
Information Retrieval

Patrick Schäfer

Ulf Leser

Searching Terms

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 2

Content of this Lecture

• Searching strings
• Naïve exact string matching
• Boyer-Moore
• BM-Variants and comparisons

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 3

Searching Strings in Text

• All IR models require finding occurrences of terms in

documents
• Fundamental operation: find(k,D) -> 𝒫𝒫(𝐷𝐷)

• Indexing: Preprocess docs and use index for searching
– Apply tokenization; can only find entire words
– Classical IR technique (inverted files)

• Online searching: Consider docs and query as new
– No preprocessing - slower
– Usually without tokenization – more “searchable” substrings
– Classical algorithmic problem: Substring search

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 4

Properties

• Advantages of substring search
– Does not require (erroneous, ad-hoc) tokenization

• “U.S.”, “35,00=.000”, “alpha-type1 AML-3’ protein”, …

– Search across tokens / sentences / paragraphs
• “, that ”, “happen. “, …

– Searching prefixes, infixes, suffixes, stems
• “compar”, “ver” (German), …

• Searching substrings is “harder” than searching terms
– Number of unique terms doesn’t increase much with corpus size

(from a certain point on)
• English: ~ 1 Million terms, but 200 Million potential substrings of size 6

– Need to index all possible substrings

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 5

Types of Substring Searching

• Exact search: Find all exact occurrences of a pattern
(substring) p in D

• RegExp matching: Find all matches of a regular exp. p in D
• Approximate search: Find all substrings in D that are

“similar” to a pattern p
– Phonetically similar (Soundex)
– Only one typo away (keyboard errors)
– Strings that can be produced from p by at most n operations of

type “insert a letter”, “delete a letter”, “change a letter”
– …

• Multiple strings: Searching >1 strings at once in D

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 6

Definition: Strings

• A String S is a sequential, ordered list of characters from a

finite alphabet Σ
– |S| is the number of characters in S
– Positions in S are counted from 1,...,|S|
– S[i] denotes the character at position i in S
– S[i..j] denotes the substring of S starting at position i and ending at

position j (including both)
– S[1..i] or S[..i] is the prefix of S until position i
– S[i..|S|] or S[i..] is the suffix of S starting from position i
– S[..i] (S[i..]) is called a proper prefix (suffix) of S iff

• i≠0 (not empty) and
• i≠|S| (not entire String).

dadfabzzb… S
123456789…

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 7

tcagcttactaattaaaaattctttctagtaagtgctaagatcaagaaaataaattaaaaataatggaacatggcacattttcctaaactcttcacagattgctaatga
ttattaattaaagaataaatgttataattttttatggtaacggaatttcctaaaatattaattcaagcaccatggaatgcaaataagaaggactctgttaattggtact
attcaactcaatgcaagtggaactaagttggtattaatactcttttttacatatatatgtagttattttaggaagcgaaggacaatttcatctgctaataaagggattac
atatttatttttgtgaatataaaaaatagaaagtatgttatcagattaaacttttgagaaaggtaagtatgaagtaaagctgtatactccagcaataagttcaaataggc
gaaaaactttttaataacaaagttaaataatcattttgggaattgaaatgtcaaagataattacttcacgataagtagttgaagatagtttaaatttttctttttgtatt
acttcaatgaaggtaacgcaacaagattagagtatatatggccaataaggtttgctgtaggaaaattattctaaggagatacgcgagagggcttctcaaatttattcaga
gatggatgtttttagatggtggtttaagaaaagcagtattaaatccagcaaaactagaccttaggtttattaaagcgaggcaataagttaattggaattgtaaaagatat
ctaattcttcttcatttgttggaggaaaactagttaacttcttaccccatgcagggccatagggtcgaatacgatctgtcactaagcaaaggaaaatgtgagtgtagact
ttaaaccatttttattaatgactttagagaatcatgcatttgatgttactttcttaacaatgtgaacatatttatgcgattaagatgagttatgaaaaaggcgaatatat
tattcagttacatagagattatagctggtctattcttagttataggacttttgacaagatagcttagaaaataagattatagagcttaataaaagagaacttcttggaat
tagctgcctttggtgcagctgtaatggctattggtatggctccagcttactggttaggttttaatagaaaaattccccatgattgctaattatatctatcctattgagaa
caacgtgcgaagatgagtggcaaattggttcattattaactgctggtgctatagtagttatccttagaaagatatataaatctgataaagcaaaatcctggggaaaatat
tgctaactggtgctggtagggtttggggattggattatttcctctacaagaaatttggtgtttactgatatccttataaataatagagaaaaaattaataaagatgatat

Exact Substring Matching

• Given: Pattern P to search for, text T to search in
– We require |P| ≤ |T| (T is longer than P)
– We assume |P| << |T| (T is much longer than P)

• Task: Find all occurrences of P in T
– Where is “GATATC”

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 8

How to do it?

