
Ulf Leser

Wissensmanagement in der
Bioinformatik

Multidimensionale Indexstrukturen

Data Warehousing
und

Data Mining

Ulf Leser: Data Warehousing und Data Mining 2

Content of this Lecture

• Multidimensional Indexing
• Grid-Files
• Kd-trees
• Multidimensional range queries on modern hardware

Ulf Leser: Data Warehousing und Data Mining 3

Multidimensional Queries (MDQ)

• Conditions on more than one dimension (=attribute)
– Combined through AND (intersection) or OR (union)

• Partial queries: Conditions on some but not all
dimensions

• A MDQ selects a sub-cube
– 2D: “All beverage sales in March 2000“
– 4D: “All beverage sales in 2000 in Berlin to male customers”

Ulf Leser: Data Warehousing und Data Mining 4

Composite Indexes

month_id

product_id

Point X Y

P1 2 2

P2 2 2

P3 5 7

P4 5 6

P5 8 6

P6 8 9

P7 9 3

• Imagine composite index on (X, Y)
• Efficiently supported

– Full box queries (conditions in all dimensions X and Y)
– Points/range with X between …

• Not efficiently supported
– Points/range with Y between …

Ulf Leser: Data Warehousing und Data Mining 5

Composite Index

• One index over two concatenated attribute values (X, Y)

• For an concatenated index I to be eligible for a query Q,

a prefix of the attributes of I must be present in Q
– The longer the prefix in the query, the better
– Better - higher the selectivity, more pruning

• Alternatives: Use independent indexes on each attribute

1 2 1 4 8 2 8 3 9 1

Ulf Leser: Data Warehousing und Data Mining 6

Independent Indexes

• One index per attribute

• Point/range query on one attribute: supported
• Point/range query on >1 attributes

– Compute TID lists for each attribute
– Intersect

Index on X Index on Y

Ulf Leser: Data Warehousing und Data Mining 7

Independent versus Composite Index

• Consider 3 dimensions of range 1,...,100
– 1.000.000 points, uniformly distributed at random
– Assume index blocks hold 50 keys or records
– B*-Index on each attribute has height 4

• Find points with 40<x≤50, 40<y≤50, 40<z≤50
• Using independent indexes

– Using x-index, we generate TID list |X|~100.000
– Using y-index, we generate TID list |Y|~100.000
– Using z-index, we generate TID list |Z|~100.000
– For each index, we have 4+100.000/50=2004 IO

• Assumption: TIDs sorted in sequential blocks with 50 TIDs each

– Hopefully, we can keep the three lists in main memory
– Intersection yields ~1.000 points with 6012 IO

Ulf Leser: Data Warehousing und Data Mining 8

Independent versus Composite Index

• Consider 3 dimensions of range 1,...,100
– 1.000.000 points, uniformly distributed at random
– Assume index blocks hold 50 keys or records
– B*-Index on each attribute has height 4

• Find points with 40<x≤50, 40<y≤50, 40<z≤50
• Using composite index (X,Y,Z)

– Number of indexed points doesn’t change
– Key length increases – assume blocks hold only 30 (10) keys or

records
– Index has height 5 (6)

• This is worst case – index blocks only 50% filled

– Total: 5 (6) +1000/30 (10) ~38 IO (106)
• Matching points are packed in a few blocks
• This will be random access IO

Ulf Leser: Data Warehousing und Data Mining 9

Conclusion

• We want composite indexes
• Much less IO
• Things get worse for larger d

– TID lists don’t fit into main memory – paging, more IO
– Intersecting many large TID lists can be more work than scanning

all points once

• Advantage of composite indexes grows “exponentially”
with number of dimensions and selectivity of selections

• Things get complicated if data is not uniformly distributed
– Dependent attributes (age – weight, income, height, …)

• But: For partial queries, we would need to index all
combinations

Ulf Leser: Data Warehousing und Data Mining 10

Solutions

• One solution: Bitmap-Index
– Bad choice if cardinality of attributes is high
– Only point-queries are supported efficiently
– “Read-only”, always needs to go back to the data files

