Text Analytics

Index-Structures for Information Retrieval

Ulf Leser
Content of this Lecture

• Inverted files
• Storage structures
• Phrase and proximity search
• Building and updating the index
• Using a RDBMS
Full-Text Indexing

- Fundamental operation for all IR models: \texttt{find(q, D)}
 - Given a term \(q \), find all docs from \(D \) containing the term
- Can be implemented using online search
 - Boyer-Moore, Keyword-Trees, etc.
- But
 - We generally assume that \(D \) is stable (compared to \(q \))
 - We only search for terms (after tokenization)
 - The number of unique terms does not grow much with growing \(D \)
- These properties can be exploited to pre-compute a \texttt{term-based index} over \(D \)
 - Also called “full-text index”
Inverted Files (or Inverted Index)

- Simple and effective **index structure** for terms
- Builds on the **Bag of words** approach
 - We give up on order of terms in docs (reappears later)
 - We cannot reconstruct docs based on index only
- Start from “docs containing terms” (~ “docs”) and invert to “terms appearing in docs” (~ “inverted docs”)

<table>
<thead>
<tr>
<th>d1</th>
<th>t1, t3</th>
</tr>
</thead>
<tbody>
<tr>
<td>d2</td>
<td>t1</td>
</tr>
<tr>
<td>d3</td>
<td>t2, t3</td>
</tr>
<tr>
<td>d4</td>
<td>t1</td>
</tr>
<tr>
<td>d5</td>
<td>t1, t2, t3</td>
</tr>
<tr>
<td>d6</td>
<td>t1, t2</td>
</tr>
<tr>
<td>d7</td>
<td>t2</td>
</tr>
<tr>
<td>d8</td>
<td>t2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t1</th>
<th>d1, d2, d4, d5, d6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t2</td>
<td>d3, d5, d6, d7, d8</td>
</tr>
<tr>
<td>t3</td>
<td>d1, d3, d5</td>
</tr>
</tbody>
</table>
Building an Inverted File

[Andreas Nürnberg, IR-2007]

Doc1:
Now is the time for all good men to come to the aid of their country.

Doc2:
It was a dark and stormy night in the country manor. The time was past midnight.

<table>
<thead>
<tr>
<th>Term</th>
<th>Doc ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>now</td>
<td>1</td>
</tr>
<tr>
<td>is</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>time</td>
<td>1</td>
</tr>
<tr>
<td>for</td>
<td>1</td>
</tr>
<tr>
<td>all</td>
<td>1</td>
</tr>
<tr>
<td>good</td>
<td>1</td>
</tr>
<tr>
<td>men</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>1</td>
</tr>
<tr>
<td>come</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>1</td>
</tr>
<tr>
<td>aid</td>
<td>1</td>
</tr>
<tr>
<td>of</td>
<td>1</td>
</tr>
<tr>
<td>their</td>
<td>1</td>
</tr>
<tr>
<td>country</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>dark</td>
<td>2</td>
</tr>
<tr>
<td>and</td>
<td>2</td>
</tr>
<tr>
<td>stormy</td>
<td>2</td>
</tr>
<tr>
<td>night</td>
<td>2</td>
</tr>
<tr>
<td>in</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
</tr>
<tr>
<td>country</td>
<td>2</td>
</tr>
<tr>
<td>manor</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
</tr>
<tr>
<td>time</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
</tr>
<tr>
<td>past</td>
<td>2</td>
</tr>
<tr>
<td>midnight</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Doc ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>aid</td>
<td>1</td>
</tr>
<tr>
<td>all</td>
<td>1</td>
</tr>
<tr>
<td>and</td>
<td>2</td>
</tr>
<tr>
<td>come</td>
<td>1</td>
</tr>
<tr>
<td>country</td>
<td>1</td>
</tr>
<tr>
<td>country</td>
<td>2</td>
</tr>
<tr>
<td>dark</td>
<td>2</td>
</tr>
<tr>
<td>for</td>
<td>1</td>
</tr>
<tr>
<td>good</td>
<td>1</td>
</tr>
<tr>
<td>in</td>
<td>2</td>
</tr>
<tr>
<td>is</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>2</td>
</tr>
<tr>
<td>manor</td>
<td>2</td>
</tr>
<tr>
<td>men</td>
<td>1</td>
</tr>
<tr>
<td>midnight</td>
<td>2</td>
</tr>
<tr>
<td>night</td>
<td>2</td>
</tr>
<tr>
<td>now</td>
<td>1</td>
</tr>
<tr>
<td>of</td>
<td>1</td>
</tr>
<tr>
<td>past</td>
<td>2</td>
</tr>
<tr>
<td>stormy</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
</tr>
<tr>
<td>their</td>
<td>1</td>
</tr>
<tr>
<td>their</td>
<td>2</td>
</tr>
<tr>
<td>time</td>
<td>1</td>
</tr>
<tr>
<td>time</td>
<td>2</td>
</tr>
<tr>
<td>to</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
</tr>
</tbody>
</table>

