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Content of this Lecture 

 
 
 

• Language Models 
• Markov Models 
• Data sparsity 
• Language Models for IR 

 
• Most material from [MS99], Chapter 6 
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Problem 

• Given a prefix of a sentence: Predict the next word 
– “At 5 o’clock, we usually drink …” 

• “tea” – quite likely 
• “beer” – quite unlikely  
• “a beer” – slightly more likely, but still 
• “biscuits” – semantically wrong 
• “the windows need cleaning” – syntactically wrong 

• Similar to Shannon’s Game: Given a series of characters, 
predict the next one (used in communication theory) 

• Abstract formulation: Given a language L and the prefix 
S[1..n] of a sequence S, S∈L: Predict S[n+1] 

• This is a ranking problem – no single solution 
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Applications 

• Speech/character recognition 
– Given a transcribed prefix of a sentence – which word do we 

expect next? 

• Automatic translation 
• Given a translated prefix of a sentence – what do we expect next? 

• T9: “… information about common word combinations can 
also be learned …” 

• General: Use probabilities of next word as a-priori 
probability for interpreting the next signal 
– Helps to disambiguate between different options 
– Helps to make useful suggestions 
– Helps to point to likely errors (observation ≠ expectation) 
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Language Models 

• Problem: Learn a model of a language allowing predictions 
• Classical approach: Grammars 

– Regular, context-free, … 
– Grammars can be learned from examples 

• Not trivial, underdetermined, not covered here 

– Usually, multiple continuations of a prefix are allowed 
– (Deterministic) Grammars do not help in deciding which is the most 

probable one 
– Better: Probabilistic grammars 

• Probabilistic automata: Transitions have a relative frequency 

• Grammars based on grammatical categories typically not 
fine grained enough: Many equally probable continuations 
remain 
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N-Grams over Words 

 
• Popular and simple approach: N-gram models 

– “Indeed, it is difficult to beat a trigram model on the purely linear 
task of predicting the next word” [MS99] 

• Definition 
A (word) n-gram is a sequence of n words. 

• Usage 
– Count frequencies of all n-grams in a corpus of the language 

• Slide window of size n over text and keep counter for each n-gram 
ever seen  

– Given a sentence prefix, predict most probable continuation(s) 
based on n-gram frequencies – how? 
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N-Grams for Language Modeling 

• Assume a sentence prefix with n-1 words <w1,…,wn-1> 
• Look-up counts of all n-grams starting with <w1,…,wn-1> 

– I.e., n-grams <w1,…,wn-1,wn> 

• Choose that wn whose n-gram is the most frequent one 
• More formally 

– Compute, for every possibly wn,  
 
 
 

– Choose wn which maximizes p(wn)  
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Which n? 

 
 

• In language modeling, one usually chooses n=3-4  
• That seems small, but most language effects are local 

– But not all: “Dan swallowed the large, shiny, red …” (Car? Pil? 
Strawberry?) 

• Also, we cannot obtain robust relative counts for larger n - 
not enough training data 
– Data sparsity problem 
– In high dimensional problems, training data is always sparse 
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Content of this Lecture 

 
 

• Language Models 
• Markov Models 
• Data sparsity 
• Language Models for IR 
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History and Applications 

• Andrej Andrejewitsch Markov (1856-1922) 
– Russian Mathematician 
– Developed Markov Models (or Markov Chains) as a method for 

analyzing language  
– Markov, A. A. (1913). "Beispiel statistischer Untersuchungen des 

Textes ‚Eugen Onegin‘, das den Zusammenhang von Ereignissen in 
einer Kette veranschaulicht (Original in Russisch)." Bulletin de 
l'Academie Imperiale des Sciences de St.-Petersbourg: 153-162. 

• Markov Models and Hidden Markov Models are popular in 
– Language Modeling, Part-of-speech tagging 
– Speech recognition 
– Named entity recognition / information extraction 
– Biological sequence analysis 
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Markov Models 

 
• Definition 

Assume an alphabet Σ. A Markov Model of order 1 is a 
sequential stochastic process with |Σ| states s1, …, sn with 
– Every state emits exactly one symbol from Σ  
– No two states emit the same symbol 
– For a sequence <w1,w2,…> of states, the following holds 

p(wn=sn|wn-1=sn-1, wn-2=sn-2,…, w1=s1) = p(wn=sn|wn-1=sn-1) 

• Remarks 
– ai,j =p(wn=sj|wn-1=si) are called transition probabilities 
– In language modeling, Σ = {set of all words of a language} 
– Computing good start probabilities is an issue we essentially ignore 



Ulf Leser: Information Retrieval, Winter Semester 2016/2017                                                           12 

Visualization 

• Since every state emits exactly one word, we can merge 
states and words  

• State transition graph 
– Nodes are states (labeled with their emission) 
– Arcs are transitions labeled with a non-zero probability 