• Other solution: Multidimensional index structures (MDIS)
– Large improvements in principle
– Advantages: Can grow/shrink; handle skew to some degree;

nearest neighbor search
– Made it into practice only for spatial data (small d)

• “Curse of dimensionality”: MDIS degrade for large d
– Bad space usage, excessive management cost
– Accesses degrade to sans

Ulf Leser: Data Warehousing und Data Mining 11

Multidimensional Indexes

• All dimensions are equally important
• Should support all types of queries

– Exact match point queries, range queries
– Partial match or range queries
– Nearest neighbor queries (similarity search)

• Main trick: Try to store neighbors (in attribute space) in
nearby storage locations (disk blocks, memory pages)
– Translate locality in attribute space in locality in storage space
– Difficult to achieve, key to good performance

• Why not B*-trees?
– All B-trees need a total order on the keys
– For more than one dimension, no 1D-order exists

Ulf Leser: Data Warehousing und Data Mining 12

Data Skew

• We say data is skewed if its values to not follow the
expected distribution

• In MDIS, the typical expectation is uniform distribution
• Anything not uniform is (more or the less) skewed
• Data can be skewed in one or more dimensions

Ulf Leser: Data Warehousing und Data Mining 13

Content of this Lecture

• Multidimensional Indexing
• Grid-Files

– General Structure
– Splits

• Kd-trees
• Multidimensional range queries on modern hardware

Ulf Leser: Data Warehousing und Data Mining 14

Grid-File

• Classical multidimensional index structure

– Simple: searching, (inserting), ((deleting))
– Good for uniformly distributed data
– Does not handle skewed data very well
– Many variations

• Design goals
– Index structure for point objects
– Support exact, partial match, range, and neighborhood queries
– Guaranteed “two IO” access (under some assumptions)
– All dimensions are treated the same
– Adapts dynamically to the number of points

Ulf Leser: Data Warehousing und Data Mining 15

First Idea: Fixed Grid

• [Does not adapt to data distribution at all]
• Idea

– Split space into equal-spaced cuboids or cells
• We need maximal and minimal values for each dimensions

– Directory stores one pointer to an index block for each cell
– Index blocks: Points with coordinates and pointer to data record

Directory
(memory)

Index blocks
(disk)

Data blocks
(disk)

Ulf Leser: Data Warehousing und Data Mining 16

Operations

• Problem 1: Empty space
• Deleting a point

– Compute cell using coordinates
– Search cell in directory and load index block
– Search point and delete, if present (also delete in data block)
– Index block may become almost empty

• Index may consist of many almost empty index blocks
– And how should we set the number of splits per dimension?

Ulf Leser: Data Warehousing und Data Mining 17

Operations

• Problem 2: Index blocks only hold a fixed # of pointers
• Inserting a point

– Locate and load index block
– If free space: insert point (also into data block)
– If no free space: Generate overflow index blocks
– No adaptation to skewed data distributions
– Degenerates to a scan if all points fall in the same (set of) cells

Ulf Leser: Data Warehousing und Data Mining 18

Principle of Grid-Files

• Partition each dimension into disjoint intervals (scales)
– Scales may be non-uniform and different for different dimensions

• Intersections of all intervals define all grid cells
– d-dimensional cuboids
– Each cell holds one pointer to the index block of the cell
– Each point falls into exactly one grid cell
– Many cells may point to same index block (less empty space)
– When cell overflows – split cell (no overflow index blocks)

 scales grid directory and grid cells regions index blocks

Ulf Leser: Data Warehousing und Data Mining 19

Exact Point Search

• Finding query point p (with full coordinates)
– Keep scales for each dimension in memory
– Look-up query coordinates in scales and derive grid cell
– Extract pointer to index block from grid cell
– Load index block and scan for p

• Complexity
– We assume that the directory is in main memory

• Other techniques exist, i.e., B*-tree over grid coordinates

– Load index block (1st IO)
– Search point in index block (no IO)
– Access record following pointer (2nd IO)
– Guaranteed 2 IO (two block random access)

