

Information Retrieval Modeling Information Retrieval 2

Ulf Leser

Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models

A Probabilistic Interpretation of Relevance

- VSM is fairly heuristic - some kind of similarity with some kind of weighting in some kind of vector space
- Probabilistic models build on well-established and mathematically consistent probability theory
- Derive relevance formulas from a few basic and sound principles
- Probabilistic model
- Words appearing in docs are seen as independent events
- A doc (or query) is a conjunction of events
- Compute the probability that a doc d is relevant to query q
- Actually, we will compute a score (using probabilities)

Process

- We represent d as the set $\left\{k_{i}\right\}$ of words contained in d
- Frequency of words not considered
- Initial queries too short for probabilistic reasoning
- We need relevant docs
- Determined iteratively using feedback (automatic, explicit, implicit)
- Similar to VSM with relevance feedback
- Process for answering q
- Subset R๓D of only relevant documents
- Subset $N \subseteq$ D of only irrelevant documents
- Compute $p(R \mid d)$, the probability that document d belongs to R
- Typically performed iteratively

Odds-Score

- Let rel(d, q) be the relevance of a document comprising the terms of d for being relevant to query q
- Since words k_{i} appear both in relevant and in irrelevant docs, we look at the probability of both classes R / N
- Also called odds-score

$$
\operatorname{rel}(d, q)=\frac{p(R \mid d)}{p(N \mid d)}=\frac{p\left(R \mid k_{1}, \ldots, k_{n}\right)}{p\left(N \mid k_{1}, \ldots, k_{n}\right)}
$$

- Assuming statistical independence of words, we get

$$
\operatorname{rel}(d, q)=\frac{p\left(R \mid k_{1}, \ldots, k_{n}\right)}{p\left(N \mid k_{1}, \ldots, k_{n}\right)}=\frac{p\left(R \mid k_{1}\right)^{*} \ldots * p\left(R \mid k_{n}\right)}{p\left(N \mid k_{1}\right)^{*} \ldots * p\left(N \mid k_{n}\right)}
$$

Using Bayes

- Using Bayes Theorem

$$
\operatorname{rel}(d, q)=\frac{p(R \mid d)}{p(N \mid d)}=\frac{p(d \mid R)^{*} p(R)^{*} p(d)}{p(d \mid N)^{*} p(N) * p(d)} \sim \frac{p(d \mid R)}{p(d \mid N)}
$$

- $p(R / N)$: relative frequency of (ir-)relevant docs in D
- A-Priori probability of a doc to be (ir-)relevant
- Constant for a given q and thus irrelevant for ranking docs
- $p(d \mid R)$ is the probability of drawing the combination of words forming d when drawing words at random from R

Binary Independence Model

- More intuitive: $\mathrm{p}(\mathrm{d} \mid \mathrm{R})$ is the probability of drawing words from d from R and not drawing words not in d from R
- Binary Independence Model

$$
\operatorname{rel}(d, q)=\frac{p(d \mid R)}{p(d \mid N)}=\frac{\prod_{k \in d} p(k \mid R)^{*} \prod_{k \in d} p(\neg k \mid R)}{\prod_{k \in d} p(k \mid N) * \prod_{k \notin d} p(\neg k \mid N)}
$$

- Having words that are frequent in R raises the relevance of d
- Not having words that are frequent in R lowers the relevance of d
- Having words that are frequent in N lowers the relevance of d
- Not having words that are frequent in N raises the relevance of d

Binary Independence Model

Continuation

- Rephrasing using q

$$
r e l(d, q)=\frac{\prod_{k \in d \cap q} p(k \mid R)}{\prod_{k \in d \cap q} p(k \mid N)} * \frac{\prod_{k \in d \backslash q} p(k \nmid R)}{\prod_{k \in d \backslash q} p(k \mid N)} * \frac{\prod_{k \in q \backslash d} p(\neg k \mid R)}{\prod_{k \in q \backslash d} p(\neg k \mid N)} * \frac{\prod_{k \neq d \cup q} p(\neg k \mid R)}{\prod_{\nless d \backslash q} p(\neg k \mid N)}
$$

