Data Warehousing und Data Mining

Multidimensionale Indexstrukturen

Ulf Leser
Wissensmanagement in der
Bioinformatik

Content of this Lecture

- Multidimensional Indexing
- Grid-Files
- Kd-trees
- Multidimensional range queries on modern hardware

Multidimensional Queries (MDQ)

- Conditions on more than one dimension (=attribute)
- Combined through AND (intersection) or OR (union)
- Partial queries: Conditions on some but not all dimensions
- A MDQ selects a sub-cube
- 2D: "All beverage sales in March 2000"
- 4D: "All beverage sales in 2000 in Berlin to male customers"

Composite Indexes

month_id

Point	X	Y
P1	2	2
P2	2	2
P3	5	7
P4	5	6
P5	8	6
P6	8	9
P7	9	3

- Imagine composite index on (X, Y)
- Efficiently supported
- Full box queries (conditions in all dimensions X and Y)
- Points/range with X between ...
- Not efficiently supported
- Points/range with Y between ...

Composite Index

- One index over two concatenated attribute values (X, Y)

- For an concatenated index I to be eligible for a query Q, a prefix of the attributes of I must be present in Q
- The longer the prefix in the query, the better
- Better - higher the selectivity, more pruning
- Alternatives: Use independent indexes on each attribute

Independent Indexes

- One index per attribute

- Point/range query on one attribute: supported
- Point/range query on >1 attributes
- Compute TID lists for each attribute
- Intersect

Independent versus Composite Index

- Consider 3 dimensions of range $1, \ldots, 100$
- 1.000.000 points, uniformly distributed at random
- Assume index blocks hold 50 keys or records
- B*-Index on each attribute has height 4
- Find points with $40<x \leq 50,40<y \leq 50,40<z<50$
- Using independent indexes
- Using x-index, we generate TID list |X|~100.000
- Using y-index, we generate TID list |Y|~100.000
- Using z-index, we generate TID list |Z|~100.000
- For each index, we have 4+100.000/50=2004 IO
- Assumption: TIDs sorted in sequential blocks with 50 TIDs each
- Hopefully, we can keep the three lists in main memory
- Intersection yields ~ 1.000 points with 6012 IO

Independent versus Composite Index

- Consider 3 dimensions of range $1, \ldots, 100$
- 1.000.000 points, uniformly distributed at random
- Assume index blocks hold 50 keys or records
- B*-Index on each attribute has height 4
- Find points with $40<x<50,40<y \leq 50,40<z<50$
- Using composite index ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$)
- Number of indexed points doesn't change
- Key length increases - assume blocks hold only 30 (10) keys or records
- Index has height 5 (6)
- This is worst case - index blocks only 50% filled
- Total: 5 (6) +1000/30 (10) ~38 IO (106)
- Matching points are packed in a few blocks
- This will be random access IO

Conclusion

- We want composite indexes
- Much less IO
- Things get worse for larger d
- TID lists don't fit into main memory - paging, more IO
- Intersecting many large TID lists can be more work than scanning all points once
- Advantage of composite indexes grows "exponentially" with number of dimensions and selectivity of selections
- Things get complicated if data is not uniformly distributed
- Dependent attributes (age - weight, income, height, ...)
- But: For partial queries, we would need to index all combinations

Solutions

- One solution: Bitmap-Index
- Bad choice if cardinality of attributes is high
- Only point-queries are supported efficiently
- "Read-only", always needs to go back to the data files
- Other solution: Multidimensional index structures (MDIS)
- Large improvements in principle
- Advantages: Can grow/shrink; handle skew to some degree; nearest neighbor search
- Made it into practice only for spatial data (small d)
- "Curse of dimensionality": MDIS degrade for large d
- Bad space usage, excessive management cost
- Accesses degrade to sans

Multidimensional Indexes

- All dimensions are equally important
- Should support all types of queries
- Exact match point queries, range queries
- Partial match or range queries
- Nearest neighbor queries (similarity search)
- Main trick: Try to store neighbors (in attribute space) in nearby storage locations (disk blocks, memory pages)
- Translate locality in attribute space in locality in storage space
- Difficult to achieve, key to good performance
- Why not B^{*}-trees?
- All B-trees need a total order on the keys
- For more than one dimension, no 1D-order exists

Data Skew

- We say data is skewed if its values to not follow the expected distribution
- In MDIS, the typical expectation is uniform distribution
- Anything not uniform is (more or the less) skewed
- Data can be skewed in one or more dimensions

Content of this Lecture

- Multidimensional Indexing
- Grid-Files
- General Structure
- Splits
- Kd-trees
- Multidimensional range queries on modern hardware

