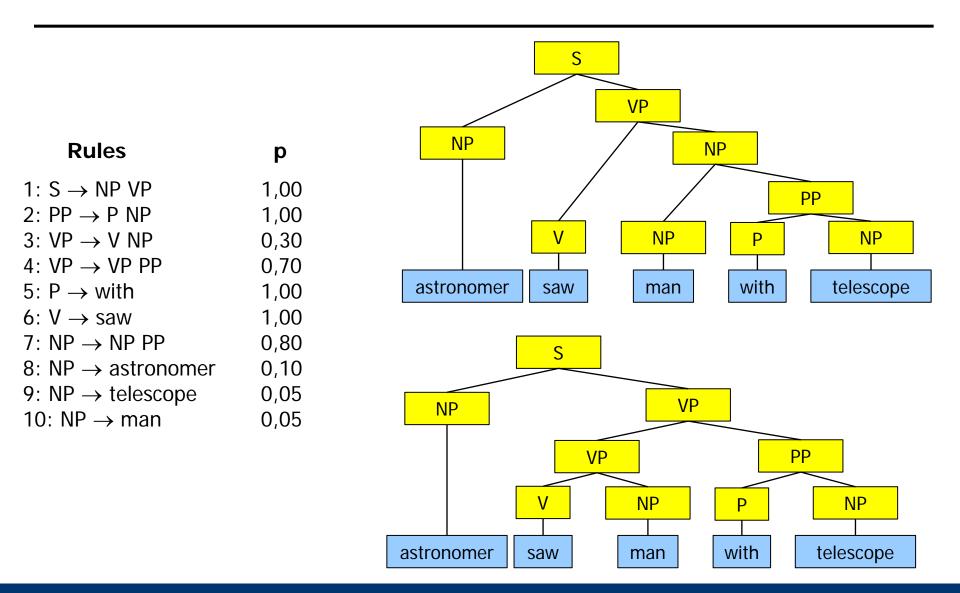
Problem 2: Syntax versus Semantics


Phrase structure grammars only capture syntax

- Phrase-Structure Parse Trees
- Probabilistic Context-Free Grammars
- Parsing with PCFG
- Other Issues in Parsing

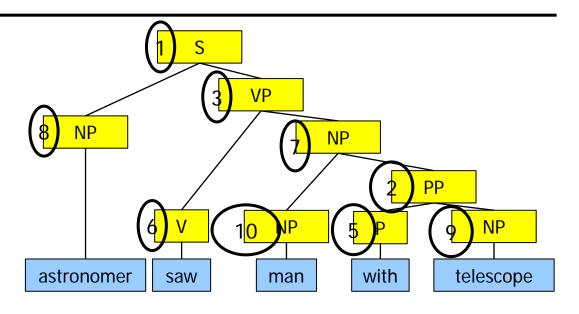
- Also called Stochastic Context Free Grammars
- Idea: Context free grammars with transition probabilities
 - Every rule gets a non-zero probability of firing
 - Grammar still recognizes the same language
 - But different parses usually have different probability
- Usages
 - Find parse with highest probability (most probable meaning)
 - Detect ambiguous sentences (>1 parses with similar probability)
 - What is the overall probability of a sentence given a grammar?
 - Sum of the probabilities of all derivations producing the sentence
 - Language models: Predict most probable next token in an incomplete sentence which is allowed by the grammar

- The velocity of the seismic waves rises to ...
- Difficult for a POS tagger: waves/Plural rises/Singular
- Simple for a PCFG