Ulf Leser: Data Warehousing und Data Mining 20

Range Query, Partial Match Query

• Range query

– Compute grid cell coordinates for each end point
– All grid directory entries in that range may contain qualifying

points
– Extract all pointers to index blocks and scan

• Partial match query
– Compute partial grid cell coordinates
– All grid directory entries with these coordinates may contain

points
– Extract all pointers to index blocks and scan

Ulf Leser: Data Warehousing und Data Mining 21

Content of this Lecture

• Multidimensional Indexing
• Grid-Files

– General Structure
– Splits

• Kd-trees
• Multidimensional range queries on modern hardware

Ulf Leser: Data Warehousing und Data Mining 22

Inserting Points

• If index block has free space – no problem
• Otherwise (1st option): Split cuboid at new scale

– Choose a dimension and a scale to split
– Create new scale, create new index block, distribute points in

overflown block according to the chosen split
– Insert point into matching index block
– This implicitly splits all other grid cells with the same scale
– All other cells: Copy pointer; old and new cells point to the

same index block (only main memory work)

Ulf Leser: Data Warehousing und Data Mining 23

Choices

• Choice of dimension and scale to split is difficult
– Optimally, we would like to split as many currently very full

index blocks as evenly as possible
• This is an optimization problem

– We may also consider future insertions
• Then we need formalized expectations (e.g. data distributions)

Ulf Leser: Data Warehousing und Data Mining 24

Example

• Imagine block holds 3 pointers
– Note: Usually we have unevenly

spaced intervals
• New point causes overflow
• Vertical split

– Splits 2 (3,4)-point blocks
– Leaves one 3-point block

• Horizontal split
– Splits 2 (3,4)-point blocks
– Leaves one 3-point block

• Need to consider O(kd-1) regions
– Where k= # of scales per dimension

• Note: Those splits are not realized
immediately on disk

Ulf Leser: Data Warehousing und Data Mining 25

Inserting Points -2-

• 2nd option: If there are scales in the overflown region

that do not yet have their own index pointers
– Chose best such split, create new index block, distribute points,

update pointer in grid cell
– Other cells / blocks are not affected

Ulf Leser: Data Warehousing und Data Mining 26

 A

A A

 (N=6)

1

2

3
4

5

6

1 2 3 4 5 6

Grid-File Example 1 (from J. Gehrke)

Ulf Leser: Data Warehousing und Data Mining 27

1 2 3 4 5 6 A

A A A B A B

7

8 9

10 11

12

1 3 5 7 A
2 4 6 B

8

9

10

11 12

 (N=6)

1

2

3
4

5

6

Grid-File Example 2

Ulf Leser: Data Warehousing und Data Mining 28

A B A B A B

C

A B

C B

1 3 5 7 8 10 A
2 4 6 9 11 12 B

(N=6)

7

8 9

10 11

12

1

2

3
4

5

6

13

14

15

1 7 8 13 A
2 4 6 9 11 12 B
3 5 10 C

14 15

Grid-File Example 3

Ulf Leser: Data Warehousing und Data Mining 29

A B

C

A B

C B

A D B

C

A D

C C

B

B

(N=6)

7

8 9

10 11

12

1

2

3
4

5

6

13

14

15

1 3 5 7 8 10 A
2 4 6 9 11 12 B

1 7 8 13 A
2 4 6 9 11 12 B
3 5 10 C

14 15

16

1 2 3 4 5 6 A 1 3 5 7 A
2 4 6 B

1 7 8 13 A
2 4 6 9 11 12 B
3 5 10 C

1 8 13 16 A
2 4 6 9 11 12 B
3 5 10 C
7 14 15 D

Grid-File Example 4

Ulf Leser: Data Warehousing und Data Mining 30

(N=6)

x1 x2 x3 x4

y4

y2

y1

A B

C

D

E

F

G

H

I y3

A H

A I

D

D

F

F

B

B

A I G F B

E E G F B

C C C C B

Grid-File Example 5

Ulf Leser: Data Warehousing und Data Mining 31

Problems

• What if un-realized scales does not lead to even
distribution of points during a split?
– New splits are created based on a local decision (the overflown

region) and on past data
– But they influence other cells in the future

• Actually, we should split such that all affected cells are
evenly distributed in the future – but we cannot