- Since we are not sure about R/N: Focus on query terms
$\ldots \approx \prod_{k \in d \cap q} \frac{p(k \mid R)}{p(k \mid N)} * \prod_{k \in q \backslash d} \frac{p(\neg k \mid R)}{p(\neg k \mid N)}=\prod_{k \in d \cap q} \frac{p(k \mid R)}{p(k \mid N)} * \prod_{k \in q \backslash d} \frac{1-p(k \mid R)}{1-p(k \mid N)}$

Last Step

$$
\prod_{k \in d \cap q} \frac{p(k \mid R)}{p(k \mid N)} * \prod_{k \in q \backslash d} \frac{1-p(k \mid R)}{1-p(k \mid N)}
$$

All matching terms All non-matching terms

- Some reformulating (duplicating the terms in q)

$$
\begin{gathered}
=\prod_{k \in d \cap q} \frac{p(k \mid R)^{*}(1-p(k \mid N))}{} \underbrace{*(1-p(k \mid R))} * \prod_{k \in q \backslash d} \frac{1-p(k \mid R)}{1-p(k \mid N)} \\
=\prod_{k \in d \cap q} \frac{p(k \mid R)^{*}(1-p(k \mid N))}{p(k \mid N)^{*}(1-p(k \mid R))} * \prod_{k \in q} \frac{1-p(k \mid N))}{1-p(k \mid N)} \\
\quad \text { All matching terms } \quad \text { All query terms }
\end{gathered}
$$

Problem

- Last term is identical for all d and can be dropped

$$
\operatorname{rel}(d, q) \approx \prod_{k \in d \cap q} \frac{p(k \mid R)^{*}(1-p(k \mid N))}{p(k \mid N)^{*}(1-p(k \mid R))}
$$

- But: Computing rel (d, q) requires knowledge of R and N
- If R and N were known, we could much easier estimate $p(k \mid R)$ / $p(k \mid N)$ by looking at the relative frequencies of terms in R / N
- Also called maximum likelihood estimation
- In reality, we actually want to find R and N

Back to Reality

- Idea: Approximation using an iterative process
- Start with "educated guess" for R and set $N=D \backslash R$
- E.g. R ~ "all docs containing at least one word from q"
- Compute relevance of all docs with respect to q
- Chose relevant docs (by user feedback) or hopefully relevant docs (by selecting the top-r docs)
- This gives new sets R and N
- If top-r docs are chosen, we may decide to only change probabilities of terms in R (and disregard the questionable negative information)
- Compute new conditional probabilities and new ranking
- Iterate until satisfied
- [Variant of the Expectation Maximization Algorithm (EM)]

Initialization

$$
\operatorname{rel}(d, q) \approx \prod_{k \in d \cap q} \frac{p(k \mid R)^{*}(1-p(k \mid N))}{p(k \mid N)^{*}(1-p(k \mid R))}
$$

- Typical simplifying assumptions for the start
- Terms in non-relevant docs are equally distributed: $\mathrm{p}(\mathrm{k} \mid \mathrm{N}) \sim \mathrm{df}_{\mathrm{k}} /|\mathrm{D}|$
- Terms in relevant doc get equal probability: $p(k \mid R)=0.5$
- Much less computation, less weight to unstable first values
- [But leaves axiomatic probability theory]
- Iterations: Assume we have a new R' and N'. Then:

$$
\begin{aligned}
P\left(k \mid R^{\prime}\right) & =\frac{\left|\left\{d \mid k \in d, d \in R^{\prime}\right\}\right|}{\left|R^{\prime}\right|} \\
P\left(k \mid N^{\prime}\right) & =\frac{d f_{k}-\left|\left\{d \mid k \in d, d \in R^{\prime}\right\}\right|}{|D|-\left|R^{\prime}\right|}
\end{aligned}
$$

Example

	Text	verkauf	haus	italien	gart	miet	blüh	woll
$\mathbf{1}$	Wir verkaufen Häuser in Italien	1	1	1				
$\mathbf{2}$	Häuser mit Gärten zu vermieten		1		1	1		
$\mathbf{3}$	Häuser: In Italien, um Italien, um Italien herum		1	1				
$\mathbf{4}$	Die italienschen Gärtner sind im Garten			1	1			
$\mathbf{5}$	Um unser italiensches Haus blüht's		1	1			1	
$\mathbf{6}$	Wir verkaufen Blühendes	1					1	
\mathbf{Q}	Wir wollen ein Haus mit Garten in Italien mieten		1	1	1	1		1