• The straight-forward way (naïve algorithm)
– We use two counters: t, p
– One (outer, t) runs through T
– One (inner, p) runs through P

– Compare characters at position T[t+p-1] and P[p]

for t = 1 to |T| - |P| + 1
 p := 1;
 while (p <= |P| and T[t+p–1] == P[p])
 p := p + 1;
 end while;

 if (p == |P|) then
 REPORT t
end for;

ctgagatcgcgta
gagatc
gagatc
gagatc
gagatc
gagatc
gatatc

gatatc

T
P

gatatc

123456789…

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 9

Examples

ctgagatcgcgta
gagatc
gagatc
gagatc
gagatc
gagatc
gatatc

gatatc

T
P

gatatc

Worst case

aaaaaaaaaaaaaa

aaaaat
aaaaat
aaaaat
aaaaat

 ...

T
P

Typical case

• How many comparisons do we need in the worst case?
• t runs through T
• p runs through the entire P for every value of t
• Thus: |P|*|T| comparisons
• Indeed: The algorithm has worst-case complexity O(|P|*|T|)

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 10

Other Algorithms

• Exact substring search has been researched for decades
– Boyer-Moore, Z-Box, Knuth-Morris-Pratt, Karp-Rabin, Shift-AND, …
– All have WC complexity O(|P| + |T|)
– For many, WC=AC, but empirical performance differs much
– Real performance depends much on the size of alphabet and the

composition of strings (algs have their strength in certain settings)
– Better performance possible if T is preprocessed (up to O(|P|))

• In practice, our naïve algorithm is quite competitive for
non-trivial alphabets and biased letter frequencies
– E.g., English text

• But we can do better: Boyer-Moore
– We present a simplified form
– BM is among the fastest algorithms in practice

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 11

Content of this Lecture

• Searching strings
• Naïve exact string matching
• Boyer-Moore
• BM-Variants and comparisons

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 12

Boyer-Moore Algorithm

• R.S. Boyer /J.S. Moore. „A Fast String Searching

Algorithm“, Communications of the ACM, 1977
• Main idea

– As for the naïve alg, we use two counters (inner loop, outer loop)
– Inner loop runs from right-to-left
– If we reach a mismatch, we know

• The character in T we just haven’t seen
– This is captured by the bad character rule

• The suffix in P we just have seen
– This is captured by the good suffix rule

• Use this knowledge to make longer shifts in T

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 13

Boyer-Moore Main Idea

• Inner loop runs from right-to-left
• If we reach a mismatch, and this bad character does not

appear in P at all, we can shift the pattern P my |P|
positions:

dadfabzzbwzzbzzb
aaba

T
P

123456789…

aaba

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 14

Bad Character Rule

• Setting 1
– We are at position t in T and compare right-to-left
– Let i by the position of the first mismatch in P, n=|P|

• We saw n-i matches before

– Let x be the character at the corresponding pos (t-n+i) in T
– Candidates for matching 𝑥𝑥 in P

• Case 1: 𝑥𝑥 does not appear in P at all – we can move t such that t-n+i
is not covered by P anymore

dadfabzzbwzzbzzb
abwzabzz

T
P

What next?
t-n+i

123456789…

dadfabzzbwzzbzzb

abwzabzz

T
P

123456789…

abwzabzz

t

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 15

Bad Character Rule 2

• Setting 2
– We are at position t in T and compare right-to-left
– Let i by the position of the first mismatch in P, n=|P|
– Let x be the character at the corresponding pos (t-n+i) in T
– Candidates for matching 𝑥𝑥 in P

• Case 1: 𝑥𝑥 does not appear in P at all
• Case 2: Let j be the right-most appearance of 𝑥𝑥 in P and let j<i – we

can move t such that j and t align

dadfabzzbwzzbzzb
abwzabzz

T
P

j i

123456789…

dadfabzzbwzzbzzb

abwzabzz

T
P

What next?