Sort

Merge
Boolean Retrieval

- For each query term k_i, look-up doc-list D_i containing k_i
- Evaluate query in the usual order
 - $k_i \land k_j : D_i \cap D_j$
 - $k_i \lor k_j : D_i \cup D_j$
 - NOT $k_i : D \setminus D_i$
- Example

$$(\text{time AND past AND the}) \ OR (\text{men})$$

$$(D_{\text{time}} \cap D_{\text{past}} \cap D_{\text{the}}) \cup D_{\text{men}}$$

$$= (\{1,2\} \cap \{2\} \cap \{1,2\}) \cup \{1\}$$

$$= \{1,2\}$$
Necessary and Obvious Tricks

• How do we efficiently look-up doc-list D_i?
 - Bin-search on inverted file: $O(\log(|K|))$
 - Inefficient: Random access on IO
 - Better solutions: Later

• How do we support union and intersection efficiently?
 - Naïve algorithm requires $O(|D_i|*|D_j|)$
 - Better: Keep doc-lists sorted
 - Intersection $D_i \cap D_j$: Sort-Merge in $O(|D_i| + |D_j|)$
 - Union $D_i \cup D_j$: Sort-Merge in $O(|D_i| + |D_j|)$
 - If $|D_i| << |D_j|$, use binsearch in D_j for all terms in D_i
 • Whenever $|D_i| + |D_j| > |D_i|*\log(|D_j|)$
Less Obvious Tricks

- Define **selectivity** \(\text{sel}(k_i) = \frac{DF_i}{|D|} \)
- Expected size of result is \(|q| = |D| * \text{sel}(q) = |D| * \prod_{i} \text{sel}(k_i) \)
 - Assuming AND and independence of terms
- **Intermediate result sizes** vary greatly with different orders
 - These sizes have a large influence on runtime
 - How to keep size of intermediate results small?
 - Consider terms in order of increasing selectivity
- **General queries**
 - Optimization problem: Find optimal order of evaluation
 - \(\text{sel}(k_i \cap k_j) = \text{sel}(k_i) * \text{sel}(k_j) \)
 - \(\text{sel}(k_i \cup k_j) = \text{sel}(k_i) + \text{sel}(k_j) - (\text{sel}(k_i) * \text{sel}(k_j)) \)
Adding Frequency

- VSM with TF*IDF requires term frequencies
- Split up inverted file into **dictionary** (with term and DF value) and posting list (with docID and TF values)

<table>
<thead>
<tr>
<th>Term</th>
<th>dfIds</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>aid</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>all</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>and</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>come</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>country</td>
<td>1,2</td>
<td>2</td>
</tr>
<tr>
<td>dark</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>of</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>past</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>stormy</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1,2</td>
<td>2</td>
</tr>
<tr>
<td>their</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>time</td>
<td>1,2</td>
<td>2</td>
</tr>
<tr>
<td>to</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Dictionary

- **Term**
- **DF**
- **Posting**

- a: (2,1)
- aid: (1,1)
- all: (1,1)
- and: (2,1)
- come: (1,1)
- country: (1,1), (2,1)
- dark: (2,1)
- ...: ...
- of: (1,1)
- past: (2,1)
- stormy: (2,1)
- the: (1,2), (2,1)
- their: (1,1)
- time: (1,1), (2,1)
- to: (1,2)
- was: (2,2)
Searching in VSM