Example: I nitialization
 $$
\operatorname{rel}(d, q) \approx \prod_{k \in d \cap q} \frac{p(k \mid R)^{*}(1-p(k \mid N))}{p(k \mid N)^{*}(1-p(k \mid R))}
$$

- All docs with at least one word from q
- $R=\{1,2,3,4,5\}, N=\{6\}$
- Initial estimations

	\mathbf{V}	\mathbf{H}	\mathbf{I}	\mathbf{G}	\mathbf{M}	\mathbf{B}	\mathbf{W}
$\mathbf{1}$	1	1	1				
$\mathbf{2}$		1		1	1		
$\mathbf{3}$		1	1				
$\mathbf{4}$			1	1			
$\mathbf{5}$		1	1			1	
$\mathbf{6}$	1					1	
\mathbf{Q}		1	1	1	1		1

- $p(k \mid R)=0.5, p(k \mid N)=d f_{k} /|D|->p($ verkauf $\mid N)=p(b l u ̈ h \mid N)=2 / 6$
- Smoothing: If $p(k \mid X)=0$, set $p(k \mid X)=0.01$
- Initial ranking
- $\operatorname{rel}(1, q)=p($ haus $\mid R) *(1-p($ haus $\mid N)) * p($ italien $\mid R) *(1-p($ italien $\mid N)) /$ $p($ haus $\mid N) *(1-p($ haus $\mid R)) * p($ italien $\mid N) *(1-p($ italien $\mid R))$
$=.5^{*}(1-0.01)^{*} .5^{*}(1-0.01) /\left(0.01^{*}(1-0.5) * 0.01^{*}(1-0.5)\right)=$
$=9801$
- $\operatorname{rel}(2, q)=970299$
$-\operatorname{rel}(3, q)=\operatorname{rel}(4, q)=\operatorname{rel}(5, q)=9801$
- $\operatorname{rel}(6, q)=0$

$$
P(k \mid R)=\frac{|\{d \mid k \in d, d \in R\}|}{|R|}
$$

Adjustment

$$
P(k \mid N)=\frac{d f_{k}-|\{d \mid k \in d, d \in R\}|}{|D|-|R|}
$$

- Let's use the top-2 docs as new R
- Second chosen arbitrarily among 1,3,4,5

	\mathbf{V}	\mathbf{H}	\mathbf{I}	\mathbf{G}	\mathbf{M}	\mathbf{B}	\mathbf{W}
$\mathbf{1}$	1	1	1				
$\mathbf{2}$		1		1	1		
$\mathbf{3}$		1	1				
$\mathbf{4}$			1	1			
$\mathbf{5}$		1	1			1	
$\mathbf{6}$	1					1	
\mathbf{Q}		1	1	1	1		1

- $R=\{1,2\}, N=\{3,4,5,6\}$
- Adjust scores
- $p($ verkauf $\mid R)=.5$,
$p($ verkauf $\mid N)=(2-1) /(6-2)=1 / 4$
- $p($ haus $\mid R)=1$ ($\sim .99$),
$p($ haus $\mid N)=(4-2) /(6-2)=2 / 4$
- $p($ italien $\mid R)=.5$,
- $p($ gart $\mid R)=.5$,
- $p($ miet $\mid R)=.5$,
$p($ italien $\mid N)=(4-1) /(6-2)=3 / 4$
$p($ gart $\mid N)=(2-1) /(6-2)=1 / 4$
$p($ miet $\mid N)=(1-1) /(6-2)=0 \sim 0.01$

Smoothing: Avoid 1-1=0
$\operatorname{Re-Ranking} \operatorname{rel}(d, q) \approx \prod_{k \in d \cap q} \frac{p(k \mid R)^{*}(1-p(k \mid N))}{p(k \mid N)^{*}(1-p(k \mid R))}$