• Example 
– “I go home”,  

“I go shopping”,  
“I am shopping, 
“I go abroad”,  
“Go shopping” 

I home 

go shopping 

0,75 

am 0,25 

1 

0,25 

0,50 
abroad 

0,25 
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Probability of a Sequence of States (=a Sentence) 
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• Assume a Markov Model M of order 1 and a sequence S of 
states with |S|=n 

• With which probability was S generated by M, i.e., what is 
the value of p(S|M)? 
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Example 

• p(“I go home”)  = p(w1=„I“|w0)* p(w2=„go“|w1=„I“) * 
             p(w3=„home“|w2=„go“) 
       = 1 * 0.75* 0.25 = 0.1875 

• Problem: Pairs we have not seen in training get prob. 0 
– Example: “I am abroad” 
– With this small “corpus”, almost all transitions get p=0 

I home 

go shopping 

0,75 

am 0,25 

1 

0,25 

0,50 
abroad 

0,25 
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Stochastic Processes 

 
• Consider language generation as a sequential stochastic 

process 
• At each stage, the process generates a new word 

– Like a DFA, but transitions have probabilities 

• Question: How big is the memory? How many previous 
words does the process use to determine the next step? 
– 0: Markov chain of order 0: No memory at all 
– 1: Markov chain order 1: Next word only depends on prev. word 
– 2: Markov chain order 2: Next word only depends on 2 prev. words 
– … 
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Higher Order Markov Models 

 
 

• Markov Models of order k 
– The probability of being in state s after n steps depends on the k 

predecessor states sn-1,…sn-k 

p(wn=sn|wn-1=sn-1, wn-2=sn-2,…, w1=s1) = p(wn=sn|wn-1=sn-1, …, wn-k=sn-k) 

• We can trivially transform any order k model M (k>1) into 
a Markov Model of order 1 (M’) 
– M’ has |M|k states (all combinations of states of length k) 
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Predicting the Next State 

• The problem of language modeling is a bit different 
• We do not want to reason about an entire sequence, but 

only about the next state, given some previous states 
• N-gram model = Markov Model order n-1  
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This is the most frequent 
bi-gram with prefix wn-1 

I home 

go shopping 

0,75 

am 0,25 

1 

0,25 

0,50 

abroad 

0,25 



Ulf Leser: Information Retrieval, Winter Semester 2016/2017                                                           18 

Problem 

 
• We learn our transition probabilities from a limited sample  
• Thus, we only estimate the true transition probabilities 
• Introduces an error which we should try to remove 

– Sample selection is important 
– Problem is researched a lot in statistics 

• Extreme: Transitions we do not see at all in the corpus 
– Get a probability of 0  
– Will never be predicted 
– This does not mean that they are non-existing in the language 

• Our model (yet) cannot adequately cope with data sparsity 
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Importance of Data Sparsity 

• How many n-grams do exist in principle? 
– Assume a language of 20.000 words 
– n=1: 20.000, n=2: 4E8, n=3: 8E12, n=4: 1.6E17, … 
– Rough numbers: Natural languages have many more words, but 

most combinations are not allowed 

• In natural language corpora, almost all n-grams with n>4 
are very sparse 
– Exponential growth cannot be balanced by “use larger corpora” 
– Especially very specific n-grams are prone to be overlooked 

• Trade-off 
– Large n: More expressive model, but bad transition estimations 
– Small n: Less expressive model, but better transition estimates 
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Example 

• Unigrams: Always the 
most frequent word in 
the corpus, does not 
differentiate 
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Example 

 
 
 

• Bi-grams: Correct 
word often ranks high, 
but not always 
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Example 

 
 
 
 
 
 
 

• Tri-grams: Has a hit, 
but already suffers 
from sparsity 

• Four-grams: Unusable 
 

• Corpus: Fraction of Jane 
Austen’s oeuvre, ~600.000 
tokens, data from [MS99] 
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Content of this Lecture 

 
 

• Language Models 
• Markov Models 
• Data sparsity 
• Language Models for IR 
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Solutions we will not Discuss in Detail 

 
• Reduce the number of words using stemming 

– Might help to go from n=3..4 to n=4…5 
– Important grammatical clues are lost 

• More abstract: Use some form of “binning” of tokens into 
classes and compute n-grams over token classes, not 
token 
– All numbers -> one class 
– All verbs -> one class (POS tags) 
– All verbs related to “movement” -> one class 
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Statistical Estimators 

• We were a bit sloppy so far 
• We want 

 
 

• But we only have 
 

• So far, we always implicitly assumed   
 
 
– N: all observed n-grams 
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MLE for N-gram Models 

 
 

• This is called a Maximum Likelihood Estimator (MLE) 
• MLE gives maximum likelihood to the training data 

