

Information Retrieval

Information Retrieval on the Web

Ulf Leser

Content of this Lecture

- The Web
- Web Crawling
- Exploiting Web Structure for IR
- A Different Flavor: WebSQL
- Much of today's material is from:
 Chakrabarti, S. (2003). Mining the Web: Discovering Knowledge from
 Hypertext Data: Morgan Kaufmann Publishers.

The World Wide Web

- 1965: Hypertext: "A File Structure for the Complex, the Changing, and the Indeterminate" (Ted Nelson)
- 1969: ARPANET
- 1971: First email
- 1978: TCP/IP
- 1989: "Information Management: A Proposal" (Tim Berners-Lee, CERN)
- 1990: First Web Browser
- 1991: WWW Poster
- 1993: Browsers (Mosaic->Netscape->Mozilla)
- 1994: W3C creation
- 1994: Crawler: "World Wide Web Wanderer"
- 1995: Search engines such as Excite, Infoseek, AltaVista, Yahoo, ...
- 1997: HTML 3.2 released (W3C)
- 1999: HTTP 1.1 released (W3C)
- 2000: Google, Amazon, Ebay, ...

See http://www.w3.org/2004/Talks/w3c10-HowItAllStarted

HTTP: Hypertext Transfer Protocol

- Stateless, very simple protocol
- Many clients (e.g. browsers, telnet, ...) talk to one server
 - GET: Request a file (e.g., a web page)
 - POST: Request file and transfer data block
 - PUT: Send file to server (deprecated, see WebDAV)
 - HEAD: Request file metadata (e.g. to check currentness)
- HTTP 1.1: Send many requests over one TCP connection
- Transferring parameters: URL rewriting or POST method
- Keeping state: URL rewriting or cookies
- Example
 - GET /wiki/Spezial:Search?search=Katzen&go=Artikel HTTP/1.1
 Host: de.wikipedia.org

HTML: Hypertext Markup Language

- Web pages originally are ASCII files with markup
 - Things change(d): Images, SVG, JavaScript, Web2.0/AJAX, ...
- HTML: strongly influenced by SGML, but much simpler
- Focus on layout; no semantic information

Hypertext

- Most interesting feature of HTML: Links between pages
- The concept is old: Hypertext
 - Generally attributed to Bush, V. (1945).
 As We May Think. The Atlantic Monthly
 - Suggests "Memex: A system of storing information linked by pointers in a graph-like structure"
- Links have an anchor and a target
- Allows for associative browsing

IR Models:
Probabilistic and vector space model

http://www.w3.org

Deep Web

- Most of the data "on" the web is not stored in HTML
- Surface web: Static web pages = files on a web server
- Deep web: Accessible only through forms, logins, ...
 - Most content of databases (many are periodically dumped)
 - Accessible through CGI scripts, servlets, web services, ...
- Crawls only reach the surface web
 - Plus individual solutions/contracts for specific information: product catalogues, news, ...
- Deep != computer generated
 - Many systems create pages only when accessed
 - Access by ordinary link: Surface web

It's Huge

- Jan 2007: Number of hosts estimated 100 500 Million
- 2005: App. 12M web pages (Guli, Signorini, WWW 2005)
- 2013: App. 13 Trillion web pages (www.factshunt.com)

Source: http://www.worldwidewebsize.com/

Accesses per Month (as of 2012)

- Google: 88 billion per month
 - Means: ~3 billion per day
 - 12-fold increase over 7 years
- Twitter: 19 billion per month
- Yahoo: 9.4 billion per month
- Bing: 4.1 billion per month

Source: www.searchengineland.com

Zuckerberg says Facebook processes 'a billion searches per day'

Schedule a demo to

Search Engines World Wide

Searching the Web

- In some sense, the Web is a single, large corpus
- But searching the web is different from traditional IR
 - Recall is nothing
 - Most queries are too short to be discriminative for a corpus of that size
 - Usual queries generate very many hits: Information overload
 - We never know "the" web: A moving target
 - Ranking is more important than high precision
 - Users rarely go to results page 2
 - Intentional cheating: Precision of search badly degraded
 - Mirrors: Concept of "unique" document is not adequate
 - Much of the content is non-textual
 - Documents are linked

Content of this Lecture

- The Web
- Web Crawling
- Exploiting Web Structure for IR
- A Different Flavor: WebSQL