	\mathbf{V}	\mathbf{H}	\mathbf{I}	\mathbf{G}	\mathbf{M}	\mathbf{B}	\mathbf{W}
$\mathbf{1}$	1	1	1				
$\mathbf{2}$		1		1	1		
$\mathbf{3}$		1	1				
$\mathbf{4}$			1	1			
$\mathbf{5}$		1	1			1	
$\mathbf{6}$	1					1	
\mathbf{Q}		1	1	1	1		1

- New ranking

```
    \(-\operatorname{rel}(1, q)=p(\) haus \(\mid R) *(1-p(\) haus \(\mid N)) * p(\) italien \(\mid R) *(1-p(\) italien \(\mid N))\)
        \(\mathrm{p}(\) haus \(\mid \mathrm{N}) *(1-\mathrm{p}(\) haus \(\mid \mathrm{R})) * p(\) italien \(\mid \mathrm{N}) *(1-\mathrm{p}(\) italien \(\mid \mathrm{R}))\)
    = ...
\(-\operatorname{rel}(2, q)=\ldots\)
- ...
```


Pros and Cons

- Advantages
- Sound (probabilistic) framework
- Many researchers feel more comfortable - explanations for all steps
- But: Several steps are very heuristic
- Results converge to most relevant docs (empirically shown)
- Under the assumption that relevant docs are similar by sharing term distributions that are different from distributions in irrelevant docs
- Disadvantages
- First guesses often are pretty bad - slow convergence
- Assumes statistical independence of terms (as many methods)
- "Has never worked convincingly better in practice" [MS07]

Probabilistic Model versus VSM with Rel. Feedback

- Published 1990 by Salton \& Buckley
- Comparison based on various corpora
- Improvement after 1 feedback iteration

eingesetzte Methode		$\begin{array}{\|l} \hline \text { CACM } \\ 1033 \\ \text { Dok. } \\ 30 \\ \text { Anfr. } \end{array}$	CISI 12684 Dok. 84 Anfr.	$\begin{array}{\|l} \hline \text { CRAN } \\ 1397 \\ \text { Dok. } \\ 225 \\ \text { Anfr. } \end{array}$	$\begin{array}{\|l\|} \hline \text { INSPEC } \\ 1460 \\ \text { Dok. } \\ 112 \\ \text { Anfr. } \\ \hline \end{array}$	MED 3204 Dok. 64 Anfr.	Durchschnitt
initiale Anfrage							
	Precision	0,1459	0,1184	0,1156	0,1368	0,3346	
IDE (dec hi)							
mit allen Termen	Precision	0,2704	0,1742	0,3011	0,2140	0,6305	
	Verbesserung	+86\%	+47\%	+160\%	+56\%	+88\%	+87\%
ausgewählte Terme	Precision	0,2479	0,1924	0,2498	0,1976	0,6218	
	Verbesserung	+70\%	+63\%	+116\%	+44\%	+86\%	+76\%
BIR-Modell							
mit allen Termen	Precision	0,2289	0,1436	0,3108	0,1621	0,5972	
	Verbesserung	+57\%	+21\%	+169\%	+19\%	+78\%	+69\%
ausgewählte Terme	Precision	0,2224	0,1634	0,2120	0,1876	0,5643	
	Verbesserung	+52\%	+38\%	+83\%	+37\%	+69\%	+56\%

- Probabilistic model (BIR) in general worse than VSM+rel feedback (IDE)
- Probabilistic model does not weight terms in documents
- Probabilistic model does not allow to weight terms in queries

Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models

Latent Semantic Indexing

- We so-far ignored semantic relationships between terms
- Homonyms: bank (money, river)
- Synonyms: House, building, hut, villa, ...
- Hyperonyms: officer - lieutenant
- Idea of Latent Semantic Indexing (LSI)
- Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. and Harshman, R. (1990). "I ndexing by latent semantic analysis." J ournal of the American society for information science 41(6): 391-407.
- 2011: >7500 citations; 2014: ~9400
- Map (many) terms into (fewer) semantic concepts
- Which are hidden (or "latent") in the docs
- Compare docs and query in concept space instead of term space
- May find docs that don't contain a single query term

