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Content of this Lecture 

 
 
 
 

• Multidimensional Indexing 
• Grid-Files 
• Kd-trees 
• Multidimensional range queries on modern hardware 
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Multidimensional Queries (MDQ) 

 
 

• Conditions on more than one dimension (=attribute) 
– Combined through AND (intersection) or OR (union) 

• Partial queries: Conditions on some but not all 
dimensions 

• A MDQ selects a sub-cube 
– 2D: “All beverage sales in March 2000“ 
– 4D: “All beverage sales in 2000 in Berlin to male customers” 
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Composite Indexes 

month_id 

product_id 

Point X Y 

P1 2 2 

P2 2 2 

P3 5 7 

P4 5 6 

P5 8 6 

P6 8 9 

P7 9 3 

• Imagine composite index on (X, Y) 
• Efficiently supported 

– Full box queries (conditions in all dimensions X and Y) 
– Points/range with X between … 

• Not efficiently supported 
– Points/range with Y between … 
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Composite Index 

 
• One index over two concatenated attribute values (X, Y) 

 
 
 

 
 

 
• For an concatenated index I to be eligible for a query Q, 

a prefix of the attributes of I must be present in Q 
– The longer the prefix in the query, the better  
– Better - higher the selectivity, more pruning 

• Alternatives: Use independent indexes on each attribute 

1   2 1   4 8   2 8   3  9  1 
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Independent Indexes 

 
• One index per attribute 

 
 
 
 
 
 

• Point/range query on one attribute: supported 
• Point/range query on >1 attributes 

– Compute TID lists for each attribute 
– Intersect 

Index on X Index on Y 
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Independent versus Composite Index 

• Consider 3 dimensions of range 1,...,100 
– 1.000.000 points, uniformly distributed at random 
– Assume index blocks hold 50 keys or records 
– B*-Index on each attribute has height 4  

• Find points with 40<x≤50, 40<y≤50, 40<z≤50 
• Using independent indexes 

– Using x-index, we generate TID list |X|~100.000 
– Using y-index, we generate TID list |Y|~100.000 
– Using z-index, we generate TID list |Z|~100.000 
– For each index, we have 4+100.000/50=2004 IO 

• Assumption: TIDs sorted in sequential blocks with 50 TIDs each 

– Hopefully, we can keep the three lists in main memory 
– Intersection yields ~1.000 points with 6012 IO 
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Independent versus Composite Index 

• Consider 3 dimensions of range 1,...,100 
– 1.000.000 points, uniformly distributed at random 
– Assume index blocks hold 50 keys or records 
– B*-Index on each attribute has height 4  

• Find points with 40<x≤50, 40<y≤50, 40<z≤50 
• Using composite index (X,Y,Z) 

– Number of indexed points doesn’t change 
– Key length increases – assume blocks hold only 30 (10) keys or 

records 
– Index has height 5 (6) 

• This is worst case – index blocks only 50% filled 

– Total: 5 (6) +1000/30 (10) ~38 IO (106) 
• Matching points are packed in a few blocks 
• This will be random access IO 
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Conclusion 

• We want composite indexes 
• Much less IO 
• Things get worse for larger d 

– TID lists don’t fit into main memory – paging, more IO 
– Intersecting many large TID lists can be more work than scanning 

all points once 

• Advantage of composite indexes grows “exponentially” 
with number of dimensions and selectivity of selections 

• Things get complicated if data is not uniformly distributed 
– Dependent attributes (age – weight, income, height, …) 

• But: For partial queries, we would need to index all 
combinations 
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Solutions 

• One solution: Bitmap-Index  
– Bad choice if cardinality of attributes is high 
– Only point-queries are supported efficiently 
– “Read-only”, always needs to go back to the data files 

• Other solution: Multidimensional index structures (MDIS) 
– Large improvements in principle 
– Advantages: Can grow/shrink; handle skew to some degree; 

nearest neighbor search 
– Made it into practice only for spatial data (small d) 

• “Curse of dimensionality”: MDIS degrade for large d 
– Bad space usage, excessive management cost 
– Accesses degrade to sans 
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Multidimensional Indexes 

• All dimensions are equally important 
• Should support all types of queries 

– Exact match point queries, range queries 
– Partial match or range queries 
– Nearest neighbor queries (similarity search) 