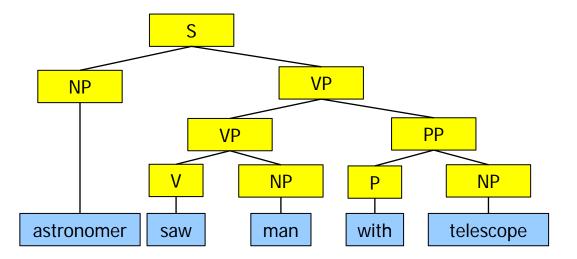
More Formal

- Definition
 - A PCFG is a 5-tuple (W, N, S, R, p) with
 - W is a set of terminals (words) W_{1} , W_{2} , ...
 - N is a set of non-terminals (phrase types) N_{1} , N_{2} , ...
 - S is a designated start symbol
 - *R* is a set of rules $\langle N_i \rightarrow \varphi \rangle$
 - where φ is a sequence of terminals and/or non-terminals
 - p is a function assigning a non-zero probability to every rule such that


$$\forall i : \sum_{j} p(N_i \to \varphi_j) = 1$$

Example

Example


1: $S \rightarrow NP VP$ 1,00 2: $PP \rightarrow P NP$ 1,00 3: VP \rightarrow V NP 0,30 4: VP \rightarrow VP PP 0,70 5: $P \rightarrow with$ 1,00 1,00 6: V \rightarrow saw 7: NP \rightarrow NP PP 0,80 0,10 8: NP \rightarrow astronomer 9: NP \rightarrow telescope 0,05 10: NP \rightarrow man 0,05

 $p(t_1) = 1 \ ^*0,1 \ ^*0,3 \ ^*1 \ ^*0,8 \ ^*0,05 \ ^*1 \ ^*1 \ ^*0,05 = 0,0006$

1: $S \rightarrow NP VP$ 1,00 2: $PP \rightarrow P NP$ 1,00 3: VP \rightarrow V NP 0,30 4: VP \rightarrow VP PP 0,70 5: $P \rightarrow with$ 1,00 1,00 6: V \rightarrow saw 7: NP \rightarrow NP PP 0,80 0,10 8: NP \rightarrow astronomer 9: NP \rightarrow telescope 0,05 10: NP \rightarrow man 0,05

- Context-free: Probability of a derivation of a subtree under non-terminal N is independent of anything else in the tree
 - Above N, left of N, right of N
- Place-invariant: Probability of a given rule r is the same anywhere in the tree
 - Probability of a subtree is independent of its position in the sentence
- Semantic-unaware: Probability of terminals do not depend on the co-occurring terminals in the sentence
 - Semantic validity is not considered

- Tri-gram models are the better language models
 Work at word level conditional probabilities of word sequences
- PCFG are a step towards resolving ambiguity, but not a complete solution due to lack of semantics
- PCFG can produce robust parsers
 - When learned on a corpus with a few, rare errors, these are cast into rules with low probability
- Have some implicit bias (work-arounds known)
 - E.g. small trees get higher probabilities
- State-of-the-art parser combine PCFG with additional formalized (semantic) knowledge

- Given a PCFG G and a sentence $s \in L(G)$
 - Issue 1: Decoding (or parsing): Which chain of rules (derivation) from G produced s with the highest probability?
 - Issue 2: Evaluation: What is the overall probability of s given G?
- Given a context free grammar G' and a set of sentences S with their derivation in G'
 - Issue 3: Learning: Which PCFG G with the same rule set as G' produces S with the highest probability?
 - We make our life simple: (1) G' is given, (2) sentences are parsed
 - Removing assumption (2) leads to an EM algorithm, removing (1) is hard (structure learning)
- Obvious relationships to corresponding problems in HMMs

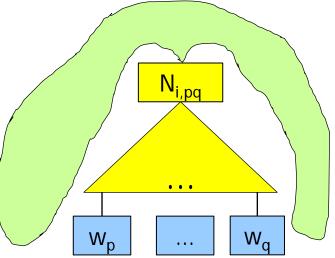
- We only consider PCFG with rules of the following form (Chomsky Normal Form, CNF)
 - $N \rightarrow w$ Non-terminal to terminal
 - $N \rightarrow N' N''$ Non-terminal to two non terminals
 - Note: For any CFG G, there exists a CFG G' in Chomsky Normal Form such that G and G' are weakly equivalent, i.e., accept the same language (but with different derivations)
- Accordingly, a PCFG in CNF has $|N|^3 + |N|^*|W|$ parameter