- Assume we want to retrieve the **top-r docs**

- **Algorithm**
 - Initialize an empty doc-list S (as hash table or priority queue)
 - Iterate through query terms k_i
 - Walk through posting list (elements $(docID, TF)$)
 - If $docID \in S$: $S[docID] = + IDF[k_i]*TF$
 - else: $S = S.append((docID, IDF[k_i]*TF))$
 - Return top-r docs in S

- S contains all and only those docs containing *at least one* k_i
Improvement

- Sort **query terms** by decreasing IDF Values – later terms have **smaller IDF values** – less weight
- Sort **posting lists** by decreasing TF values – later docs have smaller TF values – less weight
- Several heuristics to exploit these facts
 - Stop adding docs to S in each posting if current TF value too small
 - Drop query terms whose IDF value is too small
 - Typically **stop words** with long posting lists – much work, little effect
 - Compute $TF_{i\text{-max}}$ for each k_i; stop after $IDF_i \cdot TF_{i\text{-max}}$ gets too small
 - Assume we look at term k_i and are at position TF_j in the posting list. If $s^{r}-s^{r+1} > IDF_i \cdot TF_j$, stop searching this posting list
 - ...
Illustration

Outer loop: Decreasing IDF values

Inner loop: Decreasing TF values

Stop adding docs to S in each posting if current TF value too small
Illustration

Outer loop: Decreasing IDF values

Inner loop: Decreasing TF values

Drop query terms whose IDF value is too small
Illustration

Outer loop:
Decreasing IDF values

Inner loop:
Decreasing TF values

If $s^r - s^{r+1} > \text{IDF}_i \times \text{TF}_j$, stop searching this posting list
Space Usage

• Size of dictionary: $|K|$
 - Zipf’s law: If $|D|$ already is large, new terms appear only rarely
 • But there are always new terms, no matter how large D
 • Example: 1GB text (TREC-2) generates only 5MB dictionary
 - Typically: $|K| < 1$ Million
 • Not true in multi-lingual corpora, web corpora, etc.

• Size of posting list
 - Theoretic worst case: $O(|K| \times |D|)$
 - Average case analysis is difficult, but certainly still large (in $|D|$)

• Implementation
 - Dictionary should always fit into main memory
 - Posting lists remains on disk
Content of this Lecture

- General approach
- Storage structures
 - The dictionary
 - The posting lists
- Phrase and proximity search
- Building and updating the index
- Using a RDBMS
Storing the Dictionary

- Dictionary are always kept in main memory
- Suitable *data structures*?
Storing the Dictionary

- Dictionary are always kept in main memory
- Suitable data structures?
 - Sorted keyword array: Small and fast (binsearch), static
 - Balanced binary (AVL) tree: Larger and fast, dynamic
 - Hashing: Either small and slow or large and very fast
 - (Compressed) Prefix-tree: Much larger and much faster

In the following
- Assume $|ptr| = |DF| = 4; \ |K| = 1M$
- Let $|q|$ be total length of query in characters
 - Usually small; use as upper bound on the number of char comparisons
- Let $n = 8^*|K| = 8M$ be the sum of lengths of all keywords
 - Assuming average word length = 8
Dictionary as Sorted Array

- Elements: <keyword, DF, ptr>
- Since keywords have different lengths: Implementation will be (ptr1, DF, ptr2)
 - ptr1: To string (the keyword)
 - ptr2: To posting list
- Search: Compute $\log(|K|)$ memory addresses, follow ptr1, compare strings: $O(\log(|K|) \times |q|)$
- Construction: $O(|K| \times \log(|K|))$
- Space: $(4+4+4) \times 1M + n \sim 20M$ bytes
- But: Adding keywords is painful
Dictionary as AVL-style Search Tree