123456789…

abwzabzz

j

‘a’ 5

‘b’ 6

‘w’ 3

‘z’ 8

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 16

Bad Character Rule 3

• Setting 3
– We are at position t in T and compare right-to-left
– Let i by the position of the first mismatch in P, n=|P|
– Let x be the character at the corresponding pos (t-n+i) in T
– Candidates for matching 𝑥𝑥 in P

• Case 1: x does not appear in P at all
• Case 2: Let j be the right-most appearance of 𝑥𝑥 in P and let j<i
• Case 3: As case 2, but j>i – we need some more knowledge

dadfabzzbwzzbzzb
abwzabzz

T
P

123456789…

i j

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 17

Preprocessing 1

• In case 3, there are some “𝑥𝑥” right from position i
– For small alphabets (DNA), this will almost always be the case
– In human languages, this is often the case (e.g. for vowels)
– Thus, case 3 is a usual one

• These “𝑥𝑥” are irrelevant – we need the right-most 𝑥𝑥 left of i
• This can (and should!) be pre-computed

– Build a two-dimensional array A[|∑|,|P|]
– Run through P from left-to-right (pointer i)
– If character c appears at position i, set all A[c,j]:=i for all j>=i
– Requested time (complexity?) negligible

• Because |P|<<|T| and complexity independent from T

• Array: Constant lookup, needs some space (lists …)

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 18

(Extended) Bad Character Rule

1 2 3 4 5 6 7 8

‘a’ 1 1 1 1 5 5 5 5

‘b’ 0 2 2 2 2 6 6 6

‘w’ 0 0 3 3 3 3 3 3

‘z’ 0 0 0 4 4 4 7 8

abwzabzz P

12345678

A

dadfabzzbwzzbzzb

abwzabzz

T
P

123456789…

abwzabzz
dadfabzzbwzzbzzb

abwzabzz
T
P

123456789…

A[’z’,5]

i

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 19

(Extended) Bad Character Rule

• EBCR: Shift t by i-A[x,i] positions
• Simple and effective for larger alphabets
• For random strings over ∑, average shift-length is |∑|/2

– Thus, n# of comparisons down to |T|*2/|∑|

• Worst-Case complexity does not change
– Why?

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 20

(Extended) Bad Character Rule

ggg

aggggggggggg
aggggggggggg
aggggggggggg
aggggggggggg

ggg ggg ggg

• EBCR: Shift t by i-A[x,i] positions
• Simple and effective for larger alphabets
• For random strings over ∑, average shift-length is |∑|/2

– Thus, n# of comparisons down to |T|*2/|∑|

• Worst-Case complexity does not change
– Why? Shift-length can be always 1:

T=gm

P=agn

O(| P| *| T|)

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 21

Good-Suffix Rule

• Recall: If we reach a mismatch, we know
– The character in T we just haven’t seen
– The suffix in P we just have seen

• Good suffix rule
– We have just seen some matches (let these be S) in P
– Where else does S appear in P?
– If we know the right-most appearance S’ of S in P, we can

immediately align S’ with the current match in T
– If S does not appear anymore in P, we can shift t by |P|

T

P S y

x S

S‘

x S

S y S‘

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 22

Good-Suffix Rule – One Improvement

• Actually, we can do a little better
• Not all S‘ are of interest to us

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 23

Good-Suffix Rule – One Improvement

• Actually, we can do a little better
• Not all S‘ are of interest to us

• We only need S‘ whose next character to the left is not y
• Why don‘t we directly require that this character is x?

– Of course, this could be used for further optimization

T

P S y

x S

S‘

x S

S y S‘ ≠y

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 24

Good-Suffix Rule

• Special case: Let S’ be a suffix of S and S’ be a prefix of P :

• We have to align S‘ with S.

T

P S y

x S

S‘

x S

S y S‘

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 25

Good-Suffix-Rule – Preprocessing 2

• Use two arrays:
– Position of the longest suffix f: f[i] stores the starting position of

prefix P[i..] in the suffix of P.
– Maximum shift s: s[i] stores for position i the maximum shift to the

left.

b b b c a a a a g a

8 6 3 1 4 5 9 10 7 2

P

s

f

5 0 0 0 0 0 0 1 0 0

11 11 8 11 9 10 10 11 11 10

11

2

12

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 26

Concluding Remarks

• Preprocessing 2

– For the GSR, we need to find all occurrences of all suffixes of P in P
– This can be solved using our naïve algorithm for each suffix
– Or, more complicated, in linear time (not this lecture)