Ulf Leser: Data Warehousing und Data Mining 32

Deleting Points

• Search point and delete
• If index block become “almost” empty, merge blocks

– A merge is the removal of a split
– All other almost empty index blocks are candidates for merging
– A merge should build a convex region

• Or range queries need to look into unnecessarily many blocks

– This can become very difficult
• Potentially, more than two regions need to be merged to keep

convexity condition

• No details here

Ulf Leser: Data Warehousing und Data Mining 33

Conclusions

• Grid-Files always split parallel to the dimension axes
– This is not always optimal
– Use others than rectangles as cells: circles, polygons, etc.

• Might not disjointly fill the space any more
• Allow overlaps - R trees

• Good: Good index block fill degrees if distribution of
points does not change over time

• Good: Two IO guarantee (if directory fits into memory)
• Bad: Grid directory grows very fast
• Bad: Bad adaptation to “unevenly

skewed” data
– The more dimensions, the worse

Ulf Leser: Data Warehousing und Data Mining 34

Content of this Lecture

• Multidimensional Indexing
• Grid-Files
• kd-trees
• Multidimensional range queries on modern hardware

Ulf Leser: Data Warehousing und Data Mining 35

kd-tree

• Grid-File disadvantages

– All regions of the d-dimensional space are eventually split at the
same dimension / scale

– First cell that overflows determines split
– This choice is global and never undone

• kd-trees
– Multidimensional variation of binary search trees
– Hierarchical splitting of space into regions
– Regions in different subtrees may use different split positions
– Better adaptation to clustered data than Grid-Files
– kd-tree originally is a main memory data structure

Ulf Leser: Data Warehousing und Data Mining 36

General Idea

(4,6)
(3,3)

(0,4)
(1,1)

(5,6)

(3,1)
 (6,4)

x<3 x≥3

x<5

y<3

x ≥ 5

y ≥ 2

y<7
y≥

1
y<1

(2,0)

y≥3
y < 2

• Binary, rooted tree
• Paths are selected by

dimension / value
• Dimensions are not

statically assigned to
levels of the tree

• Data points are
stored only in leaves

• A leaf stores all points in a
n-dim hypercube with m
border planes (m≤n)

• Leaves are stored on disk

Ulf Leser: Data Warehousing und Data Mining 37

Example – the Brick wall

(4,6)
(3,3)

(0,4)
(1,1)

(3,1)
 (6,4)

x<3 x≥3

x<5

y<3

x ≥ 5

y ≥ 2

y<7
y≥

1
y<1

(2,0)

y≥3
y < 2

10

10

(4,9)

Ulf Leser: Data Warehousing und Data Mining 38

Local Adaptation

Ulf Leser: Data Warehousing und Data Mining 39

Search Operations

• Exact point search

– ?

• Range query
– ?

• Partial match query
– ?

Ulf Leser: Data Warehousing und Data Mining 40

Search Operations

• Exact point search

– In each inner node, decide direction based on split condition
– Search leaf for query point
– Complexity depends on depth of leaf
– kd-Trees are not balanced

• No guarantees (except data set size)

– Only leaves are on disk – 1 IO to obtain TIDs

• Range Query
– Follow all children which might have points within the range
– Need for multiple search paths

• Partial match query
– …

Ulf Leser: Data Warehousing und Data Mining 41

kd-tree Insertion

• Find appropriate leaf block
• If free space available – insert, done
• Otherwise, chose split dimension and position

– This is a local decision; remains stable for the future of the subtree
– Find dimension and split that divides set of points into two sets

• Consider current points and split in sets of approximately equal size
• Consider known distributions of values in different dimensions
• Use alternation scheme for dimensions
• Finding “optimal” split points is expensive for high dimensional data

(point set needs to be sorted in each dimension) – use heuristics

• Wrong decisions in early splits lead to tree degradation
– CS students at HU: Don’t split at sex, place of birth, …

Ulf Leser: Data Warehousing und Data Mining 42

Summary

• We gave an overview on MDIS
• Other MDIS’s: Partitioned hashing, R-tree, Quad-Tree, X

tree, hb tree, R+ tree, UB tree, …
– Store objects more than once; other than rectangular cells;

spatial objects; …

• Not discussed: Similarity search
• Curse of dimensionality

– The more dimensions, the more difficult to manage an MDIS
• Grid-File: Every split creates exponentially many more cells
• Kd-Tree: Which dimension to chose for next split

– Often, linear scanning of objects is quicker
• When is “often”?