- Given a context free grammar G' and a set of sentences S with their derivations in G': Which PCFG G with the same rule set as G' produces S with the highest probability?
- A simple Maximum Likelihood approach will do

$$\forall i : p(N_i \to \varphi_j) = \frac{\left|N_i \to \varphi_j\right|}{\left|N_i \to *\right|}$$

- |.| Number of occurrence of a rule in the set of derivations
- * Any rule consequence

- Phrase-Structure Parse Trees
- Probabilistic Context-Free Grammars
- Parsing with PCFG
- Other Issues in Parsing

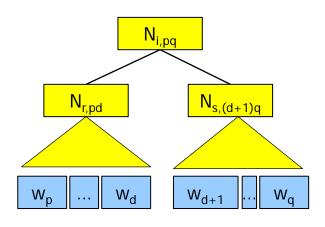

- Given a PCFG G and a sentence s∈L(G): What is the overall probability of s given G?
 - We did not discuss this problem for HMM, but for PCFG it is simpler to derive parsing from evaluation
- Naïve: Find all derivations of s, sum-up their probabilities
 Problem: There can be exponentially many derivations
- We give a Dynamic Programming based algorithm

- Recall that a PCFG builds on a CFG in CNF
- Definition

The inside probability of a sub-sentence $w_p \dots w_q$ to be produced by a non-terminal N_i is defined as

 $\beta_i(p,q) = p(W_{pq}/N_{i,pq'}G)$

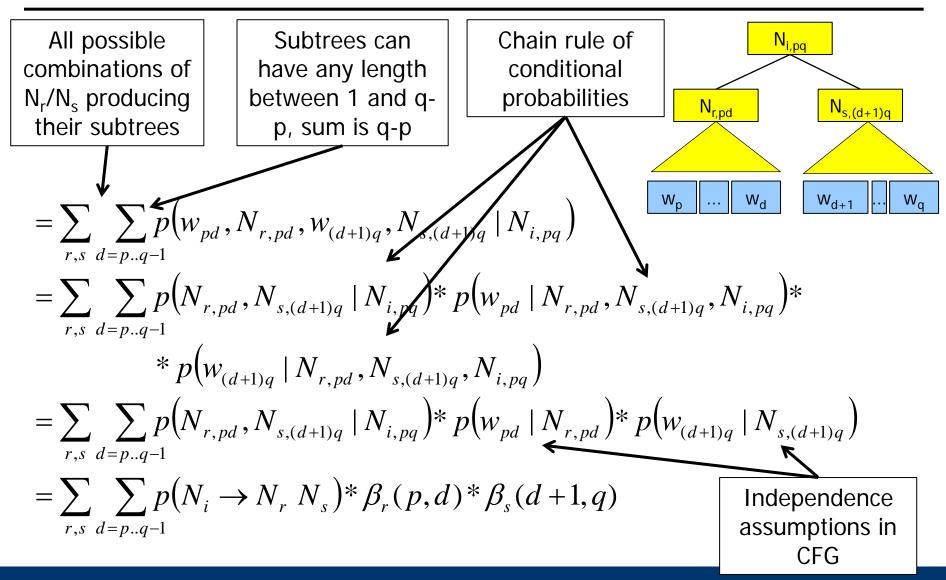
- w_{pq} : Sub-sentence of s starting at token w_p at pos. p until token w_q at pos. q
- N_{i,pq}: Non-terminal N_i producing w_{pq}
- From now on, we omit the "G"
- We search $\beta_S(1,n)$ for a sentence with n token