- **Internal node:**
 - (ptr1, ptr2, ptr3, ptr4, DF)
 - String, posting, child1, child2
- **Leaf:** (ptr1, ptr2, DF)
- **Search:** Follow pointer, compare strings: $O(\log(|K|) \cdot |q|)$
- **Construction:** $O(|K| \cdot \log(|K|))$
- **Space**
 - Internal: $0.5M \cdot (4+4+4+4+4)$
 - Leaves: $0.5M \cdot (4+4+4)$
 - Together: $16M+n \sim 24MB$
- **Adding keywords is simple**
Dictionary as Hash Table

- Idea: Hash keywords into a hash table
 - Value is <ptr-to-posting-list,DF>
- In principle, **O(1) access is possible** …
 - Construction: O(|K|)
 - Search time: O(|q|)
 - O(1) key comparisons, typical STRING hash functions look at all chars
 - Space: Difficult
 - Depends on size of hash table and expected length of overflow chains
- Only if **collision-free hash function** is used
 - Which requires hash tables much larger than |K|
Dictionary as Prefix Tree (TRIE: Information ReTRIEval)

<table>
<thead>
<tr>
<th>Term</th>
<th>IDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>aid</td>
<td>1</td>
</tr>
<tr>
<td>all</td>
<td>1</td>
</tr>
<tr>
<td>and</td>
<td>1</td>
</tr>
<tr>
<td>come</td>
<td>1</td>
</tr>
<tr>
<td>country</td>
<td>2</td>
</tr>
<tr>
<td>dark</td>
<td>1</td>
</tr>
<tr>
<td>for</td>
<td>1</td>
</tr>
<tr>
<td>good</td>
<td>1</td>
</tr>
<tr>
<td>in</td>
<td>1</td>
</tr>
<tr>
<td>is</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>1</td>
</tr>
<tr>
<td>manor</td>
<td>1</td>
</tr>
<tr>
<td>men</td>
<td>1</td>
</tr>
<tr>
<td>midnight</td>
<td>1</td>
</tr>
<tr>
<td>night</td>
<td>1</td>
</tr>
<tr>
<td>now</td>
<td>1</td>
</tr>
</tbody>
</table>
Compressed Tries (Patricia Trees)

- Remove nodes with only one child
- Label edges with substrings, not single characters
- Saves space and pointers
- Search: $O(|q|)$
 - Maximally $|q|$ char-comps + max $|q|$ ptr to follow
 - Assumes $O(1)$ for decision on child-pointer within each node
- Construction: $O(n)$
- Space ...
Space of a Trie

- **Space:** Difficult to estimate

- Assume 4 full levels, then each last inner node having two different suffixes (1M leaves, alphabet size 26)
 - 26 nodes in 1st, $26^2 \sim 700$ in 2nd, $26^3 \sim 17,000$ in 3rd, $26^4 \sim 450K$ in 4th
 - Assume each incoming edge stores only 1 character
 - Nodes in first 3 levels store 26 pointer, nodes in 4th only two
 - Beware: No $O(|q|)$ search any more

- Inner: $(26+700+17K)*(26*ptr+1)+450K*(2*ptr+1) \sim 6M$

- Leaves: $|K|*(\text{string-ptr, posting-ptr, DF})+(n-|K|*4) \sim 16M$
 - We only need to store a suffix of each string, prefix is in tree

- Together: $\sim 22M$
 - But assumptions are very optimistic
 - Prefix trees are typically very space-consuming
Content of this Lecture

- General approach
- Storage structures
 - The dictionary
 - The posting lists
- Phrase and proximity search
- Building and updating the index
- Using a RDBMS
Storing the Posting File

- Posting file is usually kept on disk
- Thus, we need an IO-optimized data structure
- Suggestions?
Storing the Posting File

• Posting file kept on disk: IO-optimized data structure

• Static
 – Store posting lists one after the other in large file
 – Posting-ptr is offset in this file

• Prepare for inserts
 – Reserve additional space per posting
 • Good idea: Large initial posting lists get large extra space
 • Many inserts can be handled internally
 – Upon overflow, append entire posting list at the end of the file
 • Place pointer at old position – at most two access per posting list
 • Or update pointer in dictionary – better if only one copy around
 • Generates unused space (holes) – regular reorganization
 • Reorganization requires updating all pointers in the dictionary
Content of this Lecture

