
Information Retrieval

Ulf Leser

Language Models

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 2

Content of this Lecture

• Language Models
• Markov Models
• Data sparsity
• Language Models for IR

• Most material from [MS99], Chapter 6

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 3

Problem

• Given a prefix of a sentence: Predict the next word
– “At 5 o’clock, we usually drink …”

• “tea” – quite likely
• “beer” – quite unlikely
• “a beer” – slightly more likely, but still
• “biscuits” – semantically wrong
• “the windows need cleaning” – syntactically wrong

• Similar to Shannon’s Game: Given a series of characters,
predict the next one (used in communication theory)

• Abstract formulation: Given a language L and the prefix
S[1..n] of a sequence S, S∈L: Predict S[n+1]

• This is a ranking problem – no single solution

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 4

Applications

• Speech/character recognition
– Given a transcribed prefix of a sentence – which word do we

expect next?

• Automatic translation
• Given a translated prefix of a sentence – what do we expect next?

• T9: “… information about common word combinations can
also be learned …”

• General: Use probabilities of next word as a-priori
probability for interpreting the next signal
– Helps to disambiguate between different options
– Helps to make useful suggestions
– Helps to point to likely errors (observation ≠ expectation)

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 5

Language Models

• Problem: Learn a model of a language allowing predictions
• Classical approach: Grammars

– Regular, context-free, …
– Grammars can be learned from examples

• Not trivial, underdetermined, not covered here

– Usually, multiple continuations of a prefix are allowed
– (Deterministic) Grammars do not help in deciding which is the most

probable one
– Better: Probabilistic grammars

• Probabilistic automata: Transitions have a relative frequency

• Grammars based on grammatical categories typically not
fine grained enough: Many equally probable continuations
remain

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 6

N-Grams over Words

• Popular and simple approach: N-gram models

– “Indeed, it is difficult to beat a trigram model on the purely linear
task of predicting the next word” [MS99]

• Definition
A (word) n-gram is a sequence of n words.

• Usage
– Count frequencies of all n-grams in a corpus of the language

• Slide window of size n over text and keep counter for each n-gram
ever seen

– Given a sentence prefix, predict most probable continuation(s)
based on n-gram frequencies – how?

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 7

N-Grams for Language Modeling

• Assume a sentence prefix with n-1 words <w1,…,wn-1>
• Look-up counts of all n-grams starting with <w1,…,wn-1>

– I.e., n-grams <w1,…,wn-1,wn>

• Choose that wn whose n-gram is the most frequent one
• More formally

– Compute, for every possibly wn,

– Choose wn which maximizes p(wn)

),...(
),...,(),...,|()(

11

1
11

−
− ==

n

n
nnn wwp

wwpwwwpwp

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 8

Which n?

• In language modeling, one usually chooses n=3-4
• That seems small, but most language effects are local

– But not all: “Dan swallowed the large, shiny, red …” (Car? Pil?
Strawberry?)

• Also, we cannot obtain robust relative counts for larger n -
not enough training data
– Data sparsity problem
– In high dimensional problems, training data is always sparse

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 9

Content of this Lecture

• Language Models
• Markov Models
• Data sparsity
• Language Models for IR

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 10

History and Applications

• Andrej Andrejewitsch Markov (1856-1922)
– Russian Mathematician
– Developed Markov Models (or Markov Chains) as a method for

analyzing language
– Markov, A. A. (1913). "Beispiel statistischer Untersuchungen des

Textes ‚Eugen Onegin‘, das den Zusammenhang von Ereignissen in
einer Kette veranschaulicht (Original in Russisch)." Bulletin de
l'Academie Imperiale des Sciences de St.-Petersbourg: 153-162.

• Markov Models and Hidden Markov Models are popular in
– Language Modeling, Part-of-speech tagging
– Speech recognition
– Named entity recognition / information extraction
– Biological sequence analysis

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 11

Markov Models

• Definition

Assume an alphabet Σ. A Markov Model of order 1 is a
sequential stochastic process with |Σ| states s1, …, sn with
– Every state emits exactly one symbol from Σ
– No two states emit the same symbol
– For a sequence <w1,w2,…> of states, the following holds

p(wn=sn|wn-1=sn-1, wn-2=sn-2,…, w1=s1) = p(wn=sn|wn-1=sn-1)

• Remarks
– ai,j =p(wn=sj|wn-1=si) are called transition probabilities
– In language modeling, Σ = {set of all words of a language}
– Computing good start probabilities is an issue we essentially ignore

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 12

Visualization

• Since every state emits exactly one word, we can merge
states and words

• State transition graph
– Nodes are states (labeled with their emission)
– Arcs are transitions labeled with a non-zero probability

• Example
– “I go home”,

“I go shopping”,
“I am shopping,
“I go abroad”,
“Go shopping”

I home

go shopping

0,75

am 0,25

1

0,25

0,50
abroad

0,25

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 13

Probability of a Sequence of States (=a Sentence)

∏∏

∏

=
−

=
−

=
−

==

−====

ni
ii

ni
iSiSS

ni
ii

aaaa

iSwiSwpSwpMSp

..2
,11,0

..2
][],1[]1[,0

..2
11

**

])1[|][(*])1[()|(

• Assume a Markov Model M of order 1 and a sequence S of
states with |S|=n

• With which probability was S generated by M, i.e., what is
the value of p(S|M)?