Induction

- We compute β_s(1,n) by induction over the length of all sub-sentences
- Start: Assume p=q (sub-sent of length 1). Since we have a CNF, the rule producing w_{pp} must have the form $N_{i,pp} \rightarrow w_{pp}$

$$\beta_{i}(p,p) = p(w_{pp}|N_{i,pp}) = p(N_{i,pp} \rightarrow w_{pp})$$


- This is parameter of G and can be lookup up for all (i,p)
- Induction: Assume p<q. Since we are in CNF, the derivation must look like this for some d with p≤d≤q
 - And we know all $\beta_i(a,b)$ with (a-b) < (q-p)

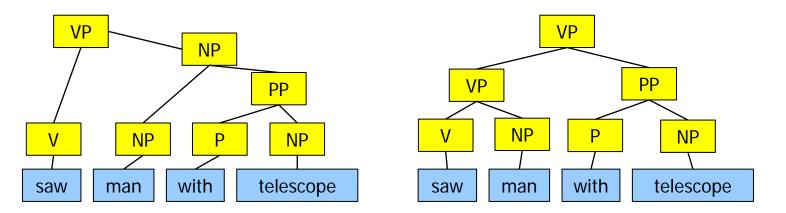
Derivation

•
$$\beta_{i}(p,q)$$

= $p(W_{pq}|N_{i,pq},G)$
= ...
= $\sum_{r,s} \sum_{d=p..q-1}^{r} p(w_{pd}, N_{r,pd}, w_{(d+1)q}, N_{s,(d+1)q} | N_{i,pq})$
= $\sum_{r,s} \sum_{d=p..q-1}^{r} p(N_{r,pd}, N_{s,(d+1)q} | N_{i,pq}) * p(w_{pd} | N_{r,pd}, N_{s,(d+1)q}, N_{i,pq}) * p(w_{(d+1)q} | N_{r,pd}, N_{s,(d+1)q}, N_{i,pq}) * p(w_{(d+1)q} | N_{r,pd}, N_{s,(d+1)q}, N_{i,pq}) * p(w_{(d+1)q} | N_{r,pd}, N_{s,(d+1)q}, N_{i,pq}) * p(w_{r,pd}, N_{r,pd}, N_{s,(d+1)q} | N_{r,pd}, N_{s,(d+1)q}) = \sum_{r,s} \sum_{d=p..q-1}^{r} p(N_{r,pd}, N_{s,(d+1)q} | N_{i,pq}) * p(w_{pd} | N_{r,pd}) * p(w_{(d+1)q} | N_{s,(d+1)q}) = \sum_{r,s} \sum_{d=p..q-1}^{r} p(N_{i} \rightarrow N_{r} N_{s}) * \beta_{r}(p,d) * \beta_{s}(d+1,q)$

Derivation

Example	astro	nomer sa	aw man	with	telescope	
1: S \rightarrow NP VP 2: PP \rightarrow P NP 3: VP \rightarrow V NP 4: VP \rightarrow VP PP 5: P \rightarrow with 6: V \rightarrow saw		1,00 1,00 0,70 0,30 1,00 1,00	7: NP \rightarrow NP PP 8: NP \rightarrow astronomer 9: NP \rightarrow telescope 10: NP \rightarrow man 11: NP \rightarrow saw 12: NP \rightarrow ears		0,40 0,10 0,18 0,18 0,04 0,10	
	1	2	3	4	5	
1	$\beta_{NP}(1,1)=0,1$					
2		$\beta_V(2,2)=1$ $\beta_{NP}(2,2)=0,04$				
3			$\beta_{NP}(3,3) = 0,18$			
4				$\beta_{P}(4,4) = 1$		
5					$\beta_{NP}(5,5)=0,18$	