Ulf Leser: Data Warehousing und Data Mining 43

Content of this Lecture

• Multidimensional Indexing
• Grid-Files
• Kd-trees
• Multidimensional range queries on modern hardware

Ulf Leser: Data Warehousing und Data Mining 44

Scan or Index?

• "Hence, we consider an index structure to work
‘well’ if, on average, less than 20% of blocks must
be visited, and to ‘fail’ if, on average, more than
20% of blocks must be visited."
– Weber et al., VLDB 1998
– 20%? Assumption: Scanning

is ~5 times faster than
random access

– MDIS always good for exact
queries, but range queries?

• Does large memory and
multi-core change the
game?

Ulf Leser: Data Warehousing und Data Mining 45

Benchmark

• Three popular MDIS and two flavors of linear scans

– R-Tree, kd-Tree, VA-File

• Four different data sets
– Two real: 3D sensor data, 19D genomics data
– Two synthetic: Uniform, with multiple sub-clusters

• Synthetic workloads of range queries with varying
selectivities

• All methods are parallelized and use SIMD
• Measurements on multi-core server with 1TB RAM
• [work by Stefan Sprenger (submitted)]

Ulf Leser: Data Warehousing und Data Mining 46

R-Tree

• Hierarchical data structure
• All points in a node are

represented by their
minimal bounding box (MBB)

• Inner nodes hold multiple MBBs
• On overflow, blocks (and MBBs)

are split
• Splits propagate up the tree

– R-tree is balanced

• Designed for spatial objects
– MBB may overlap

• Even point searches may lead
to multiple search paths

 b5

b4

b3

b2

b1

c5

c3

c2

c4

c8

c1 c7

c6

 c12

c11

 c10

c9

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

Ulf Leser: Data Warehousing und Data Mining 47

kd-Tree

• Unbalanced
– We inserts tuples in

random order, which
creates almost
balanced trees

• Split dimension
selected by round-
robin

• Leaf sizes adapted to
cache lines

(4,6)
(3,3)

(0,4)
(1,1)

(5,6)

(3,1)
 (6,4)

x<3 x≥3

x<5

y<3

x ≥ 5

y ≥ 2

y<
7

y≥
1

y<1

(2,0)

y≥3
y < 2

Ulf Leser: Data Warehousing und Data Mining 48

VA-File

• Similar to a GRID file
• Partition each dimension

into equi-distance bins
• Bins are addresses using

equal-size bitstrings
• „Approximate“ address of

an object is a m-part
bitstring (m: Dimensions)

• Each bitstring value
addresses a data block

• Upon a range query, all
matching bit-strings are
determined and data blocks
scanned

• (Not adaptive at all)

Source: D. Lamb, “Search Techniques for Multimedia
Databases”

Ulf Leser: Data Warehousing und Data Mining 49

Parallelization by Partitioning

• Most parallelization techniques build on partitioning the
data into p disjoint partitions

• Let D be the set of points, each having k dimensions
• Horizontal partitioning

– Partitions contain |D|/p points
– We only use random partitioning

• No locality
• Would be very difficult to keep in

case of updates

• Vertical partitioning
– Only possible if k=p
– Each partition contains

one attribute of all |D| points

Ulf Leser: Data Warehousing und Data Mining 50

Searching a Tree in Parallel

• How to parallelize search
through a tree over a large set
of points?

• Option 1: Partition data set
– Partition data set horizontally into p

partitions
• Usually p=t, # of threads

– Build one tree per partition
– Given a query, all p trees are

traversed in parallel
– Union of partitioned results gives

final result

Ulf Leser: Data Warehousing und Data Mining 51

Searching a Tree in Parallel

• How to parallelize search
through a tree over a large set
of points?