• Main trick: Try to store neighbors (in attribute space) in 
nearby storage locations (disk blocks, memory pages) 
– Translate locality in attribute space in locality in storage space 
– Difficult to achieve, key to good performance 

• Why not B*-trees? 
– All B-trees need a total order on the keys 
– For more than one dimension, no 1D-order exists 
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Data Skew 

• We say data is skewed if its values to not follow the 
expected distribution 

• In MDIS, the typical expectation is uniform distribution 
• Anything not uniform is (more or the less) skewed  
• Data can be skewed in one or more dimensions 
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Content of this Lecture 

 
 
 

• Multidimensional Indexing 
• Grid-Files 

– General Structure 
– Splits 

• Kd-trees 
• Multidimensional range queries on modern hardware 
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Grid-File 

 
• Classical multidimensional index structure 

– Simple: searching, (inserting), ((deleting)) 
– Good for uniformly distributed data 
– Does not handle skewed data very well 
– Many variations 

• Design goals 
– Index structure for point objects 
– Support exact, partial match, range, and neighborhood queries 
– Guaranteed “two IO” access (under some assumptions) 
– All dimensions are treated the same 
– Adapts dynamically to the number of points 
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First Idea: Fixed Grid 

• [Does not adapt to data distribution at all] 
• Idea 

– Split space into equal-spaced cuboids or cells 
• We need maximal and minimal values for each dimensions 

– Directory stores one pointer to an index block for each cell 
– Index blocks: Points with coordinates and pointer to data record 

Directory 
(memory) 

Index blocks 
(disk) 

Data blocks 
(disk) 
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Operations 

• Problem 1: Empty space 
• Deleting a point 

– Compute cell using coordinates 
– Search cell in directory and load index block 
– Search point and delete, if present (also delete in data block) 
– Index block may become almost empty 

• Index may consist of many almost empty index blocks 
– And how should we set the number of splits per dimension? 
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Operations 

• Problem 2: Index blocks only hold a fixed # of pointers 
• Inserting a point 

– Locate and load index block 
– If free space: insert point (also into data block) 
– If no free space: Generate overflow index blocks 
– No adaptation to skewed data distributions 
– Degenerates to a scan if all points fall in the same (set of) cells 
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Principle of Grid-Files 

• Partition each dimension into disjoint intervals (scales) 
– Scales may be non-uniform and different for different dimensions 

• Intersections of all intervals define all grid cells 
– d-dimensional cuboids 
– Each cell holds one pointer to the index block of the cell 
– Each point falls into exactly one grid cell 
– Many cells may point to same index block (less empty space) 
– When cell overflows – split cell (no overflow index blocks) 

 scales   grid directory and grid cells           regions    index blocks 
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Exact Point Search 

• Finding query point p (with full coordinates) 
– Keep scales for each dimension in memory 
– Look-up query coordinates in scales and derive grid cell 
– Extract pointer to index block from grid cell 
– Load index block and scan for p 

• Complexity 
– We assume that the directory is in main memory 

• Other techniques exist, i.e., B*-tree over grid coordinates 

– Load index block (1st IO) 
– Search point in index block (no IO) 
– Access record following pointer (2nd IO) 
– Guaranteed 2 IO (two block random access) 
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Range Query, Partial Match Query 

 
• Range query 

– Compute grid cell coordinates for each end point 
– All grid directory entries in that range may contain qualifying 

points 
– Extract all pointers to index blocks and scan 

• Partial match query 
– Compute partial grid cell coordinates  
– All grid directory entries with these coordinates may contain 

points 
– Extract all pointers to index blocks and scan 
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Content of this Lecture 

 
 
 

• Multidimensional Indexing 
• Grid-Files 

– General Structure 
– Splits 

• Kd-trees 
• Multidimensional range queries on modern hardware 
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Inserting Points 

 
 

• If index block has free space – no problem 
• Otherwise (1st option): Split cuboid at new scale 

– Choose a dimension and a scale to split 
– Create new scale, create new index block, distribute points in 

overflown block according to the chosen split 
– Insert point into matching index block 
– This implicitly splits all other grid cells with the same scale 
– All other cells: Copy pointer; old and new cells point to the 

same index block (only main memory work) 
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Choices 

 
 