Terms and Concepts

Quelle: K. Aberer, IR

- Concepts are more abstract than terms
- Concepts are related to terms and to docs
- LSI models concepts is non-exclusive sets of frequently cooccurring terms
- Can be computing by matrix manipulations
- Concepts from LSI cannot be "spelled out", but are matrix columns

Term-Document Matrix

- Definition

The term-document matrix M for docs D and terms K has $n=/ D /$ columns and $m=/ K /$ rows. M[i,j]=1 iff document d_{j} contains term k_{i}

- Works equally well for TF or TF*IDF values

Begriff	Dokument 1	Dokument 2	Dokument 3
Access	1	0	0
Document	1	0	0
Retrieval	1	0	1
Information	0	1	1
Theory	0	1	0
Database	1	0	0
Indexing	1	0	0
Computer	0	1	1

Term-Document Matrix and VSM

- VSM uses the transposed document-term matrix (=MT)
- Having M, we can in principle compute the vector v containing the VSM-scores of all docs given q as $v=M^{t} \bullet q$
- Computes the dot product, normalization missing

What to do with a Term-Document Matrix

- M is not just a comfortable way of representing the term vectors of all documents
- In the following, we approximate M by a particular M^{\prime}
- M' should be smaller than M
- Less dimensions; faster computations
- M' should abstract from terms to concepts
- The fewer dimensions capture the most frequent co-occurrences
- M^{\prime} should be such that $M^{+*} q^{\prime} \approx M^{* *} q$
- Produce the least error among all M^{\prime} of the same dimension
- Note: We don't delve deep into the math behind LSI

Term and Document Correlation

- $M \cdot M^{t}$ is called the term correlation matrix
- Has $|\mathrm{K}|$ columns and $|\mathrm{K}|$ rows
- "Similarity" of terms: how often do they co-occur in a doc?
- M^{t} • M is called the document correlation matrix
- Has |D| columns and |D| rows
- "Similarity" of docs: how many terms do they share?
- Example

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
\mathbf{A}	1	1	1		
\mathbf{B}	1	1	1		1
\mathbf{C}		1	1		
\mathbf{D}				1	1

M

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}$	1	1		
$\mathbf{2}$	1	1	1	
$\mathbf{3}$	1	1	1	
$\mathbf{4}$				1
$\mathbf{5}$		1		1

M^{t}

$=$| | \mathbf{A} | \mathbf{B} | \mathbf{C} | \mathbf{D} |
| :--- | :--- | :--- | :--- | :--- |
| \mathbf{A} | 3 | 3 | 2 | 0 |
| \mathbf{B} | 3 | 4 | 2 | 1 |
| \mathbf{C} | 2 | 2 | 2 | 0 |
| \mathbf{D} | 0 | 1 | 0 | 2 |

Term correlation matrix

Some Linear Algebra [Recap]

- The rank of a matrix $M(r)$ is the maximal number of linearly independent rows of M
- If $M x-\lambda x=0$ for a vector $x \neq 0$, then λ is called an Eigenvalue of M and x is his associated Eigenvector
- Eigenvectors/-werte are useful for many things
- In particular, a matrix M can be transformed into a diagonal matrix L with $\mathrm{L}=\mathrm{U}^{-1 *} \mathrm{M}^{*} \mathrm{U}$ with U formed from the Eigenvectors of M iff M has "enough" Eigenvectors
- L represents M in another vector space, based on another basis
- L can be used in many cases instead of M and is easier to handle
- However, our M usually will not have "enough" Eigenvectors
- We use another factorization of M

Singular Value Decomposition (SVD)

- SVD decomposes any matrix into $\mathrm{M}=\mathrm{X} \cdot \mathrm{S} \cdot \mathrm{Y}^{\mathrm{t}}$
- S is the diagonal matrix of the singular values of M in descending order and has size rxr (with $\mathrm{r}=\mathrm{rank}(\mathrm{M})$)
- X is the matrix of Eigenvectors of $\mathrm{M} \cdot \mathrm{M}^{t}$
- Y is the matrix of Eigenvectors of $\mathrm{M}^{t} \cdot \mathrm{M}$
- This decomposition is unique and can be computed in $O\left(r^{3}\right)$
- Use approximations in practice