Web Crawling

- We want to search a constantly changing set of documents
 - Note: www.archive.org: The Wayback Machine: "Browse through
 150 billion pages archived from 1996 to a few months ago...."
- There is no list of all web pages
- Solution
 - Start from a given set of URLs
 - Iteratively fetch and scan web pages for outlinking URLs
 - Put links in fetch queue sorted by some magic
 - Take care of not fetching the same page again and again
 - Relative links, URL-rewriting, multiple server names, ...
 - Repeat forever

Architecture of a Web Crawler

Issues

- Key trick: Parallelize everything
 - Use multiple DNS servers (and cache resolutions)
 - Use many, many download threads
 - Use HTTP 1.1: Multiple fetches over one TCP connection
- Take care of your bandwidth and of load on remote servers
 - Do not overload server (DoS attack)
 - Robot-exclusion protocol
- Usually, bandwidth and IO-throughput are more severe bottlenecks than CPU consumption

More Issues

- Before analyzing a page, check if redundant (checksum)
- Re-fetching a page is not always bad
 - Pages may have changed
 - Revisit after certain period, use HTTP HEAD command
 - Individual periods can be adjusted automatically
 - Sites / pages usually have a rather stable update frequency
- Crawler traps, "google bombs"
 - Pages which are CGI scripts generating an infinite series of different URLs all leading to the same script
 - Difficult to avoid
 - Overly long URLs, special characters, too many directories, ...
 - Keep black list of servers

Focused Crawling

- One often is interested only in a certain topic
- Supervised domain-specific web crawling
 - Build a classifier assessing the relevance of a crawled page based on its textual input
 - Only put out-links of relevant documents in crawler queue
- Alternatives
 - Classify each link separately
 - Also follow irrelevant links, but not for too long

Content of this Lecture

- The Web
- Web Crawlers
- Exploiting Web Structure for IR
 - Prestige in networks
 - Page Rank
 - HITS
- A Different Flavor: WebSQL

Ranking and Prestige

- Classical IR ranks docs according to content and query
 - On the web, many queries generate too many "good" matches
 - "Cancer", "daimler", "car rental", "newspaper", ...
- Why not use other features?
 - Rank documents higher whose author is more famous
 - Rank documents higher whose publisher is more famous
 - Rank documents higher that have more references
 - Rank documents higher that are cited by documents which would be ranked high in searchers
 - Rank docs higher which have a "higher prestige"
- Prestige in social networks: The prestige of a person depends on the prestige of its friends

Prestige in a Network

- Consider a network of people, where a directed edge (u,v) indicates that person u knows person v
- Modeling prestige: A person "inherits" the prestige from all persons who known him/her
 - Your prestige is high if you are known by many other famous people, not the other way round
- Formally: Your prestige is the sum of the prestige values of people that know you

Computing Prestige

- Let E by the adjacency matrix, i.e., E[u,v]=1 if u knows v
- Let p be the vector storing the prestige of all nodes
 - Initialized with some small constants
- If we compute p'=E^{T*}p, p' is a new prestige vector which considers the prestige of all "incoming" nodes

	1	2	3	4	5	6	7	8	9	0	1	2
1						1						
2						1						
3						1						
4 5												
5						1						
6	1			1	1							
7												
8												
9												
0												1
1												
2						1	1	1	1		1	

Iterative Multiplications

- Computing p"=E^{T*}p'=E^{T*}E^{T*}p also considers indirect influences
- Computing $p'''=E^{T*}p''=E^{T*}E^{T*}E^{T*}p$ also ...
- We seek a prestige vector such that: p=E^{T*}p
- Note: Under some circumstances, iteratively multiplying E^T will make p converge
 - Math comes later

Example

- Start with $p_0 = (1, 1, 1, ...)$
- Iterate: p_{i+1}=E^{T*}p_i
- Example

$$- p_1 = (1,1,1,0,1,3,0,0,0,1,0,5)$$

- 6 and 12 are cool
- $p_2 = (3,3,3,0,3,2,0,0,0,5,0,3)$
 - To be known by 6/12 is cool
 - To be known be 4,7,8,... doesn't help much

	1	2	3	4	5	6	7	8	9	0	1	2
1						1						
2						1						
3						1						
4												
5						1						
6	1			1	1							
7												
8												
9												
0												1
1												
2					·	1	1	1	1		1	

- Hmm we punish "social sinks" quite hard...
 - Nodes who are not known by anybody

Example 2

- Modified graph: Every node has at least one incoming link
- Start with $p_0 = (1, 1, 1, ...)$
- Iterate

$$- p_1 = (1,1,1,0,1,3,0,0,0,1,0,5)$$

$$- p_2 = (3,3,3,0,3,2,1,0,0,5,1,3)$$

$$- p_3 = (2,3,2,1,2,8,3,...$$

- **–** ...
- Hmm numbers grow to infinity
- Must be repaired

	1	2	3	4	5	6	7	8	9	0	1	2
1						1						
2						1	1					
3						1						
4											1	
5						1						
6	1			1	1							
7		1										
8									1			
9								1				
0												1
1										1		
2						1	1	1	1		1	