• Choice of dimension and scale to split is difficult 
– Optimally, we would like to split as many currently very full 

index blocks as evenly as possible 
• This is an optimization problem 

– We may also consider future insertions 
• Then we need formalized expectations (e.g. data distributions) 
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Example 

• Imagine block holds 3 pointers 
– Note: Usually we have unevenly 

spaced intervals 
• New point causes overflow 
• Vertical split 

– Splits 2 (3,4)-point blocks 
– Leaves one 3-point block 

• Horizontal split 
– Splits 2 (3,4)-point blocks 
– Leaves one 3-point block 

• Need to consider O(kd-1) regions 
– Where k= # of scales per dimension 

• Note: Those splits are not realized 
immediately on disk  
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Inserting Points -2- 

 
• 2nd option: If there are scales in the overflown region 

that do not yet have their own index pointers 
– Chose best such split, create new index block, distribute points, 

update pointer in grid cell 
– Other cells / blocks are not affected 
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                 A 

A A 

 (N=6) 

1 

2 

3 
4 

5 

6 

1 2 3 4 5 6 

Grid-File Example 1 (from J. Gehrke) 



Ulf Leser: Data Warehousing und Data Mining 27 

1 2 3 4 5 6 A 

A A A B A B 

7 

8 9 

10 11 

12 

1 3 5 7       A 
2 4 6         B 

8 

9 

10 

11 12 

 (N=6) 

1 

2 

3 
4 

5 

6 

Grid-File Example 2 
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A B A B A B 

C 

A B 

C B 

1 3 5 7 8 10 A 
2 4 6 9 11 12 B 

(N=6) 

7 

8 9 

10 11 

12 

1 

2 

3 
4 

5 

6 

13 

14 

15 

1 7 8 13       A 
2 4 6 9 11 12 B 
3 5 10        C 

14 15 

Grid-File Example 3 
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A B 

C 

A B 

C B 

A D B 

C 

A D 

C C 

B 

B 

(N=6) 

7 

8 9 

10 11 

12 

1 

2 

3 
4 

5 

6 

13 

14 

15 

1 3 5 7 8 10 A 
2 4 6 9 11 12 B 

1 7 8 13       A 
2 4 6 9 11 12 B 
3 5 10        C 

14 15 

16 

1 2 3 4 5 6 A 1 3 5 7       A 
2 4 6         B 

1 7 8 13       A 
2 4 6 9 11 12 B 
3 5 10        C 

1 8 13 16       A 
2 4 6 9 11 12 B 
3 5 10       C 
7 14 15       D 

Grid-File Example 4 
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(N=6) 

x1 x2 x3 x4 

y4 

y2 

y1 

A B 

C 

D 

E 

F 

G 

H 

I y3 

A H 

A I 

D 

D 

F 

F 

B 

B 

A I G F B 

E E G F B 

C C C C B 

Grid-File Example 5 
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Problems 

• What if un-realized scales does not lead to even 
distribution of points during a split? 
– New splits are created based on a local decision (the overflown 

region) and on past data 
– But they influence other cells in the future 

• Actually, we should split such that all affected cells are 
evenly distributed in the future – but we cannot  
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Deleting Points 

 
 

• Search point and delete 
• If index block become “almost” empty, merge blocks 

– A merge is the removal of a split 
– All other almost empty index blocks are candidates for merging 
– A merge should build a convex region 

• Or range queries need to look into unnecessarily many blocks 

– This can become very difficult 
• Potentially, more than two regions need to be merged to keep 

convexity condition 

• No details here 
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Conclusions 

• Grid-Files always split parallel to the dimension axes 
– This is not always optimal 
– Use others than rectangles as cells: circles, polygons, etc. 

• Might not disjointly fill the space any more 
• Allow overlaps - R trees 

• Good: Good index block fill degrees if distribution of 
points does not change over time 

• Good: Two IO guarantee (if directory fits into memory) 
• Bad: Grid directory grows very fast 
• Bad: Bad adaptation to “unevenly  

skewed” data 
– The more dimensions, the worse 
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Content of this Lecture 

 
 
 
 

• Multidimensional Indexing 
• Grid-Files 
• kd-trees 
• Multidimensional range queries on modern hardware 
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kd-tree 

 
• Grid-File disadvantages 

– All regions of the d-dimensional space are eventually split at the 
same dimension / scale 

