

OLAP Queries on Big Data Processing Systems

Ulf Leser, Humboldt-Universität zu Berlin

Big Data

. . .

• What to do when data sets get really big?

Web crawling, click-stream analysis, astronomy sky surveys, cellphone calls, credit card transactions, sensor readouts,

© K. Kannan, IBM Research Labs, 2013

- Map/Reduce and Hadoop
- Big Data Processing Systems
- Example: HIVE

Two Options

- Buy supercomputers
 - Very fast networks, 10000+ cores, high-quality hardware
 - Very expensive, outdated quickly, cooling is an issue
- Buy lots of commodity hardware
 - Normal networks (10GB), multiple cores in 1000+ machines, cheap hardware with none-trivial probability of failures
 - Comparably cheap, renewal possible, less cooling issues
 - Difficult to program: Achieving high throughput on distributed machines with regular failures

The Advent of MapReduce

- Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters. CACM, 51(1)
 - First paper in 2004; 23000+ citations today
- Main ideas
 - Focus on typical data analysis requirements (~OLAP)
 - No synchronization, no transactions, no multi-user, no time-critical operations, ... all the things which are difficult in distributed systems
 - Accept failing machine and single-point-of-failures
 - 1000+ cheap workers which may fail,
 - One more robust coordinator node which should not fail
 - Separate data analysis and file management
 - Use a distributed file system for data exchange
 - Wrap everything in MAP or REDUCE second-order-functions

Infrastructure

- Types of distributed analysis have many task in common
 - Manage cluster: IP, capacity, port number, credentials, ...
 - Start / stop / monitor tasks on worker nodes
 - Restart nodes in case of failure
 - Manage files and provide access to data (in a fail-safe manner)
 - Login, logging, administrative interfaces
 - Scheduling: Which task should start when on which node?
 - All these are provided by the MapReduce infrastructure
 - Open source: Hadoop
- Things that are not common
 - Perform the analysis (the first-order functions)
 - Build local environment to run first-order functions (libs, ...)
 - These must be provided by the developer (and nothing else)

Map / Reduce

- Second-order function g: Function with two parameters
 - Set D of data elements
 - Function f
 - General semantics: Apply f to all elements of D independently
- Like a loop through D, but with assertion that computation for an element d is independent of all other elements of D
- Map: f(d) must produce 0-n pairs <k,d'>
 - d may be filtered or produce multiple outputs
 - k is a (non-unique) key, d' some payload derived from d
- Reduce: Group-by k and apply f on each group
 - f must be an aggregation function

Example: Simple GROUP-BY Query

SELECT	<pre>year_id, sum(amount*price)</pre>
FROM	sales S
WHERE	<pre>shop_ID = 10 AND price>10</pre>
GROUP BY	year_id;

- Input set D: All tuples from S
- MAP(D, WHERE)
 - Read each tuple, check WHERE condition, write nothing if condition is not met and <year_id, amount*price> otherwise
- REDUCE(..., SUM)
 - Read all <k,d'> output by MAP, group by year_id, call SUM for each group, and output <year_id, sum>

Distributed Processing

- Trick: We can very easily parallelize MAPs and REDUCEs
 - All tuples in MAP are treated independent partition D equally between all available nodes
 - All groups in REDUCE can be treated independently partition all groups equally between all nodes
- Works perfectly centers with 10000+ nodes are known

Distributed Processing

- Trick: We can very easily parallelize MAPs and REDUCEs
 - All tuples in MAP are treated independent partition D equally between all available nodes
 - All groups in REDUCE can be treated independently partition all groups equally between all nodes
- Works perfectly centers with 10000+ nodes are known

Systems Aspects

- Partitioning (splitting) can be done by system or custom
 System: Only if records are distinguishable
- Functions for MAP and REDUCE are provided by developer
- Load-balancing
 - Produce many more partitions than nodes
 - Struggler: A partition taking much longer than others (e.g. non-linear runtime in size of d)
 - MAP: Simple, assume linear runtime in number of records
 - REDUCE: Tricky # of groups is unknown, groups have dif. sizes
- Assignment of partitions/groups to node is performed by a central instance Master node (scheduler)