Prestige in Hypertext IR (= Web Search)

- PageRank uses the number of incoming links
 - Scores are query independent and can be pre-computed
 - Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The PageRank Citation Ranking: Bringing Order to the Web: Unpublished manuscript, Stanford University.
- HITS distinguishes authorities and hubs wrt. a query
 - Thus, scores cannot be pre-computed
 - Kleinberg, J. M. (1998). Authoritative Sources in a Hyperlinked Environment. ACM-SIAM Symposium on Discrete Mathematics.
- Many more suggestions
 - "Bharat and Henzinger" model ranks down connected pages which are very dissimilar to the query
 - "Clever" weights links wrt. the local neighborhood of the link in a page (anchor + context)
 - ObjectRank and PopRank rank objects (on pages), including different types of relationships

Content of this Lecture

- Searching the Web
- Search engines on the Web
- Exploiting the web structure
 - Prestige in networks
 - Page Rank
 - HITS
- A different flavor: WebSQL

PageRank Algorithm

- Major breakthrough: Ranking of Google was much better than that of other search engines
 - Before: Ranking only with page content and length of URL
 - The longer, the more specialized
- Ranking of current search engines result from prestige value, IR score, ...
- Computing PageRank for billions of pages requires more tricks than we present here
 - Especially approximation

Random Surfer Model

- Another view on "prestige"
- Random Surfer
 - Assume a "random" surfer S taking all decision by chance
 - S starts from a random page ...
 - ... picks and clicks a link from that page at random ...
 - ... and repeats this process forever
- At any point in time: What is the probability p(v) for S being on a page v?
 - After arbitrary many clicks? Starting from an arbitrary web page?

Random Surfer Model Math

After one click, S is in v with probability

$$p_1(v) = \sum_{(u,v)\in V} \frac{p_0(u)}{|u|} = \sum_u E'[u,v] * p_0(u)$$

- With |u| = # of links outgoing from u" and E'[u,v]=E[u,v]/|u|
- Components: Probability to start in a page u with a link to v and the probability of following link u→v
- Condensed representation for all v

$$\vec{p}_1 = E'^T * \vec{p}_0$$

Eigenvectors and PageRank

- Iteration: $p_{i+1} = E'^T p_i$
- We search fixpoint: p=E'T*p
- Recall: If $Mx-\lambda x=0$ for $x\neq 0$, then λ is called an Eigenvalue of M and x is his associated Eigenvector
- Transformation yields $\lambda x = Mx$
- We are almost there
 - Eigenvectors for Eigenvalue $\lambda=1$ solve our problem
 - But these do not always exist

Perron-Frobenius Theorem

- When do Eigenvectors $\lambda = 1$ exist?
- Let M be a stochastic quadratic irreducible aperiodic matrix
 - Quadratic: m=n
 - Stochastic: M[i,j]≥0, all column sums are 1
 - Irreducible: If we interpret M as a graph G, then every node in G can be reached by any other node in G
 - Aperiodic: ∃n∈N such that for every u,v there is a path of length n between u and v
- For such M, the largest Eigenvalue is $\lambda=1$
 - Its corresponding Eigenvector x satisfies x = Mx
 - Can be computed using our iterative approach
 - PowerIteration Method

Real Links versus Mathematical Assumptions

- 1. The sum of the weights in each column equals 1
 - Not yet achieved web pages may have no outgoing edge
 - "Rank sinks"

- 2. The matrix E' is irreducible
 - Not yet achieved the web graph is not at all strongly connected
 - For instance, no path between 3 and 4

Repair

- Simple repair: We give every possible link a fixed, very small probability
 - No more 0 in E
 - If E'[u,v]=0, set E'[u,v]=1/n, with $n\sim$ "total number of pages"
 - This also makes the matrix aperiodic (with n=1)
 - Normalize such that all column sums are 1
- Intuitive explanation: Random restarts
 - We allow our surfer S at each step, with a small probability, to jump to an arbitrary other page (instead of following a link)
 - Jump probability is the higher, the less outgoing links a page has

PageRank

- Practice: Iterate until changes become small
 - We stop before fixpoint is reached
 - Faster at the cost of accuracy
- The original paper reports that ~50 iterations sufficed for a crawl of 300 Million links

Example 1 [Nuer07]