• General approach
• Storage structures
• Phrase and proximity search
• Building and updating the index
• Using a RDBMS
Positional Information

- What if we search for phrases: “Bill Clinton”, “Ulf Leser”
 - ~10% of web searches are phrase queries
- What if we search by proximity “car AND rent/5”
 - “We rent cars”, “cars for rent”, “special care rent”, “if you want to rent a car, click here”, “Cars and motorcycles for rent”, ...
- We need positional information

Doc1:
Now is the time for all good men to come to the aid of their country.

Doc2:
It was a dark and stormy night in the country manor. The time was past midnight.
Answering Phrase Queries

- Search posting lists of all query terms
- During intersection, also positions must fit
Effects

- Dictionary is not affected
- Posting lists get much larger
 - Store many tuples (docID, pos) + TF instead of few docID + TF
 - Index with positional information typically 30-50% larger than the corpus itself
 - Especially frequent words require excessive storage
- One trick: Compression of docID (delta encoding)
 - In large corpora, docID is a large integer
 - In contrast, positions are small ints – no compression
 - Trick: Store length of gaps instead of docID
 - t1: 17654, 3, 17655, 12, 17862, 8, 17880, 4, 17884, 9, ...
 - t1: 17654, 3, 1, 12, 207, 8, 18, 4, 4, 9, ...

Encoding

- Only pays off if we need **few bits for small numbers** but still have many bits for large numbers
- **Variable-byte encoding**
 - Always use at least 1 byte
 - Reserve first bit as “continuation bit” (cb) and 7 bit as payload
 - If cb=1, also use payload of next byte
 - \(t_1: 17654,3,1 \), 12, 207, 8, ...
 - \(t_1: 17654,3,00000001,12,11001111\|00000001,8,\) ...
 - **Simple**, small numbers not encoded optimally
- \(\gamma \) (gamma) codes (details skipped)
 - Always use **minimal number** of bits for value
 - Encode length in unary encoding
Bi-Gram Index

• Alternative for phrase queries: Index over bi-grams
 – „The fat cat ate a rat“ – „the fat“, „fat cat“, „cat ate“, …
• Phrase query with |q| keywords gets translated into |q|-1 lookups
• Done?
Bi-Gram Index

• Alternative for phrase queries: Index over bi-grams
 - „The fat cat ate a rat“ – „the fat“, „fat cat“, „cat ate“, …

• Phrase query with $|q|$ keywords gets translated into $|q|-1$ lookups

• Done?
 - Bi-gram need not appear sequentially in the doc
 - Need to confirm match after loading the doc
 - But very high disambiguation effect due to regularities in natural languages

• Advantage: Simple, fast

• Disadvantage: Very large dictionary
Proximity Search

- Phrase search = proximity search with distance one
- Proximity search
 - Search doc-lists with positional information for each term
 - Upon intersection, consider doc-ID and position information
 - Can get quite involved for multi-term queries
 - “car AND rent/5 AND cheap/2 AND toyota/20” – “cheap” between 1 and 7 words from “car”, “toyota” between 1 and 22 words from rent …
 - All conditions must be satisfied
Content of this Lecture

- General approach
- Storage structures
- Phrase and proximity search
- Building and updating the index
- Using a RDBMS
Building an Inverted File

- Assume a very large corpus: Trillions of documents
 - We still assume that dictionary fits in memory
- How can we efficiently build the index?
Blocked, Sort-Based Indexing

- Partition corpus in **blocks fitting into memory**
- **Algorithm**
 - Keep dictionary always in memory
 - For each block: Load, create postings, Flash to disk
 - **Merge** all blocks
 - Open all blocks at once
 - Skip through all files keyword-by-keyword in sort-order
 - Merge doc-lists of equal keywords and flash to disk
- Requires **2 reads and 2 writes** of all data
 - If there are enough file handles to open all blocks at once
- Requires many **large sorts in main memory**
Updating an index: \texttt{INSERT d_{new}}