– Gives zero probability to all events not in the training data 
– The probability mass is spent entirely on the training data 
– Overfitting 

• Need to smooth the estimates to account for the 
limitations of the sample 
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Smoothing I: Laplace‘s Law 

• Give some probability mass to unseen events 
• Oldest (and simplest) suggestion: “Adding one” 

 
 

 

– Where B is the number of possible n-grams, i.e., Kn 
• K: Vocabulary, all different words 

– All n-grams get a probability≠0 

• But – moves too much mass to the unknown 
– Estimates for seen n-grams are scaled down dramatically 
– Estimates for unseen n-grams are small, but there are so many 

• And many of them are truly impossible 

– In a corpus of 40 M words with K~400T, 99.7% of the total 
probability mass is spend in unseen events  
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Smoothing II: Lidstone‘s Law 

• Laplace not suitable if there are many events, but few seen  
• Lidstone’s law gives less probability mass to unseen events 

 
 

 
– Small λ: More mass is given to seen events 
– Typical estimate is λ=0.5 
– Appropriate values can be learned (next slide) 

• Still: Estimate of seen events is linear in the MLE estimate 
– Not a good approximation of empirical distributions 

• Other: Good-Turing Estimator, n-gram interpolations, … 

BN
wwcountwwp n

nLIP *
),...,(),...,( 1

1 λ
λ

+
+

=



Ulf Leser: Information Retrieval, Winter Semester 2016/2017                                                           29 

Learning Appropriate Values for λ 

 
• We “simulate” seen and unseen events 
• Divide corpus in two disjoint parts C1 and C2 

• Count frequencies of n-grams in C1 

• Let c be the number of n-grams from C1 not present in C2 

• Set λ=c/B 
– The probability of an n-gram (in C2)  to be considered as not 

existing although in reality it does exist 
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Option III: Back-Off Models 

• If we cannot find a n-gram with count≠0, use a (n-1)-gram 
– Or an n-2 gram, … 

• Thus, in case there is no p(w1,…,wn)≠0, we “back off” to a 
simpler model 

 
 
 

– Stop at the first (n-k)-gram with non-zero count 

• Alternative: Always look at different n’s 
– With different weights 

or
wwp
wwpor

wwp
wwpor

wwp
wwpwwwp

n

n

n

n

n

n
nn ),...(

),...,(
),...(
),...,(

),...(
),...,(),...,|(

13

3

12

2

11

1
11

−−−
− =

)(
)(

),(
),(

),,()( 3
1

1
2

12

12
1 n

n

nn

nn

nnn
n wp

wp
wwp

wwp
wwwpwp λλλ ++=

−

−

−−

−−



Ulf Leser: Information Retrieval, Winter Semester 2016/2017                                                           31 

Content of this Lecture 

 
 

• Language Models 
• Markov Models 
• Data sparsity 
• Language Models for IR 
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New IR Model 

 
• Recent trend in IR: Relevance based on language models 
• Idea: See a document as a “language” 

– Learn a model Md of this “language” (document) 
– Compute with which probability p(d|q) a given query has generated 

the model (=document) 
– Rank documents based on these probabilities 

• Sounds weird, but leads to a simple and well justified 
approach 

• Very successful in recent evaluations 
• Smoothing is crucial – docs are too small 
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Approach 

• As docs are small, only unigram models are sensible 
• Model of a doc: Relative frequencies of all its words 
• Compute 

 
 
– p(q) is equal for all d – irrelevant for ranking 
– p(d) can be used to incorporate a-prior knowledge (e.g. prestige), 

but often is set to uniform – irrelevant for ranking 

• We replace d with its model and obtain 
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Discussion 

 
 

• Very simple 
• Principled approach to justify usage of tf values 
• More powerful for longer queries 
• Problems 

– Words in q not in d: Smoothing 
– Where is idf gone? 
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Smoothing a Language Model for IR 

• For instance, if k∉d, set p(k|Md) = dfk/|D| = p(k|MD)  
– Token that are in d are counted with tf values (and not discounted 

with idf); tokens not in d are counted with df values 

• More tunable parameters: Linear interpolation  
 
 
– Combine relevance of k in document and relevance of k in corpus 
– Large λ: More weight to the document, less weight to background 
– λ may vary, for instance with query size 

• We are back at something similar to TF*IDF, but with a 
probabilistic interpretation, not a geometric one 

)|(*)1()|(*)|(' Ddd MkpMkpMkp λλ −+=
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Self Assessment 

 
• What is language modelling about? 
• Define a Markov model 
• How can you turn a Markov model of order 4 into one of 

order 1? 
• What is the data sparsity problem (in language modeling)? 
• What is the disadvantage of Laplace smoothing? 
• Explain how we can use language models for information 

retrieval 
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