Example

- Assume for now M is quadratic and has full rank
- Example for $\mathrm{r}=|\mathrm{K}|=|\mathrm{D}|=3$

M_{11}	M_{12}	M_{13}
M_{21}	\ldots	\ldots
M_{31}	\ldots	M_{33}

s_{11}	0	0
0	s_{22}	0
0	0	s_{33}

y_{11}	\ldots	\ldots
y_{21}	\ldots	\ldots
\ldots	\ldots	y_{33}

- $\mathrm{M}_{11}=\left(\mathrm{x}_{11}{ }^{*} \mathrm{~S}_{11}+\mathrm{x}_{12}{ }^{*} \mathrm{~s}_{12}+\mathrm{x}_{13}{ }^{*} \mathrm{~s}_{13}\right) * \mathrm{y}_{11}+$

$$
\left(x_{11}{ }^{*} \mathrm{~s}_{21}+\mathrm{x}_{12}{ }^{*} \mathrm{~s}_{22}+\mathrm{x}_{13} * \mathrm{~s}_{23}\right) * \mathrm{y}_{21}+
$$

$$
\left(\mathrm{x}_{11} * \mathrm{~s}_{31}+\mathrm{x}_{12} * \mathrm{~s}_{32}+\mathrm{x}_{13} * \mathrm{~s}_{33}\right) * \mathrm{y}_{31}
$$

$$
=\mathrm{x}_{11} * \mathrm{~s}_{11} * \mathrm{y}_{11}+\mathrm{x}_{12}{ }^{*} \mathrm{~s}_{22} * \mathrm{y}_{21}+\mathrm{x}_{13} * \mathrm{~s}_{33} * \mathrm{y}_{31}
$$

- $\mathrm{M}_{12}=\ldots$

General Case

- In general, M is not quadratic; $\mathrm{r}<\min (|\mathrm{K}|,|\mathrm{D}|)$
- All sums range from 1 to r

$\sum x_{1 i} S_{i j} Y_{i 1}$...	$\sum x_{11} \mathrm{~S}_{\mathrm{i}} \mathrm{Y}_{\text {im }}$
$\sum x_{n j} \mathrm{~S}_{\mathrm{i}} \mathrm{Y}_{\mathrm{im}}$		$\Sigma x_{\text {n }} \mathrm{S}_{\mathrm{i}} \mathrm{Y}_{\text {im }}$

- LSI idea: What if we stop the sums earlier, at some $s<r$?
- s_{ii} are sorted by descending value
- Aggregating only over the first $\mathrm{sii}_{\mathrm{i}}$-values captures "most" of M

Approximating M

- LSI: Use S to approximate M
- Fix some $s<r$; Compute $M_{s}=X_{s} \cdot S_{s} \cdot Y_{s}{ }^{t}$
- X_{s} : First s columns in X
- S_{s} : First s columns and first s rows in S
- Y_{s} : First s rows in Y
- M_{s} has the same size as M , but different values
- In fact, we don't need to compute M_{s}, but only need X_{s}, S_{s} and Y_{s}

s-Approximations

- Formal: M_{s} is the matrix where $\left\|\mathrm{M}-\mathrm{M}_{\mathrm{s}}\right\|_{2}$ is the smallest
- Since the s_{ij} are sorted in decreasing order
- The approximation is the better, the larger s
- The computation is the faster, the smaller s
- LSI: Only consider the top-s singular values
- s must be small enough to filter out noise (spurious cooccurrences) and to provide "semantic reduction"
- s must be large enough to represent the diversity in the documents
- Typical value: 200-500

LSI for Information Retrieval

- We map document vectors from a m-dimensional space into a s-dimensional space
- Approximated docs (still) are represented by columns in $\mathrm{Y}_{s}{ }^{t}$
- SVD as much as possible preserves distances between docs (depending on number of shared co-occurring terms)
- To this end, SVD (in a way) maps frequently co-occurring terms to the same dimensions
- Because these terms have little impact on distance
- Frequently co-occurring terms can be seen as concepts
- But they cannot easily be "named"
- We cannot easily determine the terms that are mapped into a new dimension - it is always a bit of everything (a linear combination)