- **What has to be done?**
 - Foreach \(k_i \in d_{new} \)
 - Search \(k_i \) in dictionary
 - If present
 - Follow pointer to posting file
 - Add \(d_{new} \) to posting list of \(k_i \)
 - If list overflows, move posting list to end of file and place pointer
 - If not present
 - Insert \(k_i \) into dictionary
 - Add new posting list \(\{d_{new}\} \) at end of posting file

- **Disadvantage**
 - Degradation: Many pointers in file, many terms require 2 IO
 - Especially the frequent ones
 - Index partly locked during updates
Using Auxiliary Indexes

- All updates are performed on a second, auxiliary index
 - Keep it small: Always in memory
- Searches need to search real and auxiliary index
- When aux index grows too large, merge into real index
 - Try to append in-file: Same problem with degradation
 - Or read both indexes and write a new real index
 - In both cases, the index is locked
 - Solution: Work on a copy, then switch file pointers
- Alternative: Ignore new docs, periodically rebuild index
Content of this Lecture

- General approach
- Storage structures
- Phrase and proximity search
- Building and updating the index
- Using a RDBMS
Implementing an Inverted File using a RDBMS

Term-ID Term IDF

<table>
<thead>
<tr>
<th>Term-ID</th>
<th>Term</th>
<th>IDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Night</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>To</td>
<td>2</td>
</tr>
</tbody>
</table>

Term-ID Doc-ID TF

<table>
<thead>
<tr>
<th>Term-ID</th>
<th>Doc-ID</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Term-ID Doc-ID Pos

<table>
<thead>
<tr>
<th>Term-ID</th>
<th>Doc-ID</th>
<th>Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

Doc # TF Pos

<table>
<thead>
<tr>
<th>Doc #</th>
<th>TF</th>
<th>Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>
Example Query 1

- Boolean: All docs containing terms “night” and “to”

 \[
 \text{SELECT D1.docid} \\
 \text{FROM terms T1, terms T2, termdoc D1, termdoc D2} \\
 \text{WHERE T1.term='night' AND T2.term='to' AND} \\
 \text{D1.termid=T1.termid AND} \\
 \text{D2.termid=T2.termid AND} \\
 \text{D1.docid = D2.docid;}
 \]

<table>
<thead>
<tr>
<th>Term-ID</th>
<th>Term</th>
<th>IDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Night</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>To</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term-ID</th>
<th>Doc-ID</th>
<th>Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term-ID</th>
<th>Doc-ID</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

...
Example Query 2

- VSM queries
 - We need to compute the inner product of two vectors
 - We ignore normalization
 - We assume TF-values of query terms are 1, others are 0
 - It suffices to aggregate TF values of matching terms per doc

- Example: Compute score for “night rider” (two terms)
 - SELECT did, sum(tf)
 FROM (SELECT D.docid did, T.term term, tf
 FROM terms T, termdoc D
 WHERE T.term='night' AND D.termid=T.termid) docs
 UNION
 SELECT D.docid did, T.term term, tf
 FROM terms T, termdoc D
 WHERE T.term='rider' AND D.termid=T.termid) docs
 GROUP BY did;
Access Methods in a RDBMS

• Use B*-Indices on ID columns
• Searching a term
 – Requires $O(\log(|K|))$ random-access IO
 • Mind the base of the logarithm: Block size
 • For <100M terms, this usually means <3 IO (cache!)
 – Accessing the posting list: $O(\log(n))$ quasi-random-access IO
 • Where n is the number of term occurrences in D
 • Access is a lookup with term-ID, then seq. scan along the B*-leaves
 – Compared to IR: Dictionary in memory, posting is accessed by direct link, then only sequential IO
• Advantages: Simple, easy to build
• Disadvantages: Much slower
 – More IO, general RDBMS overhead, space overhead for keys, …
Self Assessment

- Explain idea and structure of inverted files?
- What are possible data structures for the dictionary? Advantages / disadvantages?
- How can posting lists be managed?
- How much bigger is an inverted file with positions than without?
- How can one efficiently build a large inverted file from scratch?