Example	astro	nomer	saw man	with	telescope
2 3 4 5	: $S \rightarrow NP VP$: $PP \rightarrow P NP$: $VP \rightarrow V NP$: $VP \rightarrow VP PP$: $P \rightarrow with$: $V \rightarrow saw$	1,00 1,00 0,70 0,30 1,00 1,00	7: NP \rightarrow NP 8: NP \rightarrow ast 9: NP \rightarrow tele 10: NP \rightarrow m 11: NP \rightarrow sa 12: NP \rightarrow ea	ronomer escope an w	0,40 0,10 0,18 0,18 0,04 0,10
	1	2	3	4	5
1	$\beta_{NP}=0,1$	-			
2		$\beta_V = 1$ $\beta_{NP} = 0,04$	β _{VP} =0,7*1*0,18= 0,126		
3			β _{NP} =0,18	-	
4				$\beta_P = 1$	$\beta_{PP} = 1 * 1 * 0,18 = 0,18$
5					$\beta_{NP}=0,18$
No rule X–	→NP V or X→N	P NP	Must be VP \rightarrow	ک V NP with ۱	o=0.7

Example	astro	nomer	saw man	with	telescope
2 3 4 5	: $S \rightarrow NP VP$: $PP \rightarrow P NP$: $VP \rightarrow V NP$: $VP \rightarrow VP PP$: $P \rightarrow with$: $V \rightarrow saw$	1,00 1,00 0,70 0,30 1,00 1,00	7: NP \rightarrow NP 8: NP \rightarrow astr 9: NP \rightarrow tele 10: NP \rightarrow ma 11: NP \rightarrow sa 12: NP \rightarrow ea	ronomer scope an w	0,40 0,10 0,18 0,18 0,04 0,10
	1	2	3	4	5
1	$\beta_{NP}=0,10$	-	$\beta_{S} = 1*0, 1*0, 126 = 0,0126$		
2		$\beta_{V}=1,00$ $\beta_{NP}=0,04$ $\beta_{VP}=0,126$		-	
3		β _{NP} =0,18		-	$\beta_{NP} = 0,4*0,18*0,18 = 0,01296$
4			β _P =1,00		$\beta_{PP}=0,18$
5					$\beta_{NP}=0,18$

Ulf Leser: Maschinelle Sprachverarbeitung

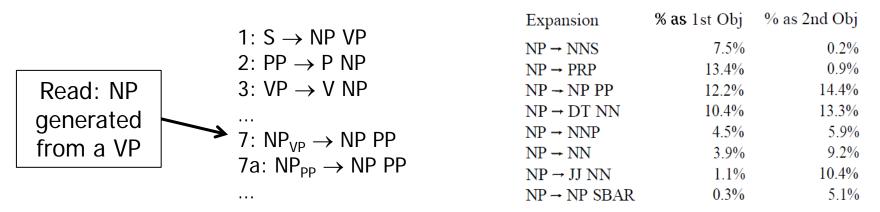
Example	astronomer	saw	man	with	telescope
	ustronomor	3477	man	vvicii	1010300000

	1	2	3	4	5
1	$\beta_{NP}=0,1$	-	$\beta_{s} = 0,0126$	-	β _s =
2		$\substack{\beta_V=1\\\beta_{NP}=0,04}$	$\beta_{VP}=0,126$	-	$\beta_{VP1} + \beta_{VP2} = \dots$
3			$\beta_{NP}=0,18$	-	$\beta_{NP} = 0,01296$
4				$\beta_P = 1$	$\beta_{PP}=0,18$
5					$\beta_{NP}=0,18$

- This is the Cocke–Younger–Kasami (CYK) algorithm for parsing with context free grammars, enriched with aggregations / multiplications for computing probabilities
- Same complexity: O(n³*|G|)
 - n: Sentence length
 - |G|: Number of rules in the grammar G

- Once evaluation is solved, parsing is simple
- Instead of summing over all derivations, we only chose the most probable deviation of a sub-sentence for each possible root
- Let $\delta_i(p,q) = p(w_{pq}|N_{i,pq})$ be the most probable derivation of sub-sentence p..q from a non-terminal root N_i
- This gives

$$\begin{split} \delta_i(p,q) &= \operatorname*{arg\,max}_{r,s} \left(\operatorname*{arg\,max}_{d=p\dots q-1} \left(p(w_{pd}, N_{r,pd}, w_{(d+1)q}, N_{s,(d+1)q} \mid N_{i,pq}) \right) \right) \\ &= \operatorname*{arg\,max}_{\substack{d=p\dots q-1, \\ r,s}} \left(p(N_i \rightarrow N_r \mid N_s) * \delta_r(p,d) * \delta_s(d+1,q) \right) \end{split}$$