– First cell that overflows determines split 
– This choice is global and never undone 

• kd-trees 
– Multidimensional variation of binary search trees 
– Hierarchical splitting of space into regions 
– Regions in different subtrees may use different split positions 
– Better adaptation to clustered data than Grid-Files 
– kd-tree originally is a main memory data structure 
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General Idea 

(4,6) 
(3,3) 

(0,4) 
(1,1) 

(5,6) 

(3,1) 
 (6,4) 

 

x<3 x≥3 

x<5 

y<3 

x ≥ 5 

y ≥ 2 

y<7 
y≥

1 
y<1 

(2,0) 
 

y≥3 
y < 2 

• Binary, rooted tree 
• Paths are selected by 

dimension / value 
• Dimensions are not 

statically assigned to 
levels of the tree 

• Data points are  
stored only in leaves 

• A leaf stores all points in a 
n-dim hypercube with m 
border planes (m≤n) 

• Leaves are stored on disk 
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Example – the Brick wall 

(4,6) 
(3,3) 

(0,4) 
(1,1) 

(3,1) 
 (6,4) 

 

x<3 x≥3 

x<5 

y<3 

x ≥ 5 

y ≥ 2 

y<7 
y≥

1 
y<1 

(2,0) 
 

y≥3 
y < 2 

10 

10 

(4,9) 
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Local Adaptation 
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Search Operations 

 
• Exact point search 

– ? 

• Range query 
– ? 

• Partial match query 
– ? 
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Search Operations 

 
• Exact point search 

– In each inner node, decide direction based on split condition 
– Search leaf for query point 
– Complexity depends on depth of leaf  
– kd-Trees are not balanced 

• No guarantees (except data set size) 

– Only leaves are on disk – 1 IO to obtain TIDs 

• Range Query  
– Follow all children which might have points within the range 
– Need for multiple search paths 

• Partial match query 
– … 
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kd-tree Insertion 

 
• Find appropriate leaf block 
• If free space available – insert, done 
• Otherwise, chose split dimension and position  

– This is a local decision; remains stable for the future of the subtree  
– Find dimension and split that divides set of points into two sets  

• Consider current points and split in sets of approximately equal size 
• Consider known distributions of values in different dimensions 
• Use alternation scheme for dimensions 
• Finding “optimal” split points is expensive for high dimensional data 

(point set needs to be sorted in each dimension) – use heuristics 

• Wrong decisions in early splits lead to tree degradation 
– CS students at HU: Don’t split at sex, place of birth, … 
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Summary 

 
• We gave an overview on MDIS 
• Other MDIS’s: Partitioned hashing, R-tree, Quad-Tree, X 

tree, hb tree, R+ tree, UB tree, … 
– Store objects more than once; other than rectangular cells; 

spatial objects; … 

• Not discussed: Similarity search 
• Curse of dimensionality 

– The more dimensions, the more difficult to manage an MDIS 
• Grid-File: Every split creates exponentially many more cells 
• Kd-Tree: Which dimension to chose for next split 

– Often, linear scanning of objects is quicker 
• When is “often”? 
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Content of this Lecture 

 
 
 
 

• Multidimensional Indexing 
• Grid-Files 
• Kd-trees 
• Multidimensional range queries on modern hardware 
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Scan or Index? 

• "Hence, we consider an index structure to work 
‘well’ if, on average, less than 20% of blocks must 
be visited, and to ‘fail’ if, on average, more than 
20% of blocks must be visited." 
– Weber et al., VLDB 1998 
– 20%? Assumption: Scanning  

is ~5 times faster than  
random access 

– MDIS always good for exact  
queries, but range queries? 

• Does large memory and  
multi-core change the  
game? 
 