Grid-File

- Classical multidimensional index structure
- Simple: searching, (inserting), ((deleting))
- Good for uniformly distributed data
- Does not handle skewed data very well
- Many variations
- Design goals
- Index structure for point objects
- Support exact, partial match, range, and neighborhood queries
- Guaranteed "two IO" access (under some assumptions)
- All dimensions are treated the same
- Adapts dynamically to the number of points

First Idea: Fixed Grid

- [Does not adapt to data distribution at all]
- Idea
- Split space into equal-spaced cuboids or cells
- We need maximal and minimal values for each dimensions
- Directory stores one pointer to an index block for each cell
- Index blocks: Points with coordinates and pointer to data record

Operations

- Problem 1: Empty space
- Deleting a point
- Compute cell using coordinates
- Search cell in directory and load index block
- Search point and delete, if present (also delete in data block)
- Index block may become almost empty
- Index may consist of many almost empty index blocks
- And how should we set the number of splits per dimension?

Operations

- Problem 2: Index blocks only hold a fixed \# of pointers
- Inserting a point
- Locate and load index block
- If free space: insert point (also into data block)
- If no free space: Generate overflow index blocks
- No adaptation to skewed data distributions
- Degenerates to a scan if all points fall in the same (set of) cells

Principle of Grid-Files

- Partition each dimension into disjoint intervals (scales)
- Scales may be non-uniform and different for different dimensions
- Intersections of all intervals define all grid cells
- d-dimensional cuboids
- Each cell holds one pointer to the index block of the cell
- Each point falls into exactly one grid cell
- Many cells may point to same index block (less empty space)
- When cell overflows - split cell (no overflow index blocks)

scales

grid directory and grid cells

regions

Exact Point Search

- Finding query point p (with full coordinates)
- Keep scales for each dimension in memory
- Look-up query coordinates in scales and derive grid cell
- Extract pointer to index block from grid cell
- Load index block and scan for p
- Complexity
- We assume that the directory is in main memory
- Other techniques exist, i.e., B^{*}-tree over grid coordinates
- Load index block (1st IO)
- Search point in index block (no IO)
- Access record following pointer (2nd IO)
- Guaranteed 2 IO (two block random access)

Range Query, Partial Match Query

- Range query
- Compute grid cell coordinates for each end point
- All grid directory entries in that range may contain qualifying points
- Extract all pointers to index blocks and scan
- Partial match query
- Compute partial grid cell coordinates
- All grid directory entries with these coordinates may contain points
- Extract all pointers to index blocks and scan

Content of this Lecture

- Multidimensional Indexing
- Grid-Files
- General Structure
- Splits
- Kd-trees
- Multidimensional range queries on modern hardware

Inserting Points

- If index block has free space - no problem
- Otherwise (1st option): Split cuboid at new scale
- Choose a dimension and a scale to split
- Create new scale, create new index block, distribute points in overflown block according to the chosen split
- Insert point into matching index block
- This implicitly splits all other grid cells with the same scale
- All other cells: Copy pointer; old and new cells point to the same index block (only main memory work)

Choices

- Choice of dimension and scale to split is difficult
- Optimally, we would like to split as many currently very full index blocks as evenly as possible
- This is an optimization problem
- We may also consider future insertions
- Then we need formalized expectations (e.g. data distributions)

Example

- Imagine block holds 3 pointers
- Note: Usually we have unevenly spaced intervals
- New point causes overflow

- Vertical split
- Splits $2(3,4)$-point blocks
- Leaves one 3-point block
- Horizontal split
- Splits 2 (3,4)-point blocks
- Leaves one 3-point block
- Need to consider $\mathrm{O}\left(\mathrm{k}^{\mathrm{d}-1}\right)$ regions
- Where k= \# of scales per dimension
- Note: Those splits are not realized immediately on disk

Inserting Points -2-

- $2^{\text {nd }}$ option: If there are scales in the overflown region that do not yet have their own index pointers
- Chose best such split, create new index block, distribute points, update pointer in grid cell
- Other cells / blocks are not affected

Grid-File Example 1 (from J. Gehrke)

$$
(\mathrm{N}=6)
$$

Grid-File Example 2

($\mathrm{N}=6$)

A	1	3	5	7	8
10					
	B	4	6	9	11

Grid-File Example 3

($\mathrm{N}=6$)

А	B
С	B

A	1	7	8	13	14	15
B	2	4	6	9	11	12
C	3	5	10			

Grid-File Example 4

($\mathrm{N}=6$)

A	D	B
C	С	B

A	1	8	13	16		
	B	2	4	6	9	11
	12					
C	3	5	10			
	7	14	15			

Grid-File Example 5

($\mathrm{N}=6$)