• Option 2: Parallel traversal
– Build tree over entire data set
– Given a query, traverse the tree
– Whenever a parallel search path

emerges, span a new thread
– When more paths emerge than t –

start scheduling
– Different threads create

independent results – union gives
final result

Ulf Leser: Data Warehousing und Data Mining 52

Parallelization

• R-Tree, kd-Tree, VA File
– Partition data horizontally and build one tree per partition
– Given a query, all trees are traversed in parallel
– Number of partitions = number of threads
– SIMD is used in leaf nodes

• Scan
– Horizontal partitioning: All partitions are scanned by one thread

in parallel
– Vertical partitioning: Scan each partition in parallel and with

SIMD and build a bitmap flagging matching tuples
– Use fast bit operations to intersect all bitmaps for final result
– Very effective for partial match queries

• Only a fraction of data is touched
• But low degree-of-parallelism: # threads used = # dims in query

Ulf Leser: Data Warehousing und Data Mining 53

Results

• Randomly generated all-dim
MDRQ executed over 1M
uniformly distributed 20-
dimensional integer vectors

• 24 CPU threads, 256-bit
wide SIMD registers

• SIMD does not yield much
benefit
– Neither for single nor for multi

threaded implementations

• Scans are faster despite
high selectivity
– On uniformly distributed data

• VA-file beats other MDIS
– On uniformly distributed data

hor. part vert. part

Ulf Leser: Data Warehousing und Data Mining 54

Dimensions, Selectivity

hor. vert.

Ulf Leser: Data Warehousing und Data Mining 55

Real data, realistic workloads

• Scans are faster up to very high selectivities
• Of course, MDI could be better tuned to modern

hardware

Ulf Leser: Data Warehousing und Data Mining 56

Literatur

• Gaede, V. and Günther, O. (1998). "Multidimensional
Access Methods." ACM Computing Surveys 30(2): 170-
231.

• Bentley, Jon Louis. "Multidimensional binary search
trees used for associative searching." Communications
of the ACM, 1975

• Nievergelt, Hinterberger, and Sevcik. "The grid file: An
adaptable, symmetric multikey file structure." ACM
TODS, 1984

Ulf Leser: Data Warehousing und Data Mining 57

Selbsttest

• How does a Grid File work?
• Static Grid files suffer from many empty blocks. How is

solved in the original Grid file?
• If an index block overflows, a new scale is introduced.

How much does this increase the size of the directory?
• What are strategies for choosing a split dimension in a

kd-Tree?
• Why did we argue that a kd-Tree is a main memory

data structure?
• What are typical properties of “modern hardware”,, and

how do they change database architectures?

	Data Warehousing�und�Data Mining
	Content of this Lecture
	Multidimensional Queries (MDQ)
	Composite Indexes
	Composite Index
	Independent Indexes
	Independent versus Composite Index
	Independent versus Composite Index
	Conclusion
	Solutions
	Multidimensional Indexes
	Data Skew
	Content of this Lecture
	Grid-File
	First Idea: Fixed Grid
	Operations
	Operations
	Principle of Grid-Files
	Exact Point Search
	Range Query, Partial Match Query
	Content of this Lecture
	Inserting Points
	Choices
	Example
	Inserting Points -2-
	Grid-File Example 1 (from J. Gehrke)
	Grid-File Example 2
	Grid-File Example 3
	Grid-File Example 4
	Grid-File Example 5
	Problems
	Deleting Points
	Conclusions
	Content of this Lecture
	kd-tree
	General Idea
	Example – the Brick wall
	Local Adaptation
	Search Operations
	Search Operations
	kd-tree Insertion
	Summary
	Content of this Lecture
	Scan or Index?
	Benchmark
	R-Tree
	kd-Tree
	VA-File
	Parallelization by Partitioning
	Searching a Tree in Parallel
	Searching a Tree in Parallel
	Parallelization
	Results
	# Dimensions, Selectivity
	Real data, realistic workloads
	Literatur
	Selbsttest