– We omit induction start and backtracing

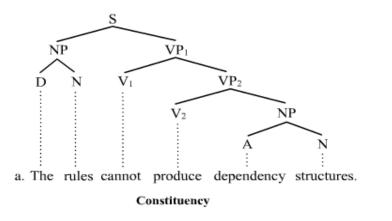
- Phrase-Structure Parse Trees
- Probabilistic Context-Free Grammars
- Parsing with PCFG
- Other Issues in Parsing

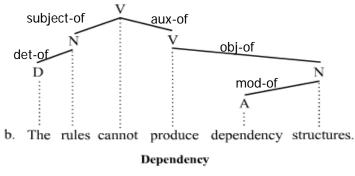
Treebanks

- A treebank is a set of sentences (corpus) whose phrase structures are annotated
 - Training corpus for PCFG
 - Not many exist; very costly, manual task
- Most prominent: Penn Treebank
 - Marcus, Marcinkiewicz, Santorini. "Building a large annotated corpus of English: The Penn Treebank." Computational linguistics 19.2 (1993): 313-330.
 - ~5500 citations (!)
 - 2,499 stories from a 3-years Wall Street Journal (WSJ) collection
 - Roughly 1 Million tokens, freely available
- Deutsche Baumbanken
 - Deutsche Diachrone Baumbank, 3 historical periods, small
 - Tübinger Baumbank, 38.000 Sätze, 345.000 Token

- Phrase structure grammars as described here are kind-of simplistic
- One idea for improvement: Incorporate dependencies between non-terminals
 - Probability of rules is not identical across all positions in a sentence
 - Trick: Annotate derivation of a non-terminal in its name and learn different probabilities for different derivations

Source: MS99; from Penn Treebank


- Second idea: Incorporate word semantics (lexicalization)
 - Clearly, different verbs take different arguments leading to different structures (similar for other word types)
 - Trick: Learn a model for each head word of a non-terminal
 - VP_{walk}, VP_{take}, VP_{eat}, VP_{...}
 - Requires much larger training corpus and sophisticated smoothing


	Verb					
Local tree	come	take	think	want		
V P - V	9.5%	2.6%	4.6%	5.7%		
VP-VNP	1.1%	32.1%	0.2%	13.9%		
$VP \rightarrow v PP$	34.5%	3.1%	7.1%	0.3%		
$VP \rightarrow V SBAR$	6.6%	0.3%	73.0%	0.2%		
$VP \rightarrow V S$	2.2%	1.3%	4.8%	70.8%		
$VP \rightarrow V NP S$	0.1%	5.7%	0.0%	0.3%		
$VP \rightarrow V PRT NP$	0.3%	5.8%	0.0%	0.0%		
$VP \rightarrow V PRT PP$	6.1%	1.5%	0.2%	0.0%		

Source: MS99; from Penn Treebank

Dependency Grammars

- Phrase structure grammars are not the only way to represent structural information within sentences
- Popular alternative: Dependency trees
 - Every word forms exactly one node
 - Edges describe the syntactic relationship between words: object-of, subject-of, modifier-of, preposition-of, ...
 - Different tag sets exist

Source: Wikipedia

- Which assumptions are behind PCFG for parsing?
- What is the complexity of the parsing problem in PCFG?
- Assume the following rule set ... Derive all derivations for the sentence ... together with their probabilities. Mark the most probable derivation.
- Derive the complexity of the decoding algorithm for PCFG
- What is the head word of a phrase in a phrase structure grammar?
- When are two grammars weakly equivalent?