Query Evaluation

- After LSI, docs are represented by columns in $Y_{s}{ }^{t}$
- How can we compute the distance between a query and a doc in concept space?
- Transform q into concept space
- Assume q as a new column in M
- Of course, we can transform M offline, but need to transform q online
- This would generate a new column in $\mathrm{Y}_{s}{ }^{t}$
- To only compute this column, we apply the same transformations to q as we did to all other columns of M
- With a little algebra, we get: $q^{\prime}=q^{t} \cdot X_{s} \cdot S_{s}{ }^{-1}$
- This vector is compared to the transformed doc vectors as usual

Example: Term-Document Matrix

- Taken from Mi Islita: "Tutorials on SVD \& LSI"
- http://www.miislita.com/information-retrieval-tutorial/svd-Isi-tutorial-1-understanding. html
- Who took if from the Grossman and Frieder book
d1: Shipment of gold damaged in a fire.
d2: Delivery of silver arrived in a silver truck.
d3: Shipment of gold arrived in a truck.

Query: „gold silver truck"

a
arrived damaged delivery
fire
gold
in
of
shipment
silver
truck

1
1
0
1
0
0
1
1
0
2
1

[^0]
Singular Value Decomposition

$M=X \cdot S \cdot Y^{t}$

$$
\begin{aligned}
& X=\left[\begin{array}{rrrr}
-0.4201 & 0.0748 & -0.0460 \\
-0.2995 & -0.2001 & 0.4078 \\
-0.1206 & 0.2749 & -0.4538 \\
-0.1576 & -0.3046 & -0.2006 \\
-0.1206 & 0.2749 & -0.4538 \\
-0.2626 & 0.3794 & 0.1547 \\
-0.4201 & 0.0748 & -0.0460 \\
-0.4201 & 0.0748 & -0.0460 \\
-0.2626 & 0.3794 & 0.1547 \\
-0.3151 & -0.6093 & -0.4013 \\
-0.2995 & -0.2001 & 0.4078
\end{array}\right] \quad S=\left[\begin{array}{lll}
4.0989 & 0.0000 & 0.0000 \\
0.0000 & 2.3616 & 0.0000 \\
0.0000 & 0.0000 & 1.2737
\end{array}\right] \\
& \mathbf{Y}=\left[\begin{array}{rrrrr}
-0.4945 & 0.6492 & -0.5780 \\
-0.6458 & -0.7194 & -0.2556 \\
-0.5817 & 0.2469 & 0.7750
\end{array}\right] \quad Y t=\left[\begin{array}{lll}
-0.4945 & -0.6458 & -0.5817 \\
0.6492 & -0.7194 & 0.2469 \\
-0.5780 & -0.2556 & 0.7750
\end{array}\right]
\end{aligned}
$$

A Two-Approximation (s=2)

$$
\begin{aligned}
& X_{2}=\left[\begin{array}{rrr}
-0.4201 & 0.0748 \\
-0.2995 & -0.2001 \\
-0.1206 & 0.2749 \\
-0.1576 & -0.3046 \\
-0.1206 & 0.2749 \\
-0.2626 & 0.3794 \\
-0.4201 & 0.0748 \\
-0.4201 & 0.0748 \\
-0.2626 & 0.3794 \\
-0.3151 & -0.6093 \\
-0.2995 & -0.2001
\end{array}\right] \quad S_{2}=\left[\begin{array}{ll}
4.0989 & 0.0000 \\
0.0000 & 2.3616
\end{array}\right] \\
& Y_{2}=\left[\begin{array}{rr}
-0.4945 & 0.6492 \\
-0.6458 & -0.7194 \\
-0.5817 & 0.2469
\end{array}\right] \quad Y_{2}^{t}=\left[\begin{array}{lll}
-0.4945 & -0.6458 & -0.5817 \\
0.6492 & -0.7194 & 0.2469
\end{array}\right] \\
& q_{1} \uparrow
\end{aligned}
$$