Hadoop and HDFS

Source: http://blog.raremile.com/

- System by Google was never made public
- Hadoop: Yahoo / open source implementation of the MapReduce idea
 - Apache Top-Level project
- HDFS: Hadoop Distributed
 File System
- Hadoop 2 (Yarn): Arbitrary tasks & execution orders
- Hadoop 3: Erasure coding in HDFS

HDFS

- Batch processing: Tasks read/write data into/from HDFS
- HDFS Architecture
 - Files are split into chunks
 - e.g. 64MB
 - Chunks are replicated on multiple nodes (e.g. 3 times)
 - Client request chunk-Ids from name node
 - Trying to find "close" chunks
- HDFS Architecture

Source: https://data-flair.training

- Clients read directly (and possibly in parallel) from data nodes
- If a data node crashes replica survive
- Disadvantage: No POSIX interface
 - Clients must use special HDFS-API

Failure Tolerance and Scheduling in Hadoop

- Fault tolerance
 - Master node tracks worker nodes
 - Worker nodes taking "too" long (hangs): Task is replicated
 - Worker node not responding (crash): Task is replicated
 - If master node crashes system is dead
 - But (intermediate) data survives in HDFS
- Scheduling
 - Simple round-robin scheduling
 - Master node has queue of ready-to-run tasks
 - Worker nodes ask for tasks and report when finished
 - Ideally, tasks are assigned to workers having a local copy of the tobe-processed data
 - Reduce may only start after all Maps are ready
 - Inflexible! Key could already be used for splitting

Limitations (compared to a RDBMS)

- MAP and REDUCE have only one input what about JOIN and UNION (solved)?
- No indexing always all the input is scanned (not solved)
- Slow data exchange always IO+network (solved)
- No optimization of operator order (partly solved)
 - Which map should be executed first if there are multiple?
- Need to write JAVA instead of SQL (bug or feature?)
- Integration in existing systems? (solved SQL on Hadoop)
- Data cannot be modified (not solved)
- Data is stored in verbose formats expensive parsing (solvable)

- Commercial parallel DBMS are extremely expensive
- Commercial parallel DBMS do not scale
 - Consistent writes are quite difficult in distributed systems
 - Need to support distributed transactions, synchronized data access, replication strategies, failover modes, ...
- There don't exist any open source parallel databases or data processing systems

Classical Example: Word Count

- MapReduce is not SQL
- Word count: Given a very large collection of documents, report the frequency of each distinct word
 - Important step for indexing in information retrieval
- Idea
 - MAP: Take a document d as input, break into words, count frequencies, write <word, freq-word> for each distinct word
 - SHUFFLE: Sort all pairs by key <word>
 - REDUCE: Sum-up all <freq-word> per word

- Map/Reduce and Hadoop
- Big Data Processing Systems
- Example: HIVE

Hadoop for Structured Queries

- MapReduce fits perfectly to selections and group-bys
- MapReduce assumes data-parallel problems
 - An operation may be performed on single tuples without considering other tuples
 - "Embarrassingly parallel"
- Not all relational operators are data parallel
 - Only those that can be pipelined
 - Pipeline-breaker: order-by
 - Difficult to handle: Union, Join

Joins in MapReduce

- Many suggestions
- Example: Map-side join (assume input s₁ is small)
 - MAP: Preload s_1 at once; read partition of s_2 and compute join
 - SHUFFLE, REDUCE: nothing
 - Problem: Each MAP task needs enough memory to hold s₁
- Example: Re-partition join (on join attribute k)
 - MAP: Read tuples <k,d> from source s and output <k,s,d>
 - s: 1 or 2 for the two input relations
 - SHUFFLE: Sort by <k>
 - REDUCE: Load all tuples with same key k, check if join-partner exists, and output <k,d1,d2>
 - Problem: First steps read/write all data three times

Big Data Processing Systems

- Several commercial and research systems building on MapReduce ideas but offering additional functionality
- Two classes
 - Focus on structured data and query-like analysis white box data model, few known operators, reordering possible
 - Focus on unstructured data and arbitrary analysis black box data and black-box operator model, no reordering
 - (Scientific) workflow systems