Ulf Leser: Data Warehousing und Data Mining 45 

Benchmark  

 
• Three popular MDIS and two flavors of linear scans 

– R-Tree, kd-Tree, VA-File 

• Four different data sets 
– Two real: 3D sensor data, 19D genomics data 
– Two synthetic: Uniform, with multiple sub-clusters 

• Synthetic workloads of range queries with varying 
selectivities 

• All methods are parallelized and use SIMD 
• Measurements on multi-core server with 1TB RAM 
• [work by Stefan Sprenger (submitted)] 
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R-Tree 

 
• Hierarchical data structure 
• All points in a node are 

represented by their 
minimal bounding box (MBB) 

• Inner nodes hold multiple MBBs 
• On overflow, blocks (and MBBs) 

are split 
• Splits propagate up the tree 

– R-tree is balanced 

• Designed for spatial objects  
– MBB may overlap 

• Even point searches may lead 
to multiple search paths 
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kd-Tree 

 
 

• Unbalanced 
– We inserts tuples in 

random order, which 
creates almost 
balanced trees 

• Split dimension 
selected by round-
robin 

• Leaf sizes adapted to 
cache lines 

(4,6) 
(3,3) 

(0,4) 
(1,1) 

(5,6) 

(3,1) 
 (6,4) 

 

x<3 x≥3 

x<5 

y<3 

x ≥ 5 

y ≥ 2 

y<
7 

y≥
1 

y<1 

(2,0) 
 

y≥3 
y < 2 
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VA-File 

• Similar to a GRID file 
• Partition each dimension  

into equi-distance bins 
• Bins are addresses using  

equal-size bitstrings 
• „Approximate“ address of  

an object is a m-part  
bitstring (m: Dimensions) 

• Each bitstring value  
addresses a data block 

• Upon a range query, all 
matching bit-strings are 
determined and data blocks 
scanned 

• (Not adaptive at all) 
 

Source: D. Lamb, “Search Techniques for Multimedia 
Databases” 
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Parallelization by Partitioning 

• Most parallelization techniques build on partitioning the 
data into p disjoint partitions 

• Let D be the set of points, each having k dimensions 
• Horizontal partitioning 

– Partitions contain |D|/p points 
– We only use random partitioning  

• No locality  
• Would be very difficult to keep in  

case of updates 

• Vertical partitioning 
– Only possible if k=p 
– Each partition contains  

one attribute of all |D| points 
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Searching a Tree in Parallel 

• How to parallelize search 
through a tree over a large set 
of points? 

• Option 1: Partition data set 
– Partition data set horizontally into p 

partitions 
• Usually p=t, # of threads 

– Build one tree per partition 
– Given a query, all p trees are 

traversed in parallel  
– Union of partitioned results gives 

final result 
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Searching a Tree in Parallel 

• How to parallelize search 
through a tree over a large set 
of points? 

• Option 2: Parallel traversal 
– Build tree over entire data set 
– Given a query, traverse the tree 
– Whenever a parallel search path 

emerges, span a new thread 
– When more paths emerge than t – 

start scheduling 
– Different threads create 

independent results – union gives 
final result 
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Parallelization 

• R-Tree, kd-Tree, VA File 
– Partition data horizontally and build one tree per partition 
– Given a query, all trees are traversed in parallel 
– Number of partitions = number of threads 
– SIMD is used in leaf nodes 

• Scan 
– Horizontal partitioning: All partitions are scanned by one thread 

in parallel 
– Vertical partitioning: Scan each partition in parallel and with 

SIMD and build a bitmap flagging matching tuples 
– Use fast bit operations to intersect all bitmaps for final result 
– Very effective for partial match queries 

• Only a fraction of data is touched 
• But low degree-of-parallelism: # threads used = # dims in query 
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Results 

• Randomly generated all-dim 
MDRQ executed over 1M 
uniformly distributed 20-
dimensional integer vectors 

• 24 CPU threads, 256-bit 
wide SIMD registers 

• SIMD does not yield much 
benefit 
– Neither for single nor for multi 

threaded implementations 

• Scans are faster despite 
high selectivity 
– On uniformly distributed data 

• VA-file beats other MDIS 
– On uniformly distributed data 

 
 
 
 
 

hor. part      vert. part 
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# Dimensions, Selectivity 

hor.  vert.  
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Real data, realistic workloads 

• Scans are faster up to very high selectivities 
• Of course, MDI could be better tuned to modern 

hardware 
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Selbsttest 

• How does a Grid File work? 
• Static Grid files suffer from many empty blocks. How is 

solved in the original Grid file? 
• If an index block overflows, a new scale is introduced. 

How much does this increase the size of the directory? 
• What are strategies for choosing a split dimension in a 

kd-Tree? 
• Why did we argue that a kd-Tree is a main memory 

data structure? 
• What are typical properties of “modern hardware”,, and 

how do they change database architectures? 
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