• WC complexity of Boyer-Moore is still O(|P|*|T|)
– But average case is sub-linear: O(|T|/|P|); especially when

|∑|>|P|, which causes many shifts by |P|.
– WC complexity can be reduced to linear (not this lecture), but this

usually doesn’t pay-off on real data

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 27

Boyer-Moore - Algorithm

for t := 1 to |T|-|P|+1 do

 p := |P|;

 while (p > 0 and T[t+|P|-p-1] == P[p]) do

 p := p-1; end while

 if (p==0) then // match

 REPORT t;

 shift t to largest prefix of P, which is also a suffix of P

 else // no match

 shift t by GSR, EBCR;

end for

• Compare characters at position T[t+|P|-p-1] and P[p]
– t runs from left-to-right through T;
– p runs from right-to-left through P;

• Mismatch: shift by maximum of GSR and EBCR.
• Match found: shift using GSR.

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 28

Example
b b b b b b b b b c c c a a a a a a a a a g g g g g c g b b c a a a b c a

b b b b b b b b b c c c a a a a a a a a a g g g g g c g b b c a a a b c a

b b b b b b b b b c c c a a a a a a a a a g g g g g c g b b c a a a b c a

b b b b b b b b b c c c a a a a a a a a a g g g g g c g b b c a a a b c a

b b b b b b b b b c c c a a a a a a a a a g g g g g c g b b c a a a b c a

Match

Mismatch

Good suffix

Ext. Bad character

b b b c a a a a a g GSR wins

b b b c a a a a a g GSR wins

b b b c a a a a a g

b b b c a a a a a g EBCR wins

b b b c a a a a g a

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 29

Content of this Lecture

• Searching strings
• Naïve exact string matching
• Boyer-Moore
• BM-Variants and comparisons

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 30

Two Faster Variants

• BM-Horspool
– Drop the good suffix rule – GSR makes algorithm slower in practice

• Rarely shifts longer than EBCR
• Needs time to compute the shift

– Instead of looking at the mismatch character x, always look at the
symbol in T aligned to the last position of P

• Generates longer shifts on average (i is maximal)

• BM-Sunday
– Instead of looking at the mismatch character x, always look at the

symbol in T after the symbol aligned to the last position of P
• Generates even longer shifts on average

• Alternative: Always look at the least frequent (in the
language of T) symbol of P first

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 31

BM Variants

abcabdaacba
bcaab
bcaab

T
P

123456789…

(a) Boyer-Moore

abcabdaacba
bcaab

bcaab

T
P

123456789…

(b) BM-Horspool

abcabdaacba
bcaab

bcaab

T
P

123456789…

(c) BM-Sunday

abcabdaacba
bcaab

bcaab

T
P

123456789…

(d) BM-Sunday +

 Least Frequent Char

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 32

Empirical Comparison

• Shift-OR: Using parallelization in CPU (only small alphabets)
• BNDM: Backward nondeterministic Dawg Matching (automata-based)
• BOM: Backward Oracle Matching (automata-based)

n

Machine
word

Schäfer, Leser: Searching Strings, Winter Semester 2016/2017 33

Self Assessment

• Explain the Boyer-Moore algorithm
• Which rule is better – GSR or EBCR?
• How can we efficiently implement EBCR?
• How does the Sunday algorithm deviate from BM?
• How can we use character frequencies to speed up BM? If

we do so - which part of the algorithm is sped up?

	Foliennummer 1
	Content of this Lecture
	Searching Strings in Text
	Properties
	Types of Substring Searching
	Definition: Strings
	Exact Substring Matching
	How to do it?
	Examples
	Other Algorithms
	Content of this Lecture
	Boyer-Moore Algorithm
	Boyer-Moore Main Idea
	Bad Character Rule
	Bad Character Rule 2
	Bad Character Rule 3
	Preprocessing 1
	(Extended) Bad Character Rule
	(Extended) Bad Character Rule
	(Extended) Bad Character Rule
	Good-Suffix Rule
	Good-Suffix Rule – One Improvement
	Good-Suffix Rule – One Improvement
	Good-Suffix Rule
	Good-Suffix-Rule – Preprocessing 2
	Concluding Remarks
	Boyer-Moore - Algorithm
	Example
	Content of this Lecture
	Two Faster Variants
	BM Variants
	Empirical Comparison
	Self Assessment