Transforming the Query

$$
\begin{aligned}
& \mathbf{q}^{\prime}=q^{t} \bullet X_{2} \cdot S_{2}^{-1} \\
& \mathbf{q}^{\prime}=\left[\begin{array}{l}
0 \\
0000100011
\end{array}\right]\left[\begin{array}{rr}
-0.4201 & 0.0748 \\
-0.2995 & -0.2001 \\
-0.1206 & 0.2749 \\
-0.1576 & -0.3046 \\
-0.1206 & 0.2749 \\
-0.2626 & 0.3794 \\
-0.4201 & 0.0748 \\
-0.4201 & 0.0748 \\
-0.2626 & 0.3794 \\
-0.3151 & -0.6093 \\
-0.2995 & -0.2001
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{4.0989} \frac{0.0000}{} \\
0.0000 & \frac{1}{2.3616}
\end{array}\right] \\
&=\left[\begin{array}{ll}
-0.2140 & -0.1821
\end{array}\right]
\end{aligned}
$$

Computing the Cosine of the Angle

$$
\begin{aligned}
& \operatorname{sim}(q, d)=\frac{q \cdot d}{|q||d|} \\
& \operatorname{sim}\left(q, d_{1}\right)=\frac{(-0.2140)(-0.4945)+(-0.1821)(0.6492)}{\sqrt{(-0.2140)^{2}+(-0.1821)^{2}} \sqrt{(-0.4945)^{2}+(0.6492)^{2}}}=-0.0541 \\
& \operatorname{sim}\left(q, \mathbf{d}_{2}\right)=\frac{(-0.2140)(-0.6458)+(-0.1821)(-0.7194)}{\sqrt{(-0.2140)^{2}+(-0.1821)^{2}} \sqrt{(-0.6458)^{2}+(-0.7194)^{2}}}=0.9910 \\
& \operatorname{sim}\left(q, \mathbf{d}_{3}\right)=\frac{(-0.2140)(-0.5817)+(-0.1821)(0.2469)}{\sqrt{(-0.2140)^{2}+(-0.1821)^{2}} \sqrt{(-0.5817)^{2}+(0.2469)^{2}}}=0.4478
\end{aligned}
$$

Visualization of Results in 2D

Pros and Cons

- Pro
- Made it into practice, but not if corpus is very large
- [MPS08] claims: "no more than 1M docs"
- May speed-up search due to less dimensions
- Increases recall (and usually decreases precision)
- Contra
- Computing SVD is expensive
- Fast approximations exist, especially for extremely sparse matrices
- Use stemming, stop-word removal etc. to shrink the original matrix
- Ranking requires less dimensions than |D|, but more than |q|
- Mapping the query turns a few keywords into an s-dimensional vector
- We cannot simply index the "concepts" of M_{s} using inverted files etc.
- Thus, LSI needs other techniques than inverted files
- Means: lots of memory

Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models

Extended Boolean Model

- Critique to Boolean Model: If 1 conjunctive term out of 10 is missing, we get same result as if 10 were missing
- Idea: Measure "distance" for each conjunctive / disjunctive subterm of the query expression to the document
- Example: X-ary AND: use a projection into x-dim space
- Query expression is $(1,1,1, . ., 1)$
- Doc is $\left(a_{1}, a_{2}, \ldots, a_{x}\right)=(0 / 1 ?, 0 / 1 ?, \ldots)$
- Similarity is distance between these two points
- Other formulas for OR and NOT
- This model mimics the VSM
- But no terms weights

Generalized Vector Space Model

- One critique to the VSM: Terms are not independent
- Thus, term vectors cannot be assumed to be orthogonal
- Generalized Vector Space Model
- Build a much larger vector space with $2^{|k|}$ dimensions
- Each dimension ("minterm") stands for all docs containing a particular set of terms
- Minterms are not orthogonal but correlated by term co-occurrences
- Convert query and docs into minterm space
- Finally, rel(q, d) is the cosine of the angel in minterm space
- Nice theory, considers term co-occurrence, much more complex than ordinary VSM, no proven advantage

Self Assessment

- Explain the general approach of the probabilistic relevance model in IR
- How does one typically bootstrap this model?
- Which relevance model we discussed does consider the non-existent of terms in docs not existing in the query?
- Discuss the performance (speed) of the LSI approach to IR
- What is the difference between concept space and term space in LSI?
- Explain the Extended Boolean Model. Which of the shortcomings of the Boolean Model does it address?

[^0]: $q=$
 q
 1