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 14

Example

• p(“I go home”) = p(w1=„I“|w0)* p(w2=„go“|w1=„I“) *
 p(w3=„home“|w2=„go“)
 = 1 * 0.75* 0.25 = 0.1875

• Problem: Pairs we have not seen in training get prob. 0
– Example: “I am abroad”
– With this small “corpus”, almost all transitions get p=0

I home

go shopping

0,75

am 0,25

1

0,25

0,50
abroad

0,25

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 15

Stochastic Processes

• Consider language generation as a sequential stochastic

process
• At each stage, the process generates a new word

– Like a DFA, but transitions have probabilities

• Question: How big is the memory? How many previous
words does the process use to determine the next step?
– 0: Markov chain of order 0: No memory at all
– 1: Markov chain order 1: Next word only depends on prev. word
– 2: Markov chain order 2: Next word only depends on 2 prev. words
– …

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 16

Higher Order Markov Models

• Markov Models of order k
– The probability of being in state s after n steps depends on the k

predecessor states sn-1,…sn-k

p(wn=sn|wn-1=sn-1, wn-2=sn-2,…, w1=s1) = p(wn=sn|wn-1=sn-1, …, wn-k=sn-k)

• We can trivially transform any order k model M (k>1) into
a Markov Model of order 1 (M’)
– M’ has |M|k states (all combinations of states of length k)

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 17

Predicting the Next State

• The problem of language modeling is a bit different
• We do not want to reason about an entire sequence, but

only about the next state, given some previous states
• N-gram model = Markov Model order n-1

),(~
)(

),(
)|(

),...,|()(

1

1

1

1

11

nn

n

nn

nn

nnn

wwp
wp

wwp
wwp

wwwpwp

−

−

−

−

−

=

=
=

This is the most frequent
bi-gram with prefix wn-1

I home

go shopping

0,75

am 0,25

1

0,25

0,50

abroad

0,25

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 18

Problem

• We learn our transition probabilities from a limited sample
• Thus, we only estimate the true transition probabilities
• Introduces an error which we should try to remove

– Sample selection is important
– Problem is researched a lot in statistics

• Extreme: Transitions we do not see at all in the corpus
– Get a probability of 0
– Will never be predicted
– This does not mean that they are non-existing in the language

• Our model (yet) cannot adequately cope with data sparsity

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 19

Importance of Data Sparsity

• How many n-grams do exist in principle?
– Assume a language of 20.000 words
– n=1: 20.000, n=2: 4E8, n=3: 8E12, n=4: 1.6E17, …
– Rough numbers: Natural languages have many more words, but

most combinations are not allowed

• In natural language corpora, almost all n-grams with n>4
are very sparse
– Exponential growth cannot be balanced by “use larger corpora”
– Especially very specific n-grams are prone to be overlooked

• Trade-off
– Large n: More expressive model, but bad transition estimations
– Small n: Less expressive model, but better transition estimates

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 20

Example

• Unigrams: Always the
most frequent word in
the corpus, does not
differentiate

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 21

Example

• Bi-grams: Correct
word often ranks high,
but not always

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 22

Example

• Tri-grams: Has a hit,
but already suffers
from sparsity

• Four-grams: Unusable

• Corpus: Fraction of Jane
Austen’s oeuvre, ~600.000
tokens, data from [MS99]

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 23

Content of this Lecture

• Language Models
• Markov Models
• Data sparsity
• Language Models for IR

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 24

Solutions we will not Discuss in Detail

• Reduce the number of words using stemming

– Might help to go from n=3..4 to n=4…5
– Important grammatical clues are lost

• More abstract: Use some form of “binning” of tokens into
classes and compute n-grams over token classes, not
token
– All numbers -> one class
– All verbs -> one class (POS tags)
– All verbs related to “movement” -> one class

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 25

Statistical Estimators

• We were a bit sloppy so far
• We want

• But we only have

• So far, we always implicitly assumed

– N: all observed n-grams

),...(
),...,(),...,|()(

11

1
11

−
− ==

n

n
nnn wwp

wwpwwwpwp

),...,(1 nwwcount

N
wwcountwwp n

n
),...,(),...,(1

1 =

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 26

MLE for N-gram Models

• This is called a Maximum Likelihood Estimator (MLE)
• MLE gives maximum likelihood to the training data

– Gives zero probability to all events not in the training data
– The probability mass is spent entirely on the training data
– Overfitting

• Need to smooth the estimates to account for the
limitations of the sample

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 27

Smoothing I: Laplace‘s Law

• Give some probability mass to unseen events
• Oldest (and simplest) suggestion: “Adding one”

– Where B is the number of possible n-grams, i.e., Kn
• K: Vocabulary, all different words

– All n-grams get a probability≠0

• But – moves too much mass to the unknown
– Estimates for seen n-grams are scaled down dramatically
– Estimates for unseen n-grams are small, but there are so many