- C is very popular
- To be known by C (like A) brings more prestige than to be known by A (like B)

Example 2

- Average PageRank dropped
- Sinks "consume" PageRank mass

- Repair: Every node reachable from every node
- Average PageRank again at 1

Symmetric link-relationships bear identical ranks

Home page outperforms children

External links add strong weights

Average PR: 1.000

Link spamming increases weights (A, B)

Content of this Lecture

- Searching the Web
- Search engines on the Web
- Exploiting the web structure
 - Prestige in networks
 - Page Rank
 - HITS
- A different flavor: WebSQL

HITS: Hyperlink Induced Topic Search

- Two main ideas
 - Classify web pages into authorities and hubs
 - Use a query-dependent subset of the web for ranking
- Approach: Given a query q
 - Compute the root set R: All pages matching (conventional IR)
 - Expand R by all pages which are connected to any page in R with an outgoing or an incoming link
 - Heuristic could as well be 2,3,... steps
 - Remove from R all links to pages on the same host
 - Tries to prevent "nepotistic" and purely navigational links
 - At the end, we rank sites rather than pages
 - Assign to each page an authority score and a hub score
 - Rank pages using a weighted combination of both scores

Hubs and Authorities

Authorities

- Web pages that contain high-quality, definite information
- Many other web pages link to authorities
- "Break-through articles"

Hubs

- Pages that try to cover an entire domain
- Hubs link to many other pages
- "Survey articles"
- Assumption: hubs preferentially link to authorities (to cover the new stuff), and authorities preferentially link to hubs (to explain the old stuff)

Hubs Authorities

But ...

- Surveys are the most cited papers
- Most hubs are also authorities
- Search engines today don't use this model

Computation

- A slightly more complicated model
 - Let a be the vector of authority scores of all pages
 - Let h be the vector of hub scores of all pages
- Define

$$a = E^T * h$$
$$h = E * a$$

 Solution can be computed in a similar iterative process as for PageRank

Pros and Cons

Contra

- Distinguishing hubs from authorities is somewhat arbitrary and not necessarily a good model for the Web (today)
- How should we weight the scores?
- HITS scores cannot be pre-computed; set R and status of pages changes from query to query

Pro

 The HITS score embodies IR match scores and links, while PageRank requires a separate IR module and has no rational way to combine the scores

Content of this Lecture

- Searching the Web
- Search engines on the Web
- Exploiting the web structure
- A different flavor of Web search: WebSQL

Side Note: Web Query Languages

- Deficits of search engines
 - No way of specifying structural properties of results
 - "All web pages linking to X (my homepage)"
 - "All web pages reachable from X in at most k steps"
 - No way of extracting specific parts of a web page
 - No "SELECT title FROM webpage WHERE ..."
- Idea: Structured queries over the web
 - Model the web as two relations: node (page) and edge (link)
 - Allow SQL-like queries on these relations
 - Evaluation is done "on the web"
 - Various research prototypes: WebLog, WebSQL, Araneus, W3QL, ...

WebSQL

- Mendelzon, A. O., Mihaila, G. A., & Milo, T. (1997). Querying the World Wide Web. Journal on Digital Libraries, 1, 54-67.
- Simple model: The web in 2 relations
 - page(url, title, text, type, length, modification_date, ...)
 - anchor(url, href, anchortext)
 - Could be combined with DOM (XPath) for fine-grained access

Operations

- Projection: Post-processing of search results
- Selections: Pushed to search engine where possible
- Following links: Call a crawler (or look-up a local crawl)

 Find all web pages which contain the word "JAVA" and have an outgoing link in whose anchor text the word "applet" appears; report the target and the anchor text

More Examples

```
SELECT d.url, d.title

FROM Document d

SUCH THAT $HOME \rightarrow | \rightarrow \rightarrow d

WHERE

d.title CONTAINS ,Database';
```

Report url and title of pages containing "Database" in the title and that are reachable from \$HOME in one or two steps

```
SELECT d.title FROM Document d SUCH THAT $HOME (\rightarrow)*(\Rightarrow)* d;
```

Find the titles of all web pages that are reachable (by first local, than non-local links) from \$HOME (calls a crawler)

Self Assessment

- How does a Web Crawler work? What are important bottlenecks?
- Name some properties of the IR problem in the web
- What is the complexity of PageRank?
- For which matrices does the Power Iteration method converge to the Eigenvector for Eigenwert 1? Explain each property
- What is the difference between HITS and PageRank? Waht are other models of "importance" in graphs?
- Could WebSQL be computed on a local copy of the web?
 What subsystems would be necessary?