Example: Spark

Main catch

- Exchanging data through files is slow / unnecessary with todays memories
- But if data is kept in memory, no intermediate data remains in case of a crashing node – need to restart entire job
- RDD: Resilient distributed datasets
 - Partitioned datasets become first-class objects
 - RDD are immutable: A step produces a new RDD
 - RDDs are kept in main memory and exchanged through sockets
 - System stores trace of RDD generation at partition level

 If a node crashes, only its current partitions need to be recreated (and the history tells us how)

Example: Stratosphere / Flink

- Main catch: Only having Map and Reduce is too restricted
- More second-order functions: Map, reduce, group, cogroup, union, join
- Focus on relational processing, but also support and optimization for UDFs
- Streaming: Data parallel parts of a query are executed tuple-by-tuple with exchange though sockets
 - Query can run on infinite input (stream of tuples)
 - Can produce instant answers despite changing inputs (to some degree)

Hadoop Ecosystem (small)

Source: https://www.mindtory.com/

Hadoop Ecosystem (large)

Source: https://mydataexperiments.com/

- Map/Reduce and Hadoop
- Big Data Processing Systems
- Example: HIVE

Exemplary System: HIVE

- DWH system build on top of Hadoop (Facebook)
 - Many successors: Cloudera, HortonWorks, Pentaho, ...
 - Today a popular Apache project
- Quite comprehensive (read-only) SQL support
- Focus: Optimization of batch-oriented MapReduce jobs
 No index support
- Storage: All in files / directories in HDFS
- "At Facebook, a Hive warehouse contains tens of thousands of tables, stores over 700TB and is used for reporting and ad-hoc analyses by 200 Fb users." (2017)

Motivation

- Fast data growth from 15TB to 700TB in a few years
- Existing RDBMS became slower and slower and had no way to scale out to new hardware
- Only ingesting click-stream data was slower than its production
- Hadoop's API MapReduce is too low level need for declarative data access

Storage

- Table = directory
- Partitions = subdirectories
 - Horizontal partitioning with range or equality partitioning
 - Used for partition pruning in scans
- Buckets = files
 - Hash or range partitioning
 - Used for bucket pruning during scans
- User can provide custom parsers to read special row formats

HiveQL

- Full set of primitive data types (float, string, int, ...)
- Nested collection types: Struct, sets, bags
- Subset of SQL: Select, join, aggregate, union-all, nested queries
 - No Theta-Joins
- Support for UDFs, embedded MapReduce scripts, and metadata queries
- No single-tuple insert, no delete, no update
- Table creation: Interpreting an existing file as a table
 - But SQL may create new tables = new files

Example – Word Count in Hive

Limited Optimization

- Only rule-based (where should statistics come from?)
 - Predicate Push-Down, column pruning, partition pruning
- Joins: Broadcast smaller table to mapper for larger table
 Map-side join
- Pre-aggregation (COMBINE phase)
- Users may provide hints
- Scheduling is completely delegated to Hadoop

Other Systems

- HadoopDB
- Presto (Teradata)
- Cloudera Impala
- Spark SQL
- Apache Drill
- AsterixDB

References

- Dean, J. and Ghemawat, S. (2008). "MapReduce: Simplified Data Processing on Large Clusters " Communications of the ACM 51(1).
- Thusoo, A., Sarma, J., Jain, N., S, Z., Chakka, P., Z, N., Antony, S., L, H. and Murthy, R. (2010). "Hive - a petabyte scale data warehouse using Hadoop". Int. Conf. on Data Engineering, Long Beach, CA
- Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.-C., Hueske, F., Heise, A., Kao, O., Leich, M., Leser, U., Markl, V., et al. (2014). "The Stratosphere Platform for Big Data Analytics." VLDB Journal 23(6): 939-964.
- Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker, S. and Stoica, I. (2012). "Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing". USENIX conference on Networked Systems Design and Implementation. San Jose, USA.

Self Assessment

- Describe the semantics of MAP and REDUCE functions
- Compare HDFS to a remote data access with NFS. What are pros / cons?
- What is the COMBINE phase of a mapreduce pipeline?
- Design a mapreduce program for the following problem: Given a set of market basket contents, find all pairs of items sold together more often than k times
- What is a single-point-of-failure? Where does Hadoop have spofs?