• And many of them are truly impossible

– In a corpus of 40 M words with K~400T, 99.7% of the total
probability mass is spend in unseen events

BN
wwcountwwp n

nLAP +
+

=
1),...,(),...,(1

1

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 28

Smoothing II: Lidstone‘s Law

• Laplace not suitable if there are many events, but few seen
• Lidstone’s law gives less probability mass to unseen events

– Small λ: More mass is given to seen events
– Typical estimate is λ=0.5
– Appropriate values can be learned (next slide)

• Still: Estimate of seen events is linear in the MLE estimate
– Not a good approximation of empirical distributions

• Other: Good-Turing Estimator, n-gram interpolations, …

BN
wwcountwwp n

nLIP *
),...,(),...,(1

1 λ
λ

+
+

=

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 29

Learning Appropriate Values for λ

• We “simulate” seen and unseen events
• Divide corpus in two disjoint parts C1 and C2

• Count frequencies of n-grams in C1

• Let c be the number of n-grams from C1 not present in C2

• Set λ=c/B
– The probability of an n-gram (in C2) to be considered as not

existing although in reality it does exist

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 30

Option III: Back-Off Models

• If we cannot find a n-gram with count≠0, use a (n-1)-gram
– Or an n-2 gram, …

• Thus, in case there is no p(w1,…,wn)≠0, we “back off” to a
simpler model

– Stop at the first (n-k)-gram with non-zero count

• Alternative: Always look at different n’s
– With different weights

or
wwp
wwpor

wwp
wwpor

wwp
wwpwwwp

n

n

n

n

n

n
nn),...(

),...,(
),...(
),...,(

),...(
),...,(),...,|(

13

3

12

2

11

1
11

−−−
− =

)(
)(

),(
),(

),,()(3
1

1
2

12

12
1 n

n

nn

nn

nnn
n wp

wp
wwp

wwp
wwwpwp λλλ ++=

−

−

−−

−−

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 31

Content of this Lecture

• Language Models
• Markov Models
• Data sparsity
• Language Models for IR

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 32

New IR Model

• Recent trend in IR: Relevance based on language models
• Idea: See a document as a “language”

– Learn a model Md of this “language” (document)
– Compute with which probability p(d|q) a given query has generated

the model (=document)
– Rank documents based on these probabilities

• Sounds weird, but leads to a simple and well justified
approach

• Very successful in recent evaluations
• Smoothing is crucial – docs are too small

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 33

Approach

• As docs are small, only unigram models are sensible
• Model of a doc: Relative frequencies of all its words
• Compute

– p(q) is equal for all d – irrelevant for ranking
– p(d) can be used to incorporate a-prior knowledge (e.g. prestige),

but often is set to uniform – irrelevant for ranking

• We replace d with its model and obtain

)|(~)(*)|(~
)(

)(*)|()|(dqpdpdqp
qp

dpdqpqdp =

∏∏
∈∈

====
qk

dk

qk
ddnd d

tf
MkpMkkkpMqpdqp

||
)|()|,...,,()|()|(,

21

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 34

Discussion

• Very simple
• Principled approach to justify usage of tf values
• More powerful for longer queries
• Problems

– Words in q not in d: Smoothing
– Where is idf gone?

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 35

Smoothing a Language Model for IR

• For instance, if k∉d, set p(k|Md) = dfk/|D| = p(k|MD)
– Token that are in d are counted with tf values (and not discounted

with idf); tokens not in d are counted with df values

• More tunable parameters: Linear interpolation

– Combine relevance of k in document and relevance of k in corpus
– Large λ: More weight to the document, less weight to background
– λ may vary, for instance with query size

• We are back at something similar to TF*IDF, but with a
probabilistic interpretation, not a geometric one

)|(*)1()|(*)|(' Ddd MkpMkpMkp λλ −+=

Ulf Leser: Information Retrieval, Winter Semester 2016/2017 36

Self Assessment

• What is language modelling about?
• Define a Markov model
• How can you turn a Markov model of order 4 into one of

order 1?
• What is the data sparsity problem (in language modeling)?
• What is the disadvantage of Laplace smoothing?
• Explain how we can use language models for information

retrieval

	Foliennummer 1
	Content of this Lecture
	Problem
	Applications
	Language Models
	N-Grams over Words
	N-Grams for Language Modeling
	Which n?
	Content of this Lecture
	History and Applications
	Markov Models
	Visualization
	Probability of a Sequence of States (=a Sentence)
	Example
	Stochastic Processes
	Higher Order Markov Models
	Predicting the Next State
	Problem
	Importance of Data Sparsity
	Example
	Example
	Example
	Content of this Lecture
	Solutions we will not Discuss in Detail
	Statistical Estimators
	MLE for N-gram Models
	Smoothing I: Laplace‘s Law
	Smoothing II: Lidstone‘s Law
	Learning Appropriate Values for
	Option III: Back-Off Models
	Content of this Lecture
	New IR Model
	Approach
	Discussion
	Smoothing a Language Model for IR
	Self Assessment