A	H	D	F	B
A	I	D	F	B
A	I	G	F	B
E	E	G	F	B
C	C	C	C	B

Problems

- What if un-realized scales does not lead to even distribution of points during a split?
- New splits are created based on a local decision (the overflown region) and on past data
- But they influence other cells in the future
- Actually, we should split such that all affected cells are evenly distributed in the future - but we cannot

Deleting Points

- Search point and delete
- If index block become "almost" empty, merge blocks
- A merge is the removal of a split
- All other almost empty index blocks are candidates for merging
- A merge should build a convex region
- Or range queries need to look into unnecessarily many blocks
- This can become very difficult
- Potentially, more than two regions need to be merged to keep convexity condition
- No details here

Conclusions

- Grid-Files always split parallel to the dimension axes
- This is not always optimal
- Use others than rectangles as cells: circles, polygons, etc.
- Might not disjointly fill the space any more
- Allow overlaps - R trees
- Good: Good index block fill degrees if distribution of points does not change over time
- Good: Two IO guarantee (if directory fits into memory)
- Bad: Grid directory grows very fast
- Bad: Bad adaptation to "unevenly skewed" data
- The more dimensions, the worse

Humboldt
Universität
Informatik

Content of this Lecture

- Multidimensional Indexing
- Grid-Files
- kd-trees
- Multidimensional range queries on modern hardware

kd-tree

- Grid-File disadvantages
- All regions of the d-dimensional space are eventually split at the same dimension / scale
- First cell that overflows determines split
- This choice is global and never undone
- kd-trees
- Multidimensional variation of binary search trees
- Hierarchical splitting of space into regions
- Regions in different subtrees may use different split positions
- Better adaptation to clustered data than Grid-Files
- kd-tree originally is a main memory data structure

General Idea

- Binary, rooted tree
- Paths are selected by dimension / value
- Dimensions are not statically assigned to levels of the tree
- Data points are stored only in leaves
- A leaf stores all points in a n-dim hypercube with m border planes ($\mathrm{m} \leq \mathrm{n}$)

- Leaves are stored on disk

Example - the Brick wall

Local Adaptation

 Informatik

Search Operations

- Exact point search
- ?
- Range query
- ?
- Partial match query
- ?

Search Operations

- Exact point search
- In each inner node, decide direction based on split condition
- Search leaf for query point
- Complexity depends on depth of leaf
- kd-Trees are not balanced
- No guarantees (except data set size)
- Only leaves are on disk - 1 IO to obtain TIDs
- Range Query
- Follow all children which might have points within the range
- Need for multiple search paths
- Partial match query

kd-tree Insertion

- Find appropriate leaf block
- If free space available - insert, done
- Otherwise, chose split dimension and position
- This is a local decision; remains stable for the future of the subtree
- Find dimension and split that divides set of points into two sets
- Consider current points and split in sets of approximately equal size
- Consider known distributions of values in different dimensions
- Use alternation scheme for dimensions
- Finding "optimal" split points is expensive for high dimensional data (point set needs to be sorted in each dimension) - use heuristics
- Wrong decisions in early splits lead to tree degradation
- CS students at HU: Don't split at sex, place of birth, ...

Summary

- We gave an overview on MDIS
- Other MDIS's: Partitioned hashing, R-tree, Quad-Tree, X tree, hb tree, R+ tree, UB tree, ...
- Store objects more than once; other than rectangular cells; spatial objects; ...
- Not discussed: Similarity search
- Curse of dimensionality
- The more dimensions, the more difficult to manage an MDIS
- Grid-File: Every split creates exponentially many more cells
- Kd-Tree: Which dimension to chose for next split
- Often, linear scanning of objects is quicker
- When is "often"?

Content of this Lecture

- Multidimensional Indexing
- Grid-Files
- Kd-trees
- Multidimensional range queries on modern hardware

Scan or Index?

- "Hence, we consider an index structure to work 'well' if, on average, less than 20\% of blocks must be visited, and to 'fail' if, on average, more than 20% of blocks must be visited."
- Weber et al., VLDB 1998
- 20\%? Assumption: Scanning is ~ 5 times faster than random access
- MDIS always good for exact queries, but range queries?
- Does large memory and multi-core change the game?

Benchmark

- Three popular MDIS and two flavors of linear scans
- R-Tree, kd-Tree, VA-File
- Four different data sets
- Two real: 3D sensor data, 19D genomics data
- Two synthetic: Uniform, with multiple sub-clusters
- Synthetic workloads of range queries with varying selectivities
- All methods are parallelized and use SIMD
- Measurements on multi-core server with 1TB RAM
- [work by Stefan Sprenger (submitted)]

R-Tree

- Hierarchical data structure
- All points in a node are represented by their minimal bounding box (MBB)
- Inner nodes hold multiple MBBs
- On overflow, blocks (and MBBs) are split
- Splits propagate up the tree
- R-tree is balanced
- Designed for spatial objects
- MBB may overlap
- Even point searches may lead to multiple search paths

kd-Tree

- Unbalanced
- We inserts tuples in random order, which creates almost balanced trees
- Split dimension selected by roundrobin
- Leaf sizes adapted to cache lines

VA-File

- Similar to a GRID file
- Partition each dimension into equi-distance bins
- Bins are addresses using equal-size bitstrings
- „Approximate" address of an object is a m -part bitstring (m : Dimensions)
- Each bitstring value addresses a data block

Source: D. Lamb, "Search Techniques for Multimedia Databases" determined and data blocks scanned

- (Not adaptive at all)

Parallelization by Partitioning

- Most parallelization techniques build on partitioning the data into p disjoint partitions
- Let D be the set of points, each having k dimensions
- Horizontal partitioning
- Partitions contain |D|/p points
- We only use random partitioning
- No locality
- Would be very difficult to keep in
 case of updates
- Vertical partitioning
- Only possible if $k=p$
- Each partition contains one attribute of all |D| points

Searching a Tree in Parallel

- How to parallelize search through a tree over a large set of points?
- Option 1: Partition data set
- Partition data set horizontally into p partitions
- Usually $\mathrm{p}=\mathrm{t}$, \# of threads
- Build one tree per partition
- Given a query, all p trees are traversed in parallel

- Union of partitioned results gives final result

Searching a Tree in Parallel

- How to parallelize search through a tree over a large set of points?
- Option 2: Parallel traversal
- Build tree over entire data set
- Given a query, traverse the tree
- Whenever a parallel search path emerges, span a new thread
- When more paths emerge than tstart scheduling
- Different threads create
 independent results - union gives final result

Parallelization

- R-Tree, kd-Tree, VA File
- Partition data horizontally and build one tree per partition
- Given a query, all trees are traversed in parallel
- Number of partitions = number of threads
- SIMD is used in leaf nodes
- Scan
- Horizontal partitioning: All partitions are scanned by one thread in parallel
- Vertical partitioning: Scan each partition in parallel and with SIMD and build a bitmap flagging matching tuples
- Use fast bit operations to intersect all bitmaps for final result
- Very effective for partial match queries
- Only a fraction of data is touched
- But low degree-of-parallelism: \# threads used = \# dims in query

Results

- Randomly generated all-dim MDRQ executed over 1M uniformly distributed 20dimensional integer vectors
- 24 CPU threads, 256-bit wide SIMD registers
- SIMD does not yield much benefit
- Neither for single nor for multi threaded implementations
- Scans are faster despite high selectivity
- On uniformly distributed data
- VA-file beats other MDIS
- On uniformly distributed data

Figure 6: Throughput when executing MDRQ with an average selectivity of 0.1% on 1 M 20 -dimensional data objects depending on the used hardware features.

\# Dimensions, Selectivity

Figure 7: Throughput when executing range queries with an average selectivity of 0.4% (5 dimensions) to 0.0002% (more than 10 dimensions) on 1 M uniformly distributed data objects depending on dimensionality.

Figure 8: Throughput when executing range queries on 1M 5-dimensional uniformly distributed data objects using 24 software threads depending on query selectivity.

Real data, realistic workloads

Figure 12: Throughput of contestants when executing the GMRQB with varying selectivities (see Figure 4) on 10M 19dimensional data objects from the $\mathbf{1 0 0 0}$ Genomes Project dataset using $\mathbf{2 4}$ software threads (query templates are ordered by average selectivity, from low to high).

- Scans are faster up to very high selectivities
- Of course, MDI could be better tuned to modern hardware

Literatur

- Gaede, V. and Günther, O. (1998). "Multidimensional Access Methods." ACM Computing Surveys 30(2): 170231.
- Bentley, Jon Louis. "Multidimensional binary search trees used for associative searching." Communications of the ACM, 1975
- Nievergelt, Hinterberger, and Sevcik. "The grid file: An adaptable, symmetric multikey file structure." ACM TODS, 1984

Selbsttest

- How does a Grid File work?
- Static Grid files suffer from many empty blocks. How is solved in the original Grid file?
- If an index block overflows, a new scale is introduced. How much does this increase the size of the directory?
- What are strategies for choosing a split dimension in a kd-Tree?
- Why did we argue that a kd-Tree is a main memory data structure?
- What are typical properties of "modern hardware",, and how do they change